Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2024

Supplementary information

Avoiding Electrochemical Indentations: CNT-cocooned LiCoO₂

Electrode with Ultra-stable High-voltage Cycling

Zhi Zhu^{a,b*}, Shuanglong Xu^a, Zhenjie Wang^a, Xiaohui Yan^a, Guiyin Xu^b, Yimeng Huang^c, Yuping Wu^a, Yin Zhang^{b*} and Ju Li^{b,c*}

^a Confucius Energy Storage Lab, School of Energy and Environment & Z Energy-storage Center, Southeast University, Nanjing, Jiangsu, 211189, CN

^b Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

^c Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Supplementary Fig. 1 The morphology of the CNT used CNT-LCO

Supplementary Fig. 2 The TGA analysis of the CNT-LCO electrode in air, where the CNT decomposition occurred at above 300 °C and had a weight loss about 0.5%

Supplementary Fig. 3 The Raman analysis of the CNT-LCO electrode and pure LCO particles

Supplementary Fig. 4 The cycling performance of R-LCO and CNT-LCO under different current density

Supplementary Fig. 5 The cycling performances of CNT-LCO with the upper voltages of 4.60 V and 4.62 V.

Supplementary Fig. 6 (a) The piecewise linear relationship between the LCO unit cell volume and Li concentration. (b) The partial volume of Li with respect to the Li concentration

Supplementary Fig. 7 The depth profile of CoO_2 , CoF_3 and C_2HO species at the surface of R-LCO and CNT-LCO after high voltage cycles

Supplementary Fig. 8 The new structures of the full-cells that designed for the free-standing electrodes.

Supplementary Fig. 9 The TG analysis of the cycled CNT-LCO

Supplementary Fig. 10 The XPS analysis of F on the surface of the regenerated LCO

unit of measure	value
wt.%	99±1
wt.%	≥93
unit	1
nm	1.6±0.4
μm	>5
wt.%	<1
	unit of measure wt.% wt.% unit nm μm wt.%

Supplementary Table. 1 The details of CNT used for CNT-LCO

•		
moi	ot	110
	SU	шс

Supplementary Table. 2 The voltage changes in the GITT tests of R-LCO and CNT-LCO.

Considering that $L \propto \frac{\eta 1}{\eta 2}$, the ratio of L in R-LCO to that in CNT-LCO can be estimated from the

ratio of $\frac{\eta 1}{\eta 2}$ in the two materials.

	10 th cycle			300 th cycle				
	IR_{Ω}	η_1	η_2	η_1/η_2	IR_{Ω}	η_1	η_2	η_1/η_2
R-LCO	0.0506 V	0.0532 V	0.0294 V	1.81	0.2173 V	0.08 V	0.0127 V	6.30
CNT-LCO	0.0487 V	0.0435 V	0.0271 V	1.60	0.0554 V	0.0534 V	0.0268 V	1.99

Supplementary Table. 3 The loading of free-standing cathode and anode materials for pouch full-

cells

	mAh/cm ²	mg/cm ²	g/cm ³	mAh/g	CNT%
CNT-LCO	6	30.8	4.3	195	0.5
CNT-MCMB	6.5	18.6	1.7	350	1

Supplementary Discussion

Based on the structure of pouch full cell and loadings of cathode and anodes shown in Fig. 8 and Table. 3, the energy density can be evaluated with the following methods.

(1) For the volumetric energy density (Ev),

$$d_{\text{cathode}} = 71.6 \text{ um}$$

 $d_{\text{anode}} = 109.4 \text{ um}$
 $d_{\text{sep}} = 12 \text{ um}$
 $d = d_{\text{cathode}} + d_{\text{sep}} + d_{\text{anode}} = 193 \text{ um}$
 $E_{\text{V}} = 1212.5 \text{ Wh/L}$

(2) For the weight energy density (Ew),

```
L_{\text{separator}} = 0.8 \text{ mg/cm}^2
```

 $L_{\text{electrolyte}} = 2 \text{ g/Ah} (12 \text{ mg/cm}^2)$

*E*w = 376.2 Wh/kg

If includes the weight of tabs used in the full-cell, where 20 layers of cathode/anode were assembled in each unit cell, the energy density can be estimated as

 $m_{\text{Al tab}} = 32 \text{ mg},$ $m_{\text{Ni tab}} = 94 \text{ mg},$ Ew = 341 Wh/kg