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Methods

Materials

Formamidinium Iodide (FAI), Methylammonium Iodide (MAI), Formamidinium Bromide 

(FABr), Methylammonium Bromide (MABr), and Methylammonium Chloride (MACl) were 

purchased from Greatcell Solar (Australia). Lead Iodide (PbI2), Lead Bromide (PbBr2), and 

Lead Chloride (PbCl2), the [2-(3,6-Dimethoxy-9H-carbazol-9-yl)ethyl]phosphonic Acid 

(MeO-2PACz) were sourced from Tokyo Chemical Industry (TCI, Japan). For the electron 

transport layer, Bathocuproine (BCP) and [6,6]-phenyl-C61-butyric acid methyl ester 

(PC61BM) were acquired from Xi’an Polymer Light Technology Corporation (China). 

Additional materials such as Cesium Iodide (CsI), Rubidium Iodide (RbI), and Rubidium 

Chloride (RbCl), nickel nitrate hexahydrate ((Ni(NO3)2·6H2O), sodium hydroxide (NaOH), 

dimethylformamide (DMF), dimethyl sulfoxide (DMSO), isopropanol (IPA), 1-Methyl-2-

pyrrolidinone (NMP) and chlorobenzene (CB) were purchased from Sigma-Aldrich.

Multi-component film and devices preparation  
In our comprehensive exploration of perovskite materials, we meticulously prepared a 

series of multi-component thin films, utilizing a 1.2M solution of seven distinct perovskite 

precursors: FAPbI3, CsPbI3, FAPbBr3, MAPbI3, MAPbCl3, RbPbI3, CsI, RbI, MAI, and MACl.

First, 1.2381 g of FAI and 3.3192 g of PbI2 were dissolved in 6 mL of a DMF and DMSO with 

a 4:1 volume ratio. Subsequently, separate solutions were created: 0.0749 g of FABr and 0.2202 

g of PbBr2, 0.0953 g of MAI and 0.2766 g of PbI2, 0.0671 g of MABr and 0.2202 g of PbBr2, 

and 0.0402 g of MACl and 0.1688 g of PbCl2, each dissolved in 0.5 mL of the same 

DMF:DMSO solvent. 0.1247 g of CsI and 0.2212 g of PbI2, 0.1019 g of RbI and 0.2212 g of 

PbI2, each dissolved in 0.4 mL of the DMF:DMSO solvent. Separately, 0.1247 g of CsI, 0.1274 

g of RbI, 0.0953 g of MAI, and 0.0402 g of MACl were each dissolved in 0.5 mL of DMSO. 

These solutions were then combined in various ratios to form a diverse range of perovskite 

compositions, leading to the creation of 60 different perovskite variants for the study 

(Supplementary Table 1). The conducting FTO substrates were subjected to a UV ozone 

treatment for 15 minutes, a crucial step to modify the surface wettability and promote better 
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adhesion of the perovskite material. Following substrate preparation, 40 microliters of the 

mixed perovskite solution, corresponding to 60 different component variations as outlined in 

Table 1, were carefully drop-casted onto the glass substrate. These films were then spin-coated 

at 500 rpm for 6 seconds, followed by 3000 rpm for 20 seconds, ensuring a uniform distribution 

of the material onto the substrate. To eliminate any potential influences from these solvents and 

preparation methods, we solely relied on spin-coating followed by annealing to fabricate the 

perovskite films. They were then annealed at 100°C for 1 hour, to obtain excellent 

optoelectronic properties of perovskite films, and these films were used for optical attenuation 

testing. 

To fabricate the multi-component perovskite solar cells, we initiated the process with a 

meticulous preparation of the ITO (indium tin oxide) coated glass substrates. The substrates 

were laser etched to define the device area, followed by an extensive ultrasonic cleaning 

regimen using glass cleaner, deionized water, acetone, ethanol, and isopropyl alcohol, each for 

a duration of 15 minutes. This cleaning process was crucial to remove any residues and ensure 

a pristine substrate surface. The ITO-coated substrates were then subjected to ultraviolet ozone 

(UVO) treatment for 30 minutes, a step implemented to enhance the wettability of the substrate 

and promote better adhesion of subsequent layers. Next, we prepared a 30 mg ml−1 aqueous ink 

of NiOx nanoparticles (NPs) dispersed in deionized water. This NiOx NP ink was spin-coated 

onto the UVO-treated ITO glass at 4,000 rpm for 30 seconds, forming a uniform NiOx layer. 

The deposited NiOx film was subsequently annealed at 150 °C for 15 minutes in the atmosphere 

to improve its crystallinity and electrical properties. Following the NiOx layer preparation, 50 

microliters of each of the 60 different component perovskite solutions were applied onto the 

NiOx/ITO substrate. This step was performed meticulously to ensure uniform coverage and 

prepare the devices for electrical testing. The perovskite films were spin-coated at 4000 rpm 

for 6 s, followed by a vacuum flash-assisted crystallization step and a final annealing at 150 °C 

for 20 minutes. To complete the device architecture, a 20 mg mL−1 solution of PC61BM in CB 

was spin-coated onto the perovskite film at 1500 rpm for 30 seconds. This was followed by the 

deposition of a BCP layer, prepared by dissolving 2 mg of BCP in 1 mL of IPA, and filtering 

through a PTFE filter prior to use. The BCP layer was spin-coated onto the PC61BM layer at 

4000 rpm for 30 seconds. The device fabrication was finalized with the thermal evaporation of 
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100 nm thick Ag electrodes, establishing the electrical contacts necessary for device operation 

and testing. All the above steps were performed in a N2 filled glove box.

Solar cells fabrication

In the fabrication of our perovskite solar cells, we initiated the process by the deposition of 

a NiOx nanocrystal layer. A 30 mg.mL−1 NiOx solution was spin-coated onto the ITO substrate 

at 4,000 rpm for 30 seconds in ambient air, without any subsequent post-processing. The 

relative humidity (RH) was maintained at a constant level of 40% to ensure controlled 

environmental conditions. The substrate was then immediately transferred to a glove box to 

maintain an inert atmosphere. The NiOx nanoparticles were synthesized via a hydrolysis 

reaction of nickel nitrate, as detailed in a previous work.1 Following the NiOx layer, a 0.3 mg 

mL−1 solution of Meo-2PACz in ethanol was spin-coated onto the NiOx film at 3,000 rpm for 

30 seconds. The substrate was then annealed at 100°C for 10 minutes to ensure proper film 

formation and adherence. For the perovskite layer, we selected the No. 57 perovskite precursor 

(Supplementary Table S1), identified as having the best optical and electrical stability from 

our composition screening. Different concentrations of AETA-BCF (0 mg/ml, 1 mg/ml, 1.5 

mg/ml and 2 mg/ml) were dissolved in the perovskite precursor. An 80 μL drop of the 1.5 M 

perovskite precursor solution was applied to the NiOx-Meo-2PACz substrate, followed by spin-

coating at 4,000 rpm for 6 seconds. The film then underwent a vacuum-assisted crystallization 

process, immediately followed by annealing on a hot plate at 150°C for 20 minutes. Next, a 20 

mg ml−1 solution of PC61BM in chlorobenzene (CB) was spin-coated onto the treated 

perovskite film at 1,500 rpm for 30 seconds. A supersaturated solution of BCP was prepared 

by dissolving 2 mg of BCP in 1 mL of IPA, followed by 5 minutes of agitation and filtration 

through an organic filter. This BCP solution was then spin-coated onto the PC61BM layer at 

4,000 rpm for 30 seconds. The device fabrication was completed with the thermal evaporation 

of 100 nm thick Ag electrodes, establishing the necessary electrical contacts for device 

operation. For stability testing, devices were fabricated using Cu as the electrode material. A 

100 nm thick layer of copper was thermally evaporated to complete the device manufacturing.

Device test

Current-voltage (J-V) characteristic measurements under controlled conditions. The 
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measurements were carried out using a Keithley 2400 sourcemeter, with the solar cells 

illuminated by a standard solar simulator. The light intensity was meticulously calibrated to 100 

mW cm-2, ensuring consistency and comparability of the results (calibrated using a standard 

silicon solar cell) in an atmospheric environment, with the humidity maintained between 30-

50%. For the forward scan, the voltage was varied from -0.2V to 1.2V at a scanning rate of 0.01 

mV s-1. Similarly, for the reverse scan, the voltage was varied from 1.2V to -0.2V at the same 

scanning rate of 0.01 mV s-1. The effective area of the solar cells was determined using an 

aperture mask, ensuring precision in the measurement of the photocurrent. The devices were 

measured with a 0.1 cm2 aperture mask.

Measurement and Characterization

Transient photocurrent spectroscopy (TPC) was conducted using ENLITECH's PD-RS 

system. The perovskite absorbance of the films was measured with a Cary 5000 UV-Vis-NIR 

spectrophotometer, using an FTO sample as the baseline. Fourier-transform infrared (FTIR) 

spectra were obtained in reflectance mode using the FTIR-850. The Agilent 5500 scanning 

probe microscope was employed for Kelvin Probe Force Microscopy (KPFM) in tapping mode. 

Time-resolved photoluminescence (TRPL) was measured with a Horiba Fluorolog-3 time-

correlated single photon counting system. Scanning electron microscopy (SEM) determinations 

were conducted using a JEOL JSM7610F SEM. Transmission electron microscopy (TEM) 

images were acquired with a JEM-2100F (JEOL, Japan).

Computational Details

All first-principles calculations, were performed with the Vienna Ab initio Simulation 

Package (VASP),2 making use of the Projector Augmented-Wave (PAW) method in 

combination with the PBE exchange-correlation functional.3,4 Our simulations utilized a 2 × 2 

× 1 gamma-centered Monkhorst-Pack electronic k-point grid with a plane-wave cutoff energy 

of 400 eV. The calculations were conducted with a 20Å vacuum space to preclude any aperiodic 

interactions between the 2 × 2 × 1 supercells. Computations were performed allowing full 

relaxation of all structures until the total energy of the atoms reached a convergence threshold 

of 1.0 × 10−5 eV/atom. Starting FAPbI3 crystal cell structure were constructed using Materials 
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studio.5 The files associated with the DFT calculations performed in VASP have been deposited 

on FigShare (10.6084/m9.figshare.24782304).

Machine learning Methodology

To optimize the fabrication process of vacuum-assisted perovskite solar cells, we employed 

Gaussian regression Bayesian optimization, a robust machine learning technique renowned for 

its efficacy in high-dimensional optimization problems.6,7 As input variables and target output, 

we meticulously selected seven critical process variables based on their significant impact on 

the perovskite film formation and the overall device performance. These variables included: 

NMP volume (ML), DMF volume (ML), DMSO volume (ML), perovskite precursor 

concentration (M, the concentration of the raw materials used in the synthesis of perovskites), 

annealing temperature (°C), vacuum pressure (Pa), and vacuum pressure holding time (s) 

(Supplementary Table 2). The target output for our optimization model was the Power 

Conversion Efficiency (PCE) of the solar cell, a direct indicator of device performance. The 

optimization ranges for each of the input variables were carefully chosen based on a 

comprehensive review of previous work and expert consideration – and validated through a 

preliminary sampling (cf. main text) – ensuring a balance between experimental feasibility and 

the breadth of the parameter space. These ranges are detailed in Supplementary Table 1. Given 

the selected sampling interval, a full grid sampling approach would result in approximately 

1,342,863,522 unique process conditions, highlighting the necessity of an efficient optimization 

strategy. 

In BO for process optimization, one attempts to find the specific process condition, , for 𝑥𝑖

which the black-box objective function, , mapping the condition search space (A), to the 𝑓(𝑥)

target property (PCE), is maximal,8

𝑥𝑖 =  argmax
𝑥 ∈ 𝐴

𝑓(𝑥) (1)

Such a BO campaign typically starts by selecting an initial sample of process conditions, 

after which the output property of interest is determined for each of those. Subsequently, a 
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surrogate model for the true objective function  – the prior – is trained based on the 𝑓̂(𝑥)

observations made, and an acquisition function is constructed, which calculates the utility of 

performing an additional measurement, i.e., evaluating the objective function, at the point x. 

Utility may be measured in a number of ways: the predicted PCE value, the amount of 

information this new point will provide the surrogate model, the likelihood this point will 

improve upon the current maximum, etc.9 Once new condition combinations have been 

acquired, the surrogate model is updated – resulting in the posterior – and acquisition can be 

repeated. This updating process can be performed in an iterative manner until significant 

improvements in PCE values are no longer observed from batch to batch.

For the construction of the main surrogate model, Gaussian Process regression with a 

matern52 kernel was selected.10 Matern52 is a flexible kernel, enabling it to treat potential 

discontinuities in the data better. Additionally, the kernel was selected in its anisotropic form, 

so that each of the kernel parameters could be tuned independently for every input variable, 

facilitating the assignment of a stronger impact/relevance on the predicted output variable, i.e., 

the measured efficiency, by some variables compared to others. It should be noted that the 

surrogate model, evaluated at point x, yields both a mean prediction for that point, , as well 𝑓̂(𝑥)

as a standard deviation , which quantifies the uncertainty of the model about its prediction 𝜎(𝑥)

at this point.

To inform the selection of process condition combinations to acquire in subsequent BO 

batches, a compounded acquisition function was selected. The utility function of upper 

confidence bound (UCB) was selected as the basis,11

𝑎𝑐𝑞𝑈𝐶𝐵(𝑥;𝛽) =  𝑓̂(𝑥) +  𝛽 ∗ 𝜎(𝑥) (2)

where  is the parameter that adjusts the relative weight of prediction uncertainty  𝛽 𝜎(𝑥)

over the prediction mean value . In general terms of balancing exploration and exploitation, 𝑓̂(𝑥)

higher  values lead to more exploration, while lower  values lead to more exploitation. In 𝛽 𝛽

this work, we set  equal to 1, in line with previous work.12 𝛽
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While it was our goal to focus primarily on the (accurate) efficiencies measured as part of 

the BO campaign, we also did not want to lose the information from the preliminary sample 

and the visual defects data altogether during acquisition. As such, two probabilistic constraints 

were defined, in line with previous work by Buonassisi and co-workers.13 The first of those 

probabilistic constraints, , corresponds to the probability that the thin film will be 𝑃𝑟[𝐶1(𝑥)]

produced without visual defects. This film constraint is defined based on a latent constraint 

function ,14𝑔𝑐𝑜𝑛𝑠𝑡𝑟,1(𝑥)

𝑃𝑟[𝐶1(𝑥)] = 𝑃𝑟[𝑔𝑐𝑜𝑛𝑠𝑡𝑟,1(𝑥) ≥  0)] (3)

where  is a secondary surrogate model in its own right, which is constructed 𝑔𝑐𝑜𝑛𝑠𝑡𝑟,1(𝑥)

with the help of Gaussian Processes as well, based on the process conditions evaluated so far. 

In the training data of this Gaussian process model, ,  is assigned the value +0.5 if {(𝑥𝑖;𝑦𝑖)} 𝑦𝑖

the fabricated device did not have visually detectable defects, and -0.5 if the device did contain 

such defects. As a result of this convention, Eq. 3 evaluates to 0 for all training points which 

yielded devices with visual defects, and to 1 for all training points resulting in devices without 

defects. For all other points in the search space, a probability – to have a device without defects 

– is interpolated based on the constructed surrogate model.

The second probabilistic constraint, , has been defined with the aim of 𝑃𝑟[𝐶2(𝑥)]

penalizing regions of the search space around points, evaluated during preliminary sampling, 

which yielded subpar PCE values. This constraint is defined based on a latent constraint 

function ,14𝑔𝑐𝑜𝑛𝑠𝑡𝑟,2(𝑥)

𝑃𝑟[𝐶2(𝑥)] = 𝑃𝑟[𝑔𝑐𝑜𝑛𝑠𝑡𝑟,2(𝑥) ≥  0)] (4)

where  is another secondary surrogate model, which has again been constructed 𝑔𝑐𝑜𝑛𝑠𝑡𝑟,2(𝑥)

with the help of Gaussian Processes. The training points  for  are derived {(𝑥𝑖;𝑦𝑖)} 𝑔𝑐𝑜𝑛𝑠𝑡𝑟,2(𝑥)
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from the process conditions and corresponding PCE values for all the points in the preliminary 

sample, but then with the PCE values rescaled as follows,

{(𝑥𝑖;𝑦𝑖)} →{(𝑥𝑖;𝑦𝑖 ‒ 𝑚𝑒𝑎𝑛({𝑦𝑖}))} (5)

where  is the mean of all the PCE values encountered in the preliminary 𝑚𝑒𝑎𝑛({𝑦𝑖})

sample. Based on these definitions, it can indeed be inferred that Eq. 4 will evaluate to 0 for all 

points in the preliminary sample that yielded a PCE below average, whereas it will evaluate to 

1 for points that yielded a PCE above average during preliminary sampling. For all other points 

in the search space, a probability to yield an above average PCE is interpolated based on the 

constructed surrogate model.

The two constraints were then combined with  to yield the final acquisition 𝑎𝑐𝑞𝑈𝐶𝐵

function as follows,

𝑎𝑐𝑞𝑓𝑢𝑙𝑙(𝑥) =  𝑎𝑐𝑞𝑈𝐶𝐵(𝑥) ∗ (0.5 + 0.5 ∗ 𝑃𝑟⁡[𝐶1(𝑥)]) ∗ (0.8 + 0.2 ∗ 𝑃𝑟[𝐶2(𝑥)]) (6)

Note that the individual constraints have been softened, i.e., rescaled, in Eq. 6, to make the 

acquisition process more conservative with respect to the film and preliminary screening data. 

The weighting factors introduced to this end were chosen to make the current data 5 times more 

important than the preliminary screening data, and the qualitative film quality information is 

considered half as important as the information of the actual efficiency measurements. By 

introducing these constraints in the acquisition function, one can expect to sample fewer points 

in the region where film quality is poor, or where low device efficiency was obtained in the 

preliminary experiments, throughout the BO campaign.

As a final note, it should be mentioned that, since the purpose of the probabilistic 

constraints is mainly to guide the model away from regions in the search space with a low 

probability of success, radial basis function kernels were used to model surrogates 

 and . Radial basis functions are less flexible than matern52 kernels, and 𝑔𝑐𝑜𝑛𝑠𝑡𝑟,1(𝑥) 𝑔𝑐𝑜𝑛𝑠𝑡𝑟,2(𝑥)
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consequently, their smoother/more rigid behavior intuitively feels more appropriate to crudely 

define unfavorable regions of the search space.

To construct 2D contour plots of the surrogate objective function during a given iteration 

of the Bayesian optimization procedure, we started by sampling 1000 random points across the 

7-dimensional search space. Subsequently, we modified the values for the two selected 

dimensions (x1 and x2) iteratively, so that the complete grid of potential (x1, x2)-values is 

covered. This results in 1000 simulated samples for every combination of (x1, x2): for the 5 

non-selected dimensions, the values are fully randomized, so that they constitute a 

representative sample of the full population of possible process conditions. Finally, the 1000 

samples in every (x1, x2) point is passed through the surrogate function, obtaining the 

corresponding predictions. Finally, we can construct our contour plots, where we either 

visualize in every grid point the maximum, mean or minimum of the respective 1000 

predictions.

The surrogate models and acquisition functions were implemented, based on previous work 

by Buonassisi and co-workers,13 with the help of Emukit15 and GPy.16 All the code associated 

with this project has been made available through a GitHub repository 

https://github.com/Boxue2023/Perovskite. 

Synthesis of Acryloyloxyethyltrimethylammonium tetrakis(pentafluorophenyl)borate

(S1)

In a 100 mL Schlenk flask, equipped with a magnetic stir bar, acryloyloxyethyltrimethyl 

ammonium chloride (AETAC) (1.00 g, 4.58 mmol) was dissolved in 30 mL of anhydrous 

tetrahydrofuran (THF). The solution was cooled to -78°C in a dry ice/acetone bath under an 

inert nitrogen atmosphere. Meanwhile, potassium tetrakis(pentafluorophenyl)borate (2.15 g, 
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4.58 mmol) was separately prepared in a glovebox to prevent moisture and oxygen 

contamination, and then suspended in 20 mL of anhydrous THF.

The potassium tetrakis(pentafluorophenyl)borate suspension was added dropwise to the 

AETAC solution over a period of 30 minutes, ensuring the reaction temperature did not rise 

above -60°C. After the addition, the reaction was allowed to slowly warm to 0°C over a period 

of 2 hours, followed by stirring at room temperature for an additional 16 hours, allowing for 

complete reaction (S1) as evidenced by thin-layer chromatography (TLC) analysis using a 

mixture of hexanes and ethyl acetate (1:1) as the mobile phase.

The reaction was then quenched by the slow addition of saturated aqueous ammonium 

chloride solution. The mixture was extracted three times with dichloromethane (DCM). The 

combined organic extracts were washed with brine, dried over anhydrous sodium sulfate, and 

concentrated under reduced pressure. Purification of the residue by flash column 

chromatography (silica gel, using a gradient of 0-10% ethyl acetate in hexanes as eluent) 

afforded the title compound as a white solid.

The structure of the synthesized compound was confirmed by ^1H NMR and ^19F NMR 

spectroscopy. The ^1H NMR (400 MHz, DMSO-d6) spectrum exhibited characteristic peaks 

at δ 6.38 (d, J = 17.3 Hz, 1H), 6.29 – 6.13 (m, 1H), 6.02 (d, J = 7.3 Hz, 1H), 4.55 (s, 2H), 3.69 

(s, 2H), and 3.13 (s, 9H). The ^19F NMR (376 MHz, DMSO-d6) spectrum showed peaks at δ 

-132.35 (s, 8F), -161.36 (s, 4F), and -165.96 (s, 8F), confirming the presence of the 

pentafluorophenyl and tetrakis(pentafluorophenyl)borate moieties. 
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Supplementary Fig. 1 Device and film photographs of the 60 components prepared through the 
vacuum-assisted crystal.

Supplementary Fig. 2 Visible/NIR Absorbance spectrum evolution of some component films during 
photothermal in N2 atmosphere aging (hours).
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Supplementary Fig. 3 Diagram between the amount of MACl additive and the photothermal aging 
lifetime T90

A.

Supplementary Fig. 4 In-situ J-V performance (Reverse scan) evolution of some components upon 
aging time (hours).
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Supplementary Fig. 5 Bar plots visualizing the distribution of the initial samples across the search 
space for each of the process variables.

Supplementary Fig. 6 Bar plots visualizing the distribution of the first batch of experiments, selected 
by the BO algorithm (through construction of the compounded acquisition function), across the search 
space for each of the process variables. 
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Supplementary Fig. 7 The acquisition process for the first sampling round. Plot of the predicted – and 
measured – PCE values for both the initial batch and the first selection of acquired points; (a) the best 
PCE value measured so far is denoted by the bold black curve (left). (b) Graphical summary of the 
acquisition function values across this first selection round, where ‘raw acqui’ corresponds to the upper 
confidence bound acquisition function, ‘constr prob’, corresponds to the product of the two constraint 
probabilities and ‘final acqui’ corresponds to the product between the raw acquisition function and the 
constraint probabilities. Note that the acquisition function values have been scaled by a factor 20 to 
enable a visualization on the same scale as the constraint probabilities. 

Supplementary Fig. 8 Sample of the 2D contour plots for the surrogate objective function: (a) DMF 
vs. NMP volumes, (b) Perovskite precursor concentration vs. DMF volume. These plots were 
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constructed by randomly sampling 1000 points in the search space, after which the values for the two 
selected parameters are iteratively modified. In each iteration, a distribution of process conditions 
corresponding to a point in the 2D space spanned by the two selected parameters is sampled in this 
manner. Evaluating the objective function for these distributions in every point, contour plots in 2D 
space can be generated, visualizing respectively the maximum (left), mean (center) and minimum (left) 
of the process condition distributions.

Supplementary Fig. 9 Bar plots visualizing the distribution of the second batch of experiments, selected 
by the BO algorithm, across the search space for each of the process variables. 

Supplementary Fig. 10 The acquisition process for the second sampling round. Plot of the predicted – 
and measured – PCE values for both the initial batch and the first selection of acquired points; (a) the 
best PCE value measured so far is denoted by the bold black curve (left). (b) Graphical summary of the 
acquisition function values across this second selection round, where ‘raw acqui’ corresponds to the 
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upper confidence bound acquisition function, ‘constr prob’, corresponds to the product of the two 
constraint probabilities and ‘final acqui’ corresponds to the product between the raw acquisition function 
and the constraint probabilities (right). Note that the acquisition function values have been scaled by a 
factor 20 to enable a visualization on the same scale as the constraint probabilities.

Supplementary Fig. 11 Sample of the 2D contour plots for the surrogate objective function: (a) DMF 
vs. NMP volumes, (b) Perovskite precursor concentration vs. DMF volume. Maximum (left), mean 
(middle) and minimum (right) surrogate objective function values across the sample of process 
conditions at every grid point are visualized. 
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Supplementary Fig. 12 Bar plots visualizing the distribution of the third batch of experiments, selected 
by the BO algorithm, across the search space for each of the process variables. 

Supplementary Fig. 13 The acquisition process for the third sampling round. Plot of the predicted – 
and measured – PCE values for both the initial batch and the first selection of acquired points; (a) the 
best PCE value measured so far is denoted by the bold black curve. (b) Graphical summary of the 
acquisition function values across this third selection round.
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Supplementary Fig. 14 Sample of the 2D contour plots for the surrogate objective function: (a) DMF 
vs. NMP volumes, (b) Perovskite precursor concentration vs. DMF volume. Maximum (left), mean 
(middle) and minimum (right) surrogate objective function values across the sample of process 
conditions at every grid point are visualized.

Supplementary Fig. 15 FTIR spectra of AETA-BCF before and after linear polymerization.
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Supplementary Fig. 16 Photographs of AETA-BCF in both powder and solution forms before (a) and 
after (b) the polymerization. The powder samples before and after cross-linking were obtained through 
heat treatment.

Supplementary Fig. 17 TEM morphology after AETA-BCF linear polymerization in perovskite.
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Supplementary Fig. 20 XPS spectra of (a) Pb 4f and (b) C 1s.

Supplementary Fig. 21 DOS of (a) VPb, (b) VI and (c) PbI-antisite before and after AETA-BCF treatment.

Supplementary Fig. 22 Iso-surface representations of perovskite surfaces with VPb defects, pre- and 
post-molecular passivation. Panels (a) and (c) show the highest occupied valence band for untreated and 
passivated surfaces, respectively. Panels (b) and (d) illustrate the lowest unoccupied conduction band 
for the same conditions. These images highlight the electronic structure changes due to VPb and the 
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impact of molecular passivation.

Supplementary Fig. 23 Iso-surface representations of perovskite surfaces with VI defects, pre- and 
post-molecular passivation. Panels (a) and (c) show the highest occupied valence band for untreated and 
passivated surfaces, respectively. Panels (b) and (d) illustrate the lowest unoccupied conduction band 
for the same conditions. These images highlight the electronic structure changes due to VI and the impact 
of molecular passivation.

Supplementary Fig. 24 Iso-surface representations of perovskite surfaces with PbI-antisite defects, pre- 
and post-molecular passivation. Panels (a) and (c) show the highest occupied valence band for untreated 
and passivated surfaces, respectively. Panels (b) and (d) illustrate the lowest unoccupied conduction 
band for the same conditions. These images highlight the electronic structure changes due to PbI-antisite 
and the impact of molecular passivation.
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Supplementary Fig. 25 Kelvin Probe Force Microscopy (KPFM) and Surface Potential Maps of Thin 
Films. Panel (a) displays the KPFM image of the thin film after AETA-BCF optimization, with a scale 
bar of 1000 nm. Panel (b) shows the corresponding baseline surface potential map of this optimized 
film, and its average surface potential was found to be -0.173 mV with a fluctuation range of -0.01 mV. 
Panel (c) presents the KPFM image of the thin film before AETA-BCF optimization, also scaled at 1000 
nm. Panel (d) illustrates the corresponding baseline surface potential map of the unoptimized film, and 
its average surface potential was found to be -0.162 mV with a fluctuation range of -0.55 mV. These 
images highlight the surface potential changes induced by the AETA-BCF optimization process in the 
thin films.
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Supplementary Fig. 26 SEM Images of Control and Target Thin Films. Panels (a) and (b) present the 
SEM (Scanning Electron Microscopy) images of the control thin film and the target thin film, 
respectively, each with a scale bar of 1000 nm. Panels (c) and (d) show the cross-sectional views of the 
same films, with a scale bar of 500 nm for close-up detail.
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Supplementary Fig. 27 Time-Resolved Photoluminescence (TRPL) Spectra of Control and Target Thin 
Films. This figure presents the TRPL spectra for both the control and target thin films, with a sample 
structure of Glass/NiOx/MeO-2PACz/Perovskite.

Supplementary Fig. 28 Time-Resolved Photoluminescence (TRPL) Spectra of Control and Target Thin 
Films. This figure presents the TRPL spectra for both the control and target thin films, with a sample 
structure of Glass/Perovskite.
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Supplementary Fig. 29 Performance Variation with AETA-BCF Concentrations. Statistical graphs 
depicting how different concentrations of AETA-BCF affect PCE, VOC, JSC, and FF in photovoltaic 
devices.
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Supplementary Fig. 30 The J–V curves of the best-performing control device.

Supplementary Fig. 31 Stability of Power Output for Target Device at 1.0v Bias.
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Supplementary Fig. 32 Efficiency Certification. This figure presents the certified efficiency report 
obtained from the National Photovoltaic Quality Inspection and Testing Center, validating the 
performance metrics of our photovoltaic device.
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Supplementary Fig. 33 IPCE spectrum of target device with AETA-BCF passivation, the 
corresponding integrated current is 25.43 mA cm-2. 

Supplementary Fig. 34 Transient photocurrent curves for the control and target devices.
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Supplementary Fig. 35 The water contact angle measurement for PSCs of control and target film.

Supplementary Fig. 36 The long-term stability for PSCs of control and target devices for the 
encapsulated under AM 1.5 illumination in ambient air.
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Supplementary Table 1. Compilation of 60 Perovskite Compositions Used in This Study. This table 
provides a detailed list of the 60 perovskite compositions explored in our research, outlining their 
specific formulations. This percentage refers to the molar concentration ratio of MACl added to the 
perovskite precursor solution. *For detailed solution preparation, solution concentrations, and their 
respective volume ratios, please refer to the Experimental Section. The 60 different FAPbI3-based 
perovskite components are classified and arranged based on the types and ratios of additives used. The 
components are grouped as follows: (1) FAPbI3 with Single Additives: These compositions include 
FAPbI3 with varying concentrations of a single additive such as RbI, CsI, MAI, or MACl. They are 
arranged in ascending order of additive concentration. The corresponding components are highlighted 
in red. (2) FAPbI3 with Dual Additives: These compositions involve combinations of two additives. 
They are categorized based on the types of additives and their relative concentrations. The corresponding 
components are highlighted in orange. (3) FAPbI3 with Multiple Additives: These compositions contain 
three or more additives. The corresponding components are highlighted in green. (4) Mixed Cation and 
Halide Perovskites: These include compositions where multiple cations (Rb, Cs, MA) and halides (I, 
Br, Cl) are mixed with FAPbI3. The corresponding components are highlighted in blue.

FAPbI3-based Composites and corresponding recipes
serial

Number
Target

Composites
Recipes* Serial

number
Target

composition
Recipe

1 FAPbI3 200 μL FAPbI3 31 FAPbI3+3%RbI+7%MAI 6μL RbI + 14μL MAI + 

200 μL FAPbI3

2 FAPbI3+3%RbI 6μL RbI + 200 μL 

FAPbI3

32 FAPbI3+7%RbI+3%MAI 14μL RbI + 6μL MAI + 

200 μL FAPbI3

3 FAPbI3+7%RbI 14μL RbI + 200 μL 

FAPbI3

33 FAPbI3+5%CsI+2%MAI+3%RbI+50%

MACl

10μL CsI + 4μL MAI + 6 

RbI + 200 μL 

FAPbI3+100μL MACI

4 FAPbI3+15%RbI 30μL RbI + 200 μL 

FAPbI3

34 FAPbI3+3%CsI+7%MAI 5μL CsI + 14μL MAI + 

200 μL FAPbI3

5 FAPbI3+3%CsI 6μL CsI + 200 μL 

FAPbI3

35 FAPbI3+7%CsI+3%MAI 14μL CsI + 6μL MAI + 

200 μL FAPbI3

6 FAPbI3+7%CsI 14μL CsI + 200 μL 

FAPbI3

36 FAPbI3+5%CsI+2%MAI+3%RbI 10μL CsI + 4μL MAI + 

6μL RbI + 200 μL FAPbI3

7 FAPbI3+15%CsI 30μL CsI + 200 μL 

FAPbI3

37 FAPbI3+5%RbI+10%MAI 10μL RbI + 20μL MAI + 

200 μL FAPbI3

8 FAPbI3+3%MAI 6μL MAI + 200 μL 

FAPbI3

38 FAPbI3+10%RbI+5%MAI 20μL RbI + 10μL MAI + 

200 μL FAPbI3

9 FAPbI3+7%MAI 14μL MAI + 200 μL 

FAPbI3

39 FAPbI3+10%RbI+5%MACl 20μL RbI + 10μL MACl + 

200 μL FAPbI3

10 FAPbI3+15%MAI 30μL MAI + 200 μL 40 FAPbI3+7%RbI+3%CsI+5%MAI 14μL RbI + 6μL CsI + 
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FAPbI3 10μL MAI + 200 μL 

FAPbI3

11 FAPbI3+10%MACl 20μL MACI + 200 μL 

FAPbI3

41 FAPbI3+5%CsI+10% MAI 10μL CsI + 20μL MAI + 

200 μL FAPbI3

12 FAPbI3+20%MACl 40μL MACI + 200 μL 

FAPbI3

42 FAPbI3+10%CsI+5% MAI 20μL CsI + 10μL MAI + 

200 μL FAPbI3

13 FAPbI3+30%MACl 60μL MACI + 200 μL 

FAPbI3

43 FAPbI3+10%CsI+5% MACl 20μL CsI + 10μL MACl + 

200 μL FAPbI3

14 FAPbI3+50%MACl 100μL MACI + 200 μL 

FAPbI3

44 FAPbI3+3%RbI+7%CsI+5%MAI 6μL RbI + 14μL CsI + 

10μL MAI + 200 μL 

FAPbI3

15 (Rb0.03FA0.97)PbI3 6μL RbPbI3 + 200 μL 

FAPbI3

45 FAPbI3+5%CsI+15%MAI 10μL CsI + 30μL MAI + 

200 μL FAPbI3

16 (Rb0.07FA0.93)PbI3 14μL RbPbI3 + 200 μL 

FAPbI3

46 FAPbI3+15%CsI+5%MAI 30μL CsI + 10μL MAI + 

200 μL FAPbI3

17 (Rb0.15FA0.85)PbI3 30μL RbPbI3 + 200 μL 

FAPbI3

47 FAPbI3+5%CsI+15%MACl 10μL CsI + 30μL MACl + 

200 μL FAPbI3

18 (Cs0.03FA0.97)PbI3 6μL CsPbI3 + 200 μL 

FAPbI3

48 FAPbI3+5%RbI+10%CsI+5%MAI 10μL RbI + 20μL CsI + 10μL MAI + 

200 μL FAPbI3

19 (Cs0.7FA0.93)PbI3 14μL CsPbI3 + 200 μL 

FAPbI3

49 (Rb0.03MA0.07FA0.9)PbI3 6μL RbPbI3 + 14μL MAPbI3 

+ 200 μL FAPbI3

20 (Cs0.15FA0.85)PbI3 30μL CsPbI3 + 200 μL 

FAPbI3

50 (Rb0.07MA0.03FA0.9)PbI3 14μL RbPbI3 + 6μL MAPbI3 

+ 200 μL FAPbI3

21 MAPbI3 200 μL MAPbI3 51 (Rb0.05Cs0.03MA0.02FA0.9)PbI3 10μL RbPbI3 + 6μL CsPbI3 + 

4μL MAPbI3 + 200 μL 

FAPbI3

22 (MA0.03FA0.97)PbI3 6μL MAPbI3 + 200 μL 

FAPbI3

52 (Rb0.03MA0.07FA0.90)Pb(I0.95Br0.03

Cl0.02)3

6μL RbPbI3 + 14μL 

MAPbCl3 + 9μL FAPbBr3 + 

200 μL FAPbI3

23 (MA0.07FA0.93)PbI3 14μL MAPbI3 + 200 μL 

FAPbI3

53 (Cs0.05MA0.10FA0.85)PbI3 10μL CsPbI3 + 20μL 

MAPbI3 + 200 μL FAPbI3

24 (MA0.15FA0.85)PbI3 30μL MAPbI3 + 200 μL 

FAPbI3

54 (Cs0.10MA0.05FA0.85)PbI3 20μL CsPbI3 + 10μL 

MAPbI3 + 200 μL FAPbI3

25 (MA0.03FA0.97)PbI2.97Cl0.03 6μL MAPbCl3 + 200 μL 

FAPbI3

55 (Rb0.03Cs0.10MA0.02FA0.85)PbI3 6μL RbPbI3 + 20μL CsPbI3 + 

4μL MAPbI3 + 200 μL 

FAPbI3

26 (MA0.07FA0.93)PbI2.93Cl0.07 14μL MAPbCl3 + 200 

μL FAPbI3

56 (Rb0.03MA0.07FA0.90)Pb(I0.95Br0.03

Cl0.02)3 + 30%MACl

6μL RbPbI3 + 14μL 

MAPbCl3 + 9μL FAPbBr3 + 

200 μL FAPbI3 + 60μL 

MACl

27 (MA0.15FA0.85)PbI2.85Cl0.15 30μL MAPbCl3 + 200 

μL FAPbI3

57 (MA0.02Cs0.05FA0.93)Pb(I0.97Br0.01C

l0.02)3 + 50%MACl

4μL MAPbCl3 + 10μL 

CsPbI3 + 2μL FAPbBr3 + 

200 μL FAPbI3 + 100μL 

MACl
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28 (MA0.10FA0.90)Pb(I0.95Br0.02Cl0.03)3 20μL MAPbCl3 + 12μL 

FAPbBr3 + 200 μL 

FAPbI3

58 (Cs0.05MA0.15FA0.80)PbI3 10μL CsPbI3 + 30μL 

MAPbI3 + 200 μL FAPbI3

29 (MA0.10FA0.90)Pb(I0.90Br0.07Cl0.03)3 20μL MAPbCl3 + 41μL 

FAPbBr3 + 200 μL 

FAPbI3

59 (Cs0.15MA0.05FA0.80)PbI3 30μL CsPbI3 + 10μL 

MAPbI3 + 200 μL FAPbI3

30 (MA0.20FA0.80)Pb(I0.90Br0.03Cl0.07)3 41μL MAPbCl3 + 18μL 

FAPbBr3 + 200 μL 

FAPbI3

60 (Rb0.05Cs0.05MA0.10FA0.80)PbI3 10μL RbPbI3 + 10μL CsPbI3 

+ 20μL MAPbI3 + 200 μL 

FAPbI3

Supplementary Table 2: An overview of the search space considered in this work.
Process variable Total range (interval)
Volume NMP (ml) 0 – 100 (5)
Volume DMF (ml) 0 – 100 (5)
Volume DMSO (ml) 0 – 100 (5)
Perovskite precursor concentration (M) 0.8 – 1.8 (0.1)
Annealing temperature (°C) 100 – 160 (5)
Vacuum pressure (Pa) 20 – 400 (10)
Vacuum pressure time (s) 0 – 55 (2)
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Supplementary Table 3: The region in the multidimensional parameter space where our surrogate 
model, trained with the help of Bayesian optimization, indicateds the highest likelihood of achieving an 
optimal device performance. 

Process variable Best range (interval)
Volume NMP (ml) 0 – 20 (5)
Volume DMF (ml) 60 – 100 (5)
Volume DMSO (ml) 20 – 60 (5)
Perovskite precursor concentration (M) 1.3 – 1.7 (0.1)
Annealing temperature (°C) 120 – 140 (5)
Vacuum pressure (Pa) 20 – 60 (10)
Vacuum pressure time (s) 20 – 40 (2)
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