Electronic Supplementary Information

Unassisted Photoelectrochemical Hydrogen Peroxide Production over MoO_x-Supported Mo on Cu₃BiS₃ Photocathode

Subin Moon,¹ Young Sun Park, ¹ Hyungsoo Lee,¹ Wooyong Jeong, ¹ Eunji Kwon,² Jeongyoub Lee,¹ Juwon Yun,¹ Soobin Lee, ¹ Jun Hwan Kim,¹ Seungho Yu,² and Jooho Moon*¹

¹ Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea

² Energy Storage Research Center, Korea Institute of Science and Technology 5, Hwarang-ro- 14-gil, Seongbukgu, Seoul 02792, Republic of Korea

* E-mail: jmoon@yonsei.ac.kr

Keywords: photoelectrochemical oxygen reduction reaction, strength of adsorbate adsorption, metal oxide supported catalyst, unassisted hydrogen peroxide production

Fig. S1 Top-view scanning electron microscopy image for a) $Cu_3BiS_3/CdS/TiO_2$, b) $Cu_3BiS_3/CdS/TiO_2/MoO_x$, c) $Cu_3BiS_3/CdS/TiO_2/MoO_x/Mo$, and d) $Cu_3BiS_3/CdS/TiO_2/Mo$.

Fig. S2 XRD patterns for $Cu_3BiS_3/CdS/TiO_2$ (black) and after MoO_x deposition (red) followed by Mo deposition (yellow).

Fig. S3 TEM image and corresponding EDS elemental mapping images at the low magnification for $Cu_3BiS_3/CdS/TiO_2/MoO_x/Mo$.

Fig. S4 LSV measurements for CCT, CCTM, and CCTMM photocathodes under 1-sun solar simulated AM 1.5 G irradiation in an Ar-saturated 0.2 M KOH electrolyte (pH 12).

Fig. S5 SEM images, EDS mapping, and LSV measurements for a,d) $Cu_3BiS_3/CdS/TiO_2/MoO_x$, b,e) $Cu_3BiS_3/CdS/TiO_2/Au$ and c,f) $Cu_3BiS_3/CdS/TiO_2/Pt$.

Fig. S6 Time-dependent absorption spectra of the catholyte aliquot as a function of the reaction duration for a) $Cu_3BiS_3/CdS/TiO_2/Au$ and b) $Cu_3BiS_3/CdS/TiO_2/Pt$ photocathodes. c) Faradaic efficiency of the photocathodes.

Fig. S7 a) XRD patterns for CCTM and CCTMM photocathodes of before and after stability test.b) Top-view SEM images for CCTM and CCTMM photocathodes of after stability test.

Fig. S8 a) Cross-sectional TEM image, b) HR-TEM cross-sectional image, and c) EDS mapping of CCTMM photocathode after stability test.

Fig. S9 a) Bright-field, b) dark-field TEM images, and c) EDS mapping of CCTM photocathode after PEC test.

Fig. S10 Photograph of the CCTMM photocathode being operating in an O_2 -saturated 0.2 M KOH electrolyte.

Fig. S11 a) Absorbance as a function of the added amount of H_2O_2 . A calibration curve is derived based on the absorbance at 551 nm using the colorimetric method. b) Resulting calibration curve as a function of the H_2O_2 content.

Fig. S12 Time-dependent absorption spectra of the catholyte aliquot as a function of the reaction duration for the a) CCTMM and b) CCTM photocathodes.

Fig. S13 Amount of generated H_2O_2 and Faradaic efficiency (FE) of operating CCTM photocathode.

Fig. S14 XPS spectra for Mo 3d of the MoO_x.

Fig. S15 Differential charge density, Bader charge analysis, and the partial density of states (PDOS) for Mo d orbital of the a) MoO_x/Mo and b) TiO_2/Mo structures. c) Adsorption energies of oxygen adsorbates on the MoO_x/Mo and TiO_2/Mo structures.

A. Pathway 1 (ORR for H_2O_2 generation)

Fig. S16 Schematic illustrating the mechanisms of H_2O_2 production and H_2O generation. Pathway 1 is the case when E_d is larger than the threshold value of 3.5 eV, resulting in O–O preservation. Pathway 2 is when E_d is smaller than the threshold value of 3.5 eV. Excessive adsorption strength inevitably leads to the undesired production of H_2O instead of H_2O_2 by facilitating O–O bond cleavage in the oxygen-containing adsorbate.

Fig. S17 In situ Raman spectra obtained during ORR over the CCTM and CCTMM photocathodes in Ar-saturated 0.1 M NaClO₄ electrolyte under 1-sun solar simulated AM 1.5 G irradiation at 0.6 V_{RHE} .

Fig. S18 Normalized UPS spectra of the valence band edge and secondary electron cutoff region for MoO_x and TiO_2 .

Fig. S19 Tau plots of a) TiO_2 and b) MoO_x deposited on bare FTO for determining the band gap.

Fig. S20 Schematic band diagram of $Cu_3BiS_3/CdS/TiO_2/MoO_x$ showing the relative energy positions based on the investigated band gaps of TiO_2 (3.1 eV) and MoO_x (3.2 eV).^{S1-2} Band structures of Cu_3BiS_3 and CdS were obtained from our previous report.^{S3}

Fig. S21 Schematic band diagram of $Cu_3BiS_3/CdS/TiO_2/MoO_x$ after junction formation a) under equilibrium and b) under illumination.

Fig. S22 TRPL graph for FTO/Au/Cu₃BiS₃/CdS/TiO₂ and FTO/Au/Cu₃BiS₃/CdS/TiO₂/MoO_x.

Fig. S23 a) Steady-state PL spectra for FTO/Au/Cu₃BiS₃/CdS/TiO₂ (grey) and after deposition of MoO_x (red). b) Normalized IPCE spectra for CCTM and CCTMM photocathodes under long wavelength regions (> 450 nm).

Fig. S24 a) J-V curves and b) charge injection efficiency of CCTM and CCTMM photocathodes under AM 1.5 G irradiation in 0.2 M KOH electrolyte with 0.05 M K_3 [Fe(CN)₆] as an electron scavenger.

Fig. S25 a) Nyquist plot and b) Bode plot obtained from EIS measurements for CCTM and CCTMM photocathodes under 1-sun solar simulated AM 1.5 G irradiation in Ar-saturated 0.2 M KOH electrolyte.

Fig. S26 LSV measurement for the PSK photoanode under 1-sun solar simulated AM 1.5 G irradiation in 0.2 M KOH electrolyte (pH 12).

Fig. S27 Photocurrent density versus time curve for the unbiased CCTMM photocathode–PSK based photoanode coplanar configuration under 1-sun solar simulated AM 1.5 G irradiation.

Fig. S28 Summary of SCC efficiency for bias-free photoelectrochemical H_2O_2 production cells without any assistant agent such as HCO_3^{-} .^{S4-S11}

Table S1. Inductively coupled plasma (ICP) analysis result for the dissolved Mo concentrationin the electrolyte during the device operation.

Sample	Concentration (ppb)	Relative standard deviation (%)
ССТМ	30.005	0.7
ССТММ	7.035	1.30

Table S2. Non-radiative lifetime (τ_1) and radiative lifetime (τ_2) of theFTO/Au/Cu₃BiS₃/CdS/TiO₂ and FTO/Au/Cu₃BiS₃/CdS/TiO₂/MoO_x.

	τ ₁ (ns)	τ_2 (ns)
FTO/Au/Cu ₃ BiS ₃ /CdS/TiO ₂	0.55	1.1
$FTO/Au/Cu_3BiS_3/CdS/TiO_2/MoO_x$	0.49	0.61

sample	R _s	R _{HF}	CPE _{HF}	R_{LF}	
	(Ω)	(Ω cm²)	(F S ⁿ⁻¹ cm ²)	(Ω cm²)	(F S ⁿ⁻¹ cm ²)
ССТМ	1.9	5.42	5.045 × 10 ⁻	28	7.5 × 10 ⁻⁵
			(n=0.881)		(n=0.933)
			(11-0.881)		
CCTMM	2.755	5.06	1.777 × 10 ⁻	9.7	1.1×10^{-4}
			5		(n=0.895)
			(n=0.811)		

Table S3. Area-specific resistance values and CPEs obtained by deconvolving the EIS spectra at 0.35 V_{RHE} .

Supplementary Information References

- S1. M. Hannula, H. Ali- Ali-Löytty, K. Lahtonen, E. Sarlin, J. Saari, M. Valden, Chem. Mater. 2018, **30**, 1199.
- D. J. Borah, A. T. T. Mostako, P. K. Saikia, P. Dutta, Mater. Sci. Semicond. Process. 2019, 93, 111.
- S. Moon, J. Park, H. Lee, J. W. Yang, J. Yun, Y. S. Park, J. Lee, H. Im, H. W. Jang, W. Yang, J. Moon, *Adv. Sci.*, 2023, **10**, e2206286.
- S4. W. J. Fan, B. Q. Zhang, X. Y. Wang, W. G. Ma, D. Li, Z. L. Wang, M. Dupuis, J. Y. Shi, S. J. Liao, C. Li, *Energy. Environ. Sci.*, 2020, **13**, 238.
- T. H. Jeon, B. Kim, C. Kim, C. Xia, H. T. Wang, P. J. J. Alvarez, W. Choi, *Energy. Environ. Sci.*, 2021, **14**, 3110.
- S6. T. H. Jeon, H. Kim, H.-i. Kim, W. Choi, *Energy. Environ. Sci.*, 2020, 13, 1730.
- S7. M. Ko, Y. Kim, J. Woo, B. Lee, R. Mehrotra, P. Sharma, J. Kim, S. W. Hwang, H. Y. Jeong, H. Lim, S. H. Joo, J. W. Jang, J. H. Kwak, *Nat. Catal.*, 2022, 5, 37.
- S8. M. Ko, L. T. M. Pham, Y. J. Sa, J. Woo, T. V. T. Nguyen, J. H. Kim, D. Oh, P. Sharma, J. Ryu,
 T. J. Shin, S. H. Joo, Y. H. Kim, J. W. Jang, *Nat. Commun.*, 2019, **10**, 5123.
- S9. R. Mehrotra, D. Oh, J. W. Jang, Nat. Commun., 2021, 12, 6644.
- S10. J. Song, J. M. Yu, J. H. Ahn, H. Cho, J. Oh, Y. S. Kim, J. Kim, M. Ko, S. H. Lee, T. J. Shin, H. Y. Jeong, C. Yang, J. H. Lee, J. W. Jang, S. Cho, *Adv. Funct. Mater.*, 2022, **32**, 2110412.
- S11. D. Zhu, C. Feng, Z. Y. Fan, B. B. Zhang, X. Luo, Y. B. Li, Sustain. Energ. Fuels, 2023, 7, 3326.