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A: Technologies projected capacity 
This section focuses on estimating the projected capacity of clean energy technologies (CETs) from 
2020 to 2050 based on the Integrated Assessment Models (IAMs) for 1.5oC and 1.5oC with low 
overshoot temperature targets. The steps are as follows:

- A.1: Technology selection: We choose specific CETs along with their diverse types.

- A.2: Exploring IAMs: We use IAMs, particularly 8 different models including 25 scenarios in total, to 
estimate the capacity for each selected technology in terms of gigawatts (GW) for 1.5°C and 1.5°C 
with low overshoot targets.

- A.3: Assigning capacity to each technology type: IAMs typically provide capacity for an overall 
technology (e.g., photovoltaics) without specifying individual types (e.g., CdTe, CIGS, and CSi). To 
address this, we use market contribution data for diverse types of a technology to estimate their 
allocated capacity.

- A.4: Presenting the capacity values: We depict the annual and cumulative capacity for each selected 
technology and compare cumulative values with estimates from other sources such as International 
Energy Agency (IEA) and the International Renewable Energy Agency (IRENA). This comparative 
analysis helps realize the additional or reduced capacity needed to meet the temperature targets.

Each step will be elaborated on in the subsequent sections.

A.1: Technology selection
The list of technologies under consideration is presented in Table S1. While it appears in the 
manuscript, we have included it here for the sake of completeness.

Table S1: Considered CETs and technology types.
Technology 

category
Technology 

type Technology full name and description

LFP Lithium Ferro Phosphate
NCA Lithium Nickel Cobalt Aluminium
NMC111 Lithium Nickel Manganese Cobalt (composition Ni/Mn/Co = 1/1/1) 
NMC622 Lithium Nickel Manganese Cobalt (composition Ni/Mn/Co = 6/2/2)
NMC811 Lithium Nickel Manganese Cobalt (composition Ni/Mn/Co = 8/1/1)
LiS Lithium sulfide 

Battery 

LiO Lithium oxide 
FC Fresnel Collector 
PT Parabolic Trough Concentrated 

solar power
ST Solar Tower 
Alkaline Alkaline electrolyzer 

Electrolyzers 
PEM Proton Exchange Membrane electrolyzer 
C-Si Crystalline Silicon 
CIGS Copper Indium Gallium DiselenidePhotovoltaics
CdTe Cadmium-Telluride
AG Asynchronous generator 
HTS-DD High temperature superconductor - direct drive
SG-E-DD Synchronous generator - electrically excited - direct drive
SG-PM-HS Synchronous generator - permanent magnet - high speed gear
SG-PM-MS Synchronous generator - permanent magnet - middle speed gear

Wind turbines 

SG-PM-DD Synchronous generator - permanent magnet - direct drive
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A.2: Exploring IAMs
Acknowledging that each IAM possesses unique scenario designs and technological resolutions, our 
analysis encompasses multiple IAMs to capture a broader spectrum of perspectives and account for 
variations in model assumptions. Specifically, we include eight distinct IAMs, encompassing a total of 
25 scenarios which are presented in Table S2.1

The anticipated capacity for concentrated solar power systems (CSP), photovoltaics (PV), and wind 
turbines, as projected by IAMs, is generally based on their GW capacity. However, IAMs do not provide 
a direct projection for the capacity of batteries and electrolyzers in GW. Furthermore, IAMs provide 
cumulative capacity for CSP, PV, and wind, while our analysis requires annual capacity values. To 
address these discrepancies, additional calculations were performed, as explained next.

Table S2. Employed IAMs and scenarios under the "Below 1.5" and "1.5 low overshoot" targets.1

Technologies 
Model Scenario Battery 

(Stationary)
Battery 

(EV) CSP Electrolyzer PV Wind

GCAM 4.2 SSP1-19    √ √ √
IMA15-AGInt   √ √ √ √
IMA15-Def   √ √ √ √
IMA15-Eff   √ √ √ √
IMA15-LiStCh   √ √ √ √
IMA15-Pop   √ √ √ √
IMA15-TOT   √ √ √ √

IMAGE 3.0.1

SSP1-19    √ √ √
MERGE-ETL 
6.0 DAC15_50    √ √ √

ADVANCE_2020_1.5C-2100   √  √ √
EMF33_1.5C_cost100     √ √
EMF33_1.5C_full     √ √
SSP1-19    √ √ √

MESSAGE-
GLOBIOM 
1.0

SSP2-19    √ √ √
MESSAGEix-
GLOBIOM 
1.0

Low Energy Demand √ √ √ √ √ √

POLES 
ADVANCE ADVANCE_2020_1.5C-2100   √  √ √

PEP_1p5C_red_eff √ √ √ √ √ √
SMP_1p5C_Def √ √ √ √ √ √
SMP_1p5C_lifesty √ √ √ √ √ √
SMP_1p5C_regul √ √ √ √ √ √
SMP_2C_Sust √ √ √ √ √ √
SMP_1p5C_Sust* √ √ √ √ √ √

REMIND-
MAgPIE 1.7-
3.0

SMP_1p5C_early* √ √ √ √ √ √
CD-LINKS_NPi2020_1000   √  √ √WITCH-

GLOBIOM 
4.4 CD-LINKS_NPi2020_400   √  √ √

* Scenarios belonging to the "Below 1.5" target.
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Each model and scenario contribute to a broader understanding of potential futures and informs 
policy discussions. Awareness of the assumptions behind these scenarios, can provide insights into 
their effectiveness and feasibility.1

- GCAM 4.2, scenario SSP1-19 (Sustainability – Taking the Green Road):

This scenario envisions a gradual shift toward a sustainable path emphasizing inclusive development, 
improved global commons management, demographic transition, and reduced inequality. It focuses 
on human well-being, low material growth, and lower resource and energy intensity.

- IMAGE Model:

IMA15AGInt: Assumes high agricultural yields and intensified animal husbandry globally.

IMA15-Def: Implements climate policy through a uniform carbon tax in all regions and sectors from 
2020 onward.

IMA15-Eff: Rapid application of best-available technologies for energy and material efficiency.

IMA15-LiStCh: Promotes a lifestyle change towards lower greenhouse gas (GHG) emissions, including 
dietary shifts and reduced use of CO2-intensive transport.

IMA15-Pop: Based on SSP1 with low population growth projections.

IMA15-TOT: Combination of all the above options.

- MESSAGE-GLOBIOM 1.0 Model:

ADVANCE_2020_1.5C-2100: Strengthened ambition post-2020 to align with a long-term target of 
limiting warming to 1.5°C by 2100.

EMF33_1.5C_cost100 and EMF33_1.5C_full: Consider bioenergy technologies, such as Bio Energy 
with Carbon Capture and Storage (BECCS), Cellulosic fuels and Hydrogen. 

SSP1-19: Choosing the Green Pathway (Minimal challenges to mitigation and adaptation) the global 
trajectory gradually veers towards sustainability, with a pervasive shift emphasizing inclusive 
development within perceived environmental limits. Progress in managing shared resources steadily 
enhances, while investments in education and healthcare accelerate demographic shifts. Economic 
priorities broaden to prioritize human well-being over mere growth. A growing commitment to 
development goals leads to decreased inequality both among and within nations. Consumption 
patterns favour minimal material growth and reduced resource and energy usage.

SSP2-19: In a Middle-of-the-road scenario (with moderate challenges to mitigation and adaptation), 
global trends in social, economic, and technological spheres remain relatively stable, aligning closely 
with historical patterns. Development and income growth vary across nations, with some countries 
achieving notable progress while others struggle to meet expectations. Efforts by global and national 
institutions to address sustainable development goals are ongoing but slow-moving. While 
environmental degradation persists, there are some signs of improvement, and overall, there's a 
gradual decline in resource and energy consumption. Global population growth maintains a moderate 
pace, reaching a plateau in the latter half of the century. Income inequality persists or improves at a 
sluggish rate, and challenges in reducing vulnerability to societal and environmental shifts persist.

- MESSAGEix-GLOBIOM 1.0, scenario LowEnergyDemand:

Limits global mean temperature increase to 1.5°C and achieves remarkable co-benefits for other 
sustainable development goals. 
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- REMIND-MAgPIE 1.7-3.0:

PEP_1p5C_red_eff: Scenario with a carbon budget of 400 Gt CO2 from 2011-2100, reduced availability 
of carbon dioxide removal (CDR), and comprehensive carbon pricing.

SMP_1p5C_Def, SMP_1p5C_Sust, SMP_1p5C_early, SMP_1p5C_lifesty, SMP_1p5C_regul: Various 
scenarios with a 400 Gt CO2 budget from 2011-2100, each emphasizing different policy approaches 
(default carbon pricing, sustainability policies, early action, lifestyle changes, regulation policies).

SMP_2C_Sust, SMP_2C_early: Scenarios with a 1000 Gt CO2 budget from 2011-2100, focusing on 
sustainability and early action policies to limit warming to 2°C.

- WITCH-GLOBIOM 4.4:

CD-LINKS_NPi2020_1000, CD-LINKS_NPi2020_400: Transition scenarios from a New Product 
Introduction (NPi) scenario until 2020 to globally cost-effective carbon budget implementation for the 
period 2011-2100 (1000 Gt CO2 for 2°C limit, 400 Gt CO2 for 1.5°C limit).

A.2.1: Photovoltaics, concentrated solar power systems, and wind turbines 
We extracted cumulative PV capacity data from 8 IAMs, including 25 scenarios, covering years 2005 
to 2050 in five-year intervals (e.g., 2020, 2025, 2030, ...). The process to estimate the capacity added 
annually involved several steps:
- We created a plot of cumulative capacity against years and extracted the cumulative capacity for 

the remaining years (e.g., 2021, 2022, ...), since neither linear nor nonlinear regression proved to 
be a suitable fit.

- By calculating the capacity difference between consecutive years, we determined the capacity 
added annually.

- We estimated the Replaced Capacities (RC) resulting from the retirement of Previously Installed 
Capacities (PIC) for each year (n), assuming a 30-year lifespan for a typical PV panel, and using Eq. 
S1. Note that, in this analysis, we are investigating the period from 2020 to 2050. However, to 
estimate the required replacements, we extracted data from as early as 2005, which is the first 
year that IAMs have some capacity projections. 

   𝑅𝐶(𝑛 +  𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛) = 𝑃𝐼𝐶𝑛        ∀𝑛  (S1)

- The total annual added capacity was then derived by summing the estimated annual capacity 
values from step two and the replaced capacities from step three.

We followed the same approach for concentrated solar power systems and wind turbines, considering 
a lifespan of 30 years. 

While most IAM scenarios provide capacity projections for these technologies in GW, four of them - 
DAC15_50 from MERGE-ETL 6.0 model, EMF33_1.5C_cost100 and EMF33_1.5C_full from MESSAGE-
GLOBIOM 1.0 model, and LowEnergyDemand from MESSAGEix-GLOBIOM 1.0 model - offer 
projections in EJ/yr. Therefore, for these scenarios, we initially divide the provided projections by the 
energy delivered annually from each of these technologies. Details on estimating the delivered energy 
for these technologies are provided in section D.1 (Eq. S27).
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A.2.2: Batteries used for stationery and mobility applications 
We distinguish between batteries used for stationery and mobility applications. For the former, we 
extracted Annual Investment (AINV) data for electricity storage between 2015 and 2050 from 
MESSAGEix-GLOBIOM 1.0 and REMIND-MAgPIE 1.7-3.0 models including 8 scenarios (see Table S2). 
These data are expressed in billions of US$2010 per year and provided for five-year intervals (e.g., 
2020, 2025, 2030, …). Values for the remaining years were estimated using linear regression. Since 
batteries are just one alternative among other energy storage options, these values are multiplied by 

, providing the share of batteries in electricity storage [%] 2,3. Then, we converted the resulting ShareBAT

values to current € (2023), considering appropriate currency conversion ( , [€/USD] 4), and, Con

subsequently, translated them to energy storage capacity using the price of a typical battery (

, [€/Wh]). Finally, we transform these values into power capacity using the ratio between the PRICEBAT

power density ( , [W/kg]) and the energy density ( , [Wh/kg]). The overall calculation PODENS ENDENS

used to obtain the capacity installed annually based on each IAMs scenario for batteries in year n (

, [W]) is given by Eq. S2. CCBATSTO
n,s

Values for battery price (e.g., 200 euros/kWh), power density (e.g., 750 W/kg), and energy density 
(e.g., 250 Wh/kg) are sourced from the literature 2,3. It is important to highlight that power and energy 
density exhibit considerable variability. For instance, power density varies within the range of 50-2000 
W/kg, while energy density changes from 150 to 350 Wh/kg3. For our calculations, we opted for 750 
W/kg for power density and 250 Wh/kg for energy density, aligning with the characteristics of 
batteries used in power applications and electric vehicles. Importantly, as will be discussed in section 
B.1, selected values do not impact the estimated demand for materials. Still, accounting for these 
ranges allows to assess uncertainties in installed capacities. These are reported as error bars in Figures 
S1 and S2, where we compare the power capacity across different technologies.

Replaced capacities for batteries were calculated assuming a 15-year lifespan5 (Eq.S1). Hence, the total 
capacity added is determined by adding the replaced capacities to the newly installed annual 
capacities6. Note that in this case data are available since 2015. 

In addition to its primary role in electricity storage, batteries are anticipated to play a crucial role in 
electric mobility. As outlined by the European Technology and Innovation Platform on Batteries 
(2020)7, there is a notable shift in the ratio of battery utilization for electric mobility compared to its 

application in energy storage (  in Eq. S3). This ratio is projected to transition from approximately 

BATEV

BATSTO

23 in 2020 to 7.6 in 2025. Utilizing these varying ratios over time, and the capacity of batteries for 
energy storage determined previously, we calculated the capacity of batteries required for electric 

mobility ( ) up to 2025 (Eq. S3). CCBATEV
n,s

𝐶𝐶𝐵𝐴𝑇𝑆𝑇𝑂
𝑛,𝑠 =  𝐴𝐼𝑁𝑉𝑆𝑇𝑂

𝑛,𝑠  ·𝑆ℎ𝑎𝑟𝑒𝐵𝐴𝑇·𝐶𝑜𝑛· 
1

𝑃𝑅𝐼𝐶𝐸𝐵𝐴𝑇
·
𝑃𝑂𝐷𝐸𝑁𝑆
𝐸𝑁𝐷𝐸𝑁𝑆

          ∀𝑛 = 2020, …, 2050,  𝑠     (S2)

𝐶𝐶𝐵𝐴𝑇𝐸𝑉
𝑛,𝑠 = 𝐶𝐶𝐵𝐴𝑇𝑆𝑇𝑂

𝑛,𝑠 · 
𝐵𝐴𝑇𝐸𝑉

𝐵𝐴𝑇𝑆𝑇𝑂
          ∀𝑛 ≤  2025,  𝑠 (S3)
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Based on the global electric vehicle outlook8, the number of electric vehicles (EV) on the road was 
approximately 10 million in 2020. According to the Energy Technology Perspectives report, the 
projected manufacturing output for EV is 60 million units by 2030 and increases to 90 million by 20509. 
These estimations align with the 1.5oC target. 

Having the  for 2020 from Eq.S3, as well as the Number of Electric Vehicle (NEV) in that year, CCBATEV
n,s

we assumed a proportional ratio to estimate the capacity of batteries used in EV for 2030 and 2050 
(Eq. S4-S5). Then, we employed a linear regression to estimate the capacity for intermediate years. 
Subsequently, we calculated the required replacements using Eq. S1, and added them to the annual 
capacities of new batteries to determine the final capacity added each year.

Acknowledging that these ratios may not necessarily yield a capacity value in alignment with the 1.5°C 
target, we employ them due to the absence of better data.

A.2.3: Electrolyzers
Under the secondary energy category, IAMs provide data on Annual Production (APROD) of hydrogen 
through electrolyzers between 2020 and 2050, with measurements given in [EJ/year] in five-year 
intervals, for each of the scenarios. Then, the capacity of the electrolyzers in year n and based on IAMs 
scenario s (CCn,s, [W]) is determined using Eq. S6.

 

Here,  is the capacity installed for electrolyzers in year n according to IAMs scenario s [GW] and CCELCTZ
n,s

 is the lower heating value of hydrogen [EJ/kg H2]. Then,  is the hydrogen generation LHV
H2 ENGENELCTZ

capacity of a typical electrolyzer [kg H2/day·GW]. We acknowledge this value changes in a range for 
different types of the electrolyzers, so we considered it equal to 400 kg H2/day·MW, which is a valid 
values for both, alkaline and PEM electrolyzers10. 
In all IAM scenarios, electrolyzer development starts mainly after 2030 with very minor values, and 
given its lifespan of more than 10 years, the replaced capacity before 2050 is negligible. Therefore, 
Eq.S6 directly provides the total capacity added annually.

A.3: Assigning capacity to each technology type
IAMs provide capacity projection for each technology but they do not distribute it among different 
technology types owing to a low technological resolution. Therefore, we employed the potential 
market share evolution of different technology types, as reported by the German Aerospace Centre11, 
to allocate the total capacity projected for each technology to their respective types. Two different 

𝐶𝐶𝐵𝐴𝑇𝐸𝑉
2030,𝑠 = 𝐶𝐶𝐵𝐴𝑇𝐸𝑉

2020,𝑠  . 
𝑁𝐸𝑉2030

𝑁𝐸𝑉2020
          𝑠 (S4)

𝐶𝐶𝐵𝐴𝑇𝐸𝑉
2050,𝑠 = 𝐶𝐶𝐵𝐴𝑇𝐸𝑉

2030,𝑠  . 
𝑁𝐸𝑉2050

𝑁𝐸𝑉2030
          𝑠 (S5)

𝐶𝐶𝐸𝐿𝐶𝑇𝑍
𝑛,𝑠 = 𝐴𝑃𝑅𝑂𝐷

𝐻2
𝑛,𝑠·

1

𝐿𝐻𝑉
𝐻2

·
1

𝐸𝑁𝐺𝐸𝑁𝐸𝐿𝐶𝑇𝑍
·

1𝑦𝑟
365𝑑

        ∀𝑛, 𝑠 (S6)
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market contribution scenarios are available in the report, one based on a “continued market trend” 
and another based on a “technological change market trend” for technologies deployment and 
diffusion. The former trend considers a smooth evolution of technologies, while the later one assumes 
that sudden technological changes might occur. Eq. S7 provides the details of the calculations, while 
Tables S3-S4 present the market contribution values for each technology (T) and its respected types 
(t)11. 

Here,  is the capacity installed for individual type t of technology category T in year n according CCI T
t,n,s,k

to IAMs scenario s and market trend k [GW],  is the capacity installed for technology category T in CC T
n,s

year n and according to IAMs scenario s [GW], and  is the market contribution of technology MCt,n,k

type t in year n according to market trend k [%]. The relationship between technology types t (e.g., 

SG-E-DD wind turbine) and technology categories T (e.g., wind turbines) is given by set , providing TTT

the technologies of type t that belong to category T.

Table S3: Market contribution of different technology types based on continued market11.

Technology Type 2020 2030 2040 2050
LFP 11 5 3 0
NCA 13 8 13 13

NMC111 20 0 0 0
NMC622 50 32 20 15

Battery (EV)

NMC811 6 55 64 72
LFP 39.8 39.8 39.7 39.7
NCA 0 0 0 0

NMC111 23.9 0 0 0
NMC622 13.3 16.7 12.5 6.63
NMC811 3.3 33.6 37.9 43.8

Battery (Stationary)

Non lithium types 19.7 9.9 9.9 9.9
FC 5 5 5 5
PT 90 90 90 90Concentrated solar power
ST 5 5 5 5

Alkaline 50 42 40 35
Electrolyzer

PEM 50 58 60 65
C-Si 94 94 94 94
CIGS 1 1 1 1Photovoltaic
CdTe 5 5 5 5
AG 15 18 16 14

SG-E-DD 57 50 50 50
SG-PM-HS 28 30 31 31

Wind turbine 

SG-PM-MS 0 2 3 5

𝐶𝐶𝐼 𝑇
𝑡,𝑛,𝑠,𝑘 = 𝐶𝐶 𝑇

𝑛,𝑠·𝑀𝐶𝑡,𝑛,𝑘          ∀𝑛,𝑘,  𝑡 ∈ 𝑇𝑇𝑇,  𝑠,  𝑇 = {𝐵𝐴𝑇, 𝐶𝑆𝑃, 𝐸𝐿𝐸𝐶𝑇𝑍,𝑃𝑉,𝑊𝐼𝑁𝐷} (S7)
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Table S4: Market contribution of different technology types based on technological change trends11.
Technology Types 2020 2030 2040 2050

LFP 9.8 4.8 0 0
NCA 14.7 10.1 5.6 0

NMC111 25.5 0 0 0
NMC622 44.5 27.8 10.9 0
NMC811 5.5 47.9 32.7 0

LiS 0 9.4 49.4 91.4

Battery (EV)

LiO 0 0 1.4 8.6
LFP 39.1 22.3 20.3 19.9
NCA 0 0 0 0

NMC111 23.9 0 0 0
NMC622 13.2 8.14 4.9 2.09
NMC811 3.2 16.6 14.7 15.41

Battery (Stationary)

Non lithium types 20.6 53 60.1 62.6
FC 5 7 12 15
PT 90 75 60 45Concentrated solar power
ST 5 18 28 40

Alkaline 50 25 15 0
HT SOEL (Yttrium) 0 3 12 25Electrolyzer

PEM 50 72 73 75
C-Si 96 83 73 63
CIGS 1 5 9 12Photovoltaic
CdTe 3 12 18 25
AG 12 7 3 1

SG-E-DD 28 15 7 2
SG-PM-HS 50 50 45 50
SG-PM-MS 0 8 8 10

HTS-DD 0 0 0 12

Wind turbine

SG-PM-DD 10 20 37 25

A.4: Presenting the capacity values  
Figures S1 and S2, respectively, depict the anticipated annual and cumulative capacity of CETs until 
2050. Note that since we use the annual capacities of CETs in our calculations, we provide their median 
values obtained from 25 scenarios. In addition, we compare our estimates with data from reports from 
the International Energy Agency (IEA)7,12–17, the International Renewable Energy Agency (IRENA) 17, or 
any other source where projections are available. As depicted in Figure S2, the demand for batteries 
is predominantly influenced by their usage in electric vehicles. Furthermore, our estimated ranges 
based on IAMs projections align with the data reported from other sources. 
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Fig.S1  Projections for the aggregated capacity of clean energy technologies added annually based on IAMs 
scenarios (Table S2). The numbers on top of the bars present the ratio of capacity added in each year over the 
capacity added in 2020. The error bars present the variations in the capacity added for batteries, depending on 
the battery characteristics, as discussed in section A.2.2. 

Fig.S2 Cumulative projected capacity of clean energy technologies based on IAMs (Table S2). For each 
technology, the projected capacity in 2020 is used as a base to estimate the ratio of projected capacity in 2050 
over it, except for the electrolyzers, since their development starts mainly after 2030. In addition, the replaced 
capacity of each technology is presented in its panel by a dashed area. Markers in each panel represent data 
from additional sources used for comparison: circles show IEA projections,14,18,19 plus signs denote IRENA data,17 
and cross signs correspond either to data from the European Technology and Innovation Platform for Battery 
(ETIPB),7 from Statista (for stationary batteries projections),13 or from the Energy Technology Perspectives (ETP) 
(for CSP).12 Dashed lines present the median of projections. Notably, long dash dot lines present the upper bound 
and lower bound capacity for batteries (more on this can be seen in section A.2.2).
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B: Materials demand estimation 
This section is dedicated to estimating materials demand associated with the projected capacity of 
CETs from 2020 to 2050, as per IAMs and for selected temperature targets. The outlined steps are as 
follows:

- B.1: Material intensities: We conducted an extensive literature review to compile current intensity 
values (i.e., ton/GW capacity) for 36 different materials across various technology types. We also 
included the effect of learning curves to estimate a decrease in material intensity values over time. 

- B.2: Resulting classifications: We derived material demand estimates for four distinct classes. Two 
market contribution scenarios to estimate allocated capacity for technology types (Continued and 
Technological change, section A.3), and two material intensity scenarios (Base and Learning). These 
are combined by 25 IAM scenarios (Table S2). 

- B.3: Calculation of material demands: We multiplied the capacity allocated to each technology type 
by its respective material intensity values to derive the material demands. Specifically, we estimated 
material demand values for 25 IAM scenarios, providing detailed discussions.

- B.4: Current production rate of materials, their reserve capacities, and recycling rate: We provided 
a scale to the demand values estimated by comparing them with their current production rates, 
illustrating how demand will evolve over time.

- B.5: Exploring the possibilities of by-products: For materials generated as byproducts of others, we 
estimated their production by considering their relative concentration in the ores.

- B.6: Estimated material demands: We compared the estimated demand for materials over time 
with (i) their current production rate, and (ii) their current (i.e., 2020 due to data limitations) 
demand. Results for materials whose ratios are greater than one in both cases are discussed in the 
manuscript, while, in this section, we focus on the remaining materials. In addition, median values 
for material demands across scenarios in selected years are also presented. Results are compared 
with those from similar studies for validation. 

- B.7: Links between problematic materials and technology types: We explored the relationship 
between problematic materials and the technology types expected to dominate the 2050 market. 

- B.8: Demand-to-reserves comparison: Additionally, we provide an analysis of demand-to-reserves 
capacity ratios for problematic materials where this ratio approaches or exceeds one. 

B.1: Material intensities 
In this step, material intensity values for each technology type are collected. Technology learning 
curves are then used to estimate the impact of technology evolution. Table S5 provides a list of the 
materials considered, while a summary of material intensity values is presented in Tables S6-S8. Note 
that, for the case of PV and wind turbines, material intensity estimations consider the cabling 
requirements to connect the PV panels or the wind turbines to the grid20. Where more than a single 
value was available, we used the average of reported values. Additionally, material intensity values 
for some materials change over time due to the effects of technology learning curves, specifically for 
PV panels and wind turbines. However, for the types of batteries and electrolyzers included in our 
assessment, no significant changes are reported in their material intensities11,20.
The values for aluminium, cadmium, concrete, copper, gallium, glass, indium, nickel, plastic, selenium, 
silicon, silver, steel, and tellurium used in PV panels, and Dy, Mn, Nd, Ni, and V used in wind turbines, 
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are updated for the next decades using the learning curves of the technologies as reported in Tables 
S7 and S8 11,20. Apart from these, the intensity of the iridium used in PEM electrolyzers changes from 
0.88 ton/GW in 2020 to 0.20 ton/GW in 2030, 0.05 ton/GW in 2040 and stays constant until 2050. For 
platinum used in the same technology, the material intensity changes from 0.25 in 2020 to 0.07 in 
2030, 0.04 in 2040 and stays constant until 2050 11. Similarly, the lithium used in LFP batteries drops 
from 43 ton/GW in 2020 to 40 ton/GW in 2050, while nickel intensity in NMC622 batteries changes 
from 197 ton/GW in 2020 to 141.5 ton/GW in 2050. 
It is essential to note that material intensities for batteries is commonly expressed in ton/GWh in the 
literature. To convert these values to ton/GW, we multiply them by the energy density of batteries 
(e.g., 250 Wh/kg) and then divide it by their corresponding power density (i.e., 750 W/kg) 3. It is worth 
emphasizing that, for estimating the capacity of batteries in GW, we multiplied the available data by 
power density and then divided the result by the corresponding energy density, as detailed in section 
A.2.2. Therefore, the final multiplication of capacity time intensity cancels out the power and energy 
density values. Ultimately, the material demand value, presented in tons, remains independent of 
these values.
In addition to the values provided in Table S6, we use the following values for CSP technologies: FC 
require 2045 [ton Mn/GW], 471 [ton Ni/GW], 31 [ton Ag/GW] and 2 [ton V/GW]; PT need 2047 [ton 
Mn/GW], 471 [ton Ni/GW], 25 [ton Ag/GW] and 1.9 [ton V/GW]; and ST demand 5600 [ton Mn/GW], 
1785 [ton Ni/GW], 36 [ton Ag/GW] and 1.7 [ton V/GW].11,20

Table S5: List of the materials considered and their symbols.
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Activated 
carbon

C Gallium* Ga Manganese Mn Silicaa Sil.

Aluminium Al Glassa Gla. Molybdenum Mo Silicon Si

Cadmium Cd
Glass/Carbon 
composites/fiberglassa 

GCC Neodymium*[R] Nd Silver Ag

Cementa Cem. Gold Au Nickel Ni Steela Ste.
Chromium Cr Graphitea, * Gra. Plastica Pla. Tellurium Te
Cobalt* Co Indium* In Platinum*[P] Pt Terbium*[R] Tb
Concretea Con. Iridium*[P] Ir Praseodymium*[R] Pr Titanium* Ti

Copper Cu Iron Fe
Resin PPSb - Glass 
fibera Res. Vanadium* V

Dysprosium*[R] Dy Lithium* Li Selenium Se Zinc Zn
*: Critical material, *[R]: Critical and rare earth element (REE), *[P]: Critical and platinum group metal (PGM) 21.
aThe presented symbol is not a standard symbol assigned to this material. It is defined by the author for the sake of simplicity 
in later referring. 
bPPS: Polyphenylene Sulfide. 
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Table S6: Material intensities for CETs, except for CSPa,b,c. 
Technologies Battery Electrolyzer PV Wind

Materials 

LF
P

N
CA

N
M

C 
11

1

N
M

C 
62

2

N
M

C 
81

1

Li
S

Li
O

Al
ka

lin
e 

PE
M

CS
i

CI
GS

Cd
Te

AG HT
S-

DD
d

SG
-E

-D
Dd

SG
-P

M
-H

S

SG
-P

M
-M

S

SG
-P

M
-D

D

Ag 18

Al 353 539 451 409 366 353 353 75 65 7,500 7,500 7,500 4,990 700 1,600 1,600 500

Au 0.29

C 13

Cd 1 47

Cem.a 7.7 7.7 7.7 55.3 48.5 54.3 54.3 32.0

Co 0 190 178 67 47 0 120

Con.a 60.7 60.7 60.7 420 369 413 413 243

Cr 525 580 580 525

Cu 46 55 62 59 56 46 46 333 11 4,600 4,600 4,600 1,764 5,000 950 950 3,000

Dy 6 4.3 5 17

Fea 20.1 20.8 20.8 20.1

Ga 4

GCCa 7.7 8.1 8.1 8.1 8.1

Gla.a 46.4 46.4 46.4

Gra. 274 352 325 340 354 274 274 72

In 18 8

Ir 0.88

Li 43 60 50 57 57 120 53

Mn 129 175 63 54 0 105 780 790 550 500 600

Mo 109 119 119 109

Nd 28 35 42 155

Ni 23 190 181 197 375 0 193 3167 2 410 340 420 442 410

Pla. 24 30 30 29 28 24 24 130 8,600 8,600 8,600 7,817 7,817 7,817 7,817 7,817

Pr 9 4 4 35

Pt 0.25

Res. 136

Se 39

Si 4,000

Sil. 4 7 7 7 7 6 6

Ste. 11 13 14 14 14 11 11 1,928 67,900 67,900 67,900 124,654 66,000 107,000 107,000 119500

Tb 1 1 1 7

Te 51

Ti 34

V 90 90 90

Zna 5,500 5,500 5,500 5,500 5500

Ref. 11,22,23 11,23,24 6,11,20,22 6,11,20,22,25,26

aValues are in [ton/GW capacity], except for cem., con., gla., GCC, Fe, and Zn which are in [ton/MW capacity].
bMaterials complete name is presented in Table S5.
cValues for CSP technology are provided in text before Table S5.
dValues for SG-E-DD wind turbines are also used for HTS-DD as this is the most similar technology20. 
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Table S7: Change in material intensities driven by learning curves for PV panels [ton/GW capacity] 11,20.
Year 2020 2030 2040 2050

Materials C-Si CIGS CdTe C-Si CIGS CdTe CIGS C-Si CdTe C-Si CIGS CdTe

Aluminium 7,500 7,500 7,500 7,200 7,200 7,200 7,000 7,000 7,000 6,800 6,800 6,800

Cadmium 0 1 46.5 0 1 42 0 1 23 0 1 21

Concrete 60,700 60,700 60,700 58,400 58,400 58,400 56,500 56,500 56,500 54,600 54,600 54,600

Copper 4,600 4,600 4,600 4,500 4,500 4,500 4,350 4,350 4,350 4,200 4,200 4,200

Gallium* 0 4.3 0 0 2.5 0 0 2 0 0 1.5 0

Glass 46,400 46,400 46,400 44,700 44,700 44,700 43,050 43,050 43,050 41,800 41,800 41,800

Indium* 0 17.7 8 0 15 4 0 11 1 0 9 0

Nickel 2 0 0 2 0 0 2 0 0 2 0 0

Plastic 8,600 8,600 8,600 8,300 8,300 8,300 8,000 8,000 8,000 7,700 7,700 7,700

Selenium 0 38.5 0 0 29 0 0 16 0 0 12 0

Silicon 4,000 0 0 2,750 0 0 2,325 0 0 2,000 0 0

Silver 18 0 0 10 0 0 4 0 0 3 0 0

Steel 67,900 67,900 67,900 67,900 67,900 67,900 63,150 63,150 63,150 61,100 61,100 61,100

Tellurium 0 0 50.7 0 0 34.6 0 0 25.3 0 0 22.9

Table S8: Change in material intensities driven by learning curves for wind turbines [ton/GW capacity] 
11,20.

Year 2020 2030 2040 2050

Materials AG

SG
-E

-D
Da,

b

SG
-P

M
-H

S

SG
-P

M
-M

S

SG
-P

M
-M

S

AG

SG
-E

-D
Da,

b

SG
-P

M
-H

S

SG
-P

M
-M

S

SG
-P

M
-M

S

AG

SG
-E

-D
Da,

b

SG
-P

M
-H

S

SG
-P

M
-M

S

SG
-P

M
-M

S

AG

SG
-E

-D
Da,

b

SG
-P

M
-H

S

SG
-P

M
-M

S

SG
-P

M
-M

S

Dysprosium*[R] 0 6 4.3 5 17 0 NA 1 2 11 0 NA 1.2 2 11.3 0 NA 1.3 2 11.5

Manganese 780 790 550 500 600 780 790 550 500 600 780 790 550 500 600 780 790 550 500 600

Neodymium*[R] 0 28 35 42 155 0 NA 18 37 145 0 NA 17 34 128 0 NA 16 31 125

Nickel 410 340 420 442 410 410 340 420 442 410 410 340 420 442 410 410 340 420 442 410

Vanadium* 0 0 90 90 90 0 0 90 90 90 0 0 90 90 90 0 0 90 90 90
aFor this technology type, there is no available prediction on its dysprosium and neodymium intensity. Therefore, the values 
reported for 2020 are used in the estimations.  
bValues for SG-E-DD wind turbines are also used for HTS-DD as this is the most similar technology20. 

B.2: Resulting classifications 
The scenarios considered for the estimation of material demands are presented in Table S9. While it 
appears in the manuscript, we have included it here to enhance the text coherence and simplify the 
review process.

Table S9: Classifications resulting by combining IAM capacity projections, market contributions, and 
material intensity scenarios.

Scenario Market contribution Intensit
y 

Colour/symbo
l

C_B Continued Base Red 
C_L Continued Learning Red  (*)

T_B Technological 
change Base Blue 
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T_L Technological 
change Learning Blue  (*)

B.3: Calculation of materials demands
To estimate the demand for materials, various factors such as projected technology capacities, the 
market contribution of technology types, materials intensity values, and technology learning curves 
are taken into account. The specific equation or method used to estimate material demand is not 
provided in the other relevant studies. However, we can calculate the material demand by multiplying 
the projected technology capacities (which already considers the effect of varying market shares) by 
material intensity values (with or without considering the impact of technology evolution on material 
intensity), as reported in Eq. S8. 

Here,  is the demand for material m driven by technology type t, belonging to technology MD T
m,t,n,s,k,i

category T, at year n according to IAMs scenario s, market trend k, and material intensity i [ton]. 

 is the capacity installed for individual type t of technology T at the year n according to IAMs CCI T
t,n,s,k

scenario s and market trend k [GW] (as estimated in section A). is the intensity i (e.g., base or MIm,t,n,𝐼 

with learning curves) of material m used in type t of technology T in year n [ton/GW]. The inclusion of 
set n in the material intensity accounts for the effect of varying material intensities over the years that 
might result from technology learning curves (as given by set i). Finally, the material demand 
considering all types t of technologies T can be aggregated to provide the lumped material demand of 
a given technology category (e.g., electrolyzers) for a specific scenario (combination of IAMs capacity 

projection, market trend, and material intensity), as given by  in Eq. S9.LMD T
m,n,s,k,i

Referring back to section B.2, it is important to note that depending on IAMs and market contribution 

scenarios,  takes 50 different values for each technology type and year. Additionally, based on CCI T
t,n,s,k

materials intensity scenarios,  assumes two different values for each technology type, material, MIm,t,n,𝐼

and year. Consequently, we end up with 100 resulting values for both  and .MD T
m, t,n,s,k,i LMD T

m,n,s,k,i

B.4: Current production rate of materials, their reserve capacities, and production rate
To provide context for the material demands estimated, we compare them with the current 
production rates, as presented in Table S10. The information about data collection from the U.S. 
Geological Survey (USGS) and the specific webpage of USGS Commodity Statistics and Information. 
Generally, the production rates reported are based on values for 2020. However, in some cases the 
base year is later (i.e., 2021, or 2022), and, only in one case, it is 2018 (i.e., production rate of 

𝑀𝐷 𝑇
𝑚,𝑡,𝑛,𝑠,𝑘,𝑖 = 𝐶𝐶𝐼 𝑇

𝑡,𝑛,𝑠,𝑘·𝑀𝐼𝑚,𝑡,𝑛,𝑖         ∀𝑚,𝑛,𝑠,𝑘,𝑖, 𝑡 ∈ 𝑇𝑇𝑇, 𝑇 = {𝐵𝐴𝑇, 𝐶𝑆𝑃, 𝐸𝐿𝐸𝐶𝑇𝑍,𝑃𝑉,𝑊𝐼𝑁𝐷} (S8)

𝐿𝑀𝐷 𝑇
𝑚,𝑛,𝑠,𝑘,𝑖 = ∑

𝑡 ∈ 𝑇𝑇𝑇

𝑀𝐷 𝑇
𝑚,𝑡,𝑛,𝑠,𝑘,𝑖          ∀𝑚,𝑛,𝑠,𝑘,𝑖   𝑇 = {𝐵𝐴𝑇, 𝐶𝑆𝑃, 𝐸𝐿𝐸𝐶𝑇𝑍, 𝑃𝑉, 𝑊𝐼𝑁𝐷} (S9)

https://www.usgs.gov/centers/national-minerals-information-center/commodity-statistics-and-information
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praseodymium). In any case, there is no remarkable change in material reserve capacity or global 
production rate between 2020 and 2022.

Table S10: Annual production rate of the different materials.

Materials
Annual 

production rate 
[kton/year]

Ref. Materials Annual production 
rate [kton/year] Ref. 

Activated carbon 5700 27 Manganese 21500 28

Aluminium 65200 28 Molybdenum 298 28

Cadmium 25 28 Neodymium 21 6

Cement 4190000 28 Nickel 2240 28

Chromium 44000 28 Plastic 390700 29

Cobalt 132 28 Platinum 0.180 28

Concrete 4400000 30 Praseodymium 9.723 28,31

Copper 20300 28 Resin PPS - Glass fiber 5851 32

Dysprosium 1.800 28,33 Selenium 2.800 28

Gallium 0.327 28 Silica 266500 34

Glass 209000 35 Silicon 7000 28

Glass/Carbon 
composites/ fiberglass 5851 32 Silver 23.700 28

Gold 3.030 28 Steel 1958450 36

Graphite 966 28 Tellurium 0.470 28

Indium 0.957 28 Terbium 0.340 28,37

Iridium 0.004 28,38 Titanium 7600 28

Iron 1300000 28 Vanadium 105 28

Lithium 77 28 Zinc 13000 28

We also present Table S11 and S12, reporting the capacity of the reserves for minerals and their 
current recycling rate that will be used later in section B.7 and section C which dedicated to our 
optimization models. 

Table S11: Capacity of the reserves for different materials.28 

Mineral Reserve capacity [ton] Mineral Reserve capacity [ton]

Aluminium 3·1010 Manganese 810,000,000

Cadmium 600,000 Molybdenum 18,000,000

Chromium 570,000,000 Neodymium 8,000,000

Cobalt 7,000,000 Nickel 89,000,000

Copper 8.7·108 Platinum 69,000

Dysprosium 1,410,000 Praseodymium 4,000,000

Gallium 279,300 Selenium 99,000

Gold 50,000 Silver 560,000
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Graphite 3·108 Tellurium 31,000

Indium 5,700 Terbium 1.2·108

Iridium 69,000 Titanium 47,000,000

Iron 8.1·109 Vanadium 22,000,000

Lithium 17,000,000 Zinc 250,000,000

Table S12: Current recycling rate for different materials.28,39

Mineral Recycling rate* [%] Mineral Recycling rate* [%] Mineral Recycling rate* [%]

Cadmium 17.5 Indium 37.5 Praseodymium 5.5

Cobalt 37.5 Iridium 17.5 Selenium 5.5

Copper 34 Lithium 1 Silicon -

Dysprosium 5.5 Manganese 56 Silver 37.5

Gallium 17.5 Neodymium 5.5 Tellurium -

Graphite - Nickel 50 Terbium 1

* It is defined as the fraction of secondary metal in total metal input in metal production process.39

B.5: Exploring the possibilities of by-products 
For a comprehensive understanding of the dynamics between host elements and their associated by-
products, it is vital to consider the broader context and competing demands from different sectors 
and applications. Here, we estimate the by-product production that would be obtained when sourcing 
the host elements to develop CETs. Table S13 presents the companion elements and the parameters 
used to estimate the amount of by-product produced. Notably, the column “dependency” in this table 
presents the percentage of guest that is currently product as a by-product of its host at global scale. 
This value, which is not directly used in the calculations, is presented as an indicator of the strength 
of the relationship between each pair of elements.
Depending on data availability, one of the Eqs. S10-S12 is employed to calculate the resulting amount 
of by-product that will be obtained as a result of mining the host element. This is indicated in the last 
column of Table S13.

Table S13: Companion elements and their relevant data.
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Cadmium Zinc 90 41 0.4% 42 - - - 94 42 S10
Gallium Aluminium 95 28 - 50 ppm28 - 4.2 10 28 S11
Gallium Zinc - - <50 ppm28 - 52.8 10 28 S11
Indium Zinc 75 41 - 1-100 ppm28 - 52.8 (100)c S11
Iridium Platinum 98 41 - - 7 over 92.55 43 - (100)c S12
Silver Zinc 40 41 - - 116.32.10-4 over - (100)c S12
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6.49 44

Silver Copper 25 41 100 - 700 
ppm 45 - - - (100)c S10

aGlobal production percentage of host element derived as a by-product of its host element.
bIt is reported to demonstrate the dependency between the production of the guest and the host elements, 
although it is not directly used in any calculations.
cIn the absence of reported data, it is assumed to be 100%.

𝑃𝐺𝑔,𝑛,𝑠,𝑘,𝑖 = ∑
𝑚 ∈ 𝐻𝑂𝑆𝑇𝑔

(∑
𝑇

𝐿𝑀𝐷 𝑇
𝑚,𝑛,𝑠,𝑘,𝑖·𝐶𝐺𝐶𝐻𝑔,𝑚·𝑅𝑅𝑔,𝑚)                                ∀𝑔,𝑛,𝑠,𝑘,𝑖   (S10) 

𝑃𝐺𝑔,𝑛,𝑠,𝑘,𝑖 = ∑
𝑚 ∈ 𝐻𝑂𝑆𝑇𝑔

(∑
𝑇

𝐿𝑀𝐷 𝑇
𝑚,𝑛,𝑠,𝑘,𝑖·𝑂𝑟𝑒𝑀𝑅𝑚·𝐶𝐺𝑂𝑟𝑒𝑔·𝑅𝑅𝑔,𝑚)                 ∀𝑔,𝑛,𝑠,𝑘,𝑖          (S11)

𝑃𝐺𝑔,𝑛,𝑠,𝑘,𝑖 = ∑
𝑚 ∈ 𝐻𝑂𝑆𝑇𝑔

(∑
𝑇

𝐿𝑀𝐷 𝑇
𝑚,𝑛,𝑠,𝑘,𝑖·

𝐶𝐺𝑂𝑟𝑒𝑔

𝐶𝐻𝑂𝑟𝑒𝑔
·𝑅𝑅𝑔,𝑚)                                  ∀𝑔,𝑛,𝑠,𝑘,𝑖 (S12)

Here,  is the amount of guest element g that would be produced at year n, according to IAMs PGg,n,s,k,𝐼

scenario s market trend k and materials intensity i [ton],  is the demand for material m which LMD T
m,n,s,k,i

is the host for element g (as given by set ) driven by all the technology types in category T at HOSTg

year n [GW], as estimated in section B.4, and  is the recovery rate of guest element g from its RRg,m

host element m [%]. Apart from these parameters, that are common between the three equations, 

each equation has a specific parameter. The term  is the concentration of guest g in CGCHg,m

concentrated host m [%], while  is the concentration of guest g in the ore [ppm],  is the CGOreg OreMRm

ore to metal ratio [tonore/tonmetal], and  is the concentration of the host m in the ore [ppm].CHOrem

B.6: Estimated material demands 
We computed annual demands for 36 materials (Table S5) across 25 IAM scenarios (Table S2), and 
four categories (Table S9), with minimum and maximum values presented in Tables S14-S15. In Table 
S16, we compared our estimated range with a recent study6, and with IEA data explorer, where data 
are available. Also, Figure S3 visualizes 20 materials with demand-to-production ratios below one. 
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Table S14: Materials annual demand, based on minimum values across scenarios [ton].
Materials 2020 2025 2030 2035 2040 2045 2050
Activated carbon 0.0 0.0 0.0 0.0 0.0 0.0 0.1
Aluminium 63290.8 56571.7 3919.9 135354.0 405027.6 791845.1 732071.0
Cadmium 6.7 15.8 1.1 31.2 55.6 100.9 93.5
Cement 388735 196925 4194.9 146888 2946016 6157336 5537179
Chromium 3053.0 1299.2 0.0 0.0 25928.8 54023.4 45637.5
Cobalt 0.0 0.0 16059.1 12597.3 9393.4 10340.4 4502.3
Concrete 2969770 1503798 31795 1095223 22293525 46518098 41627387
Copper 48130.5 38555.5 2450.0 84357.9 322257.2 637239.2 588959.3
Dysprosium 30.6 11.5 0.0 0.0 193.6 402.4 339.2
Fiberglass 53197.1 22958.8 0.0 0.0 453504.3 933548.7 779292.8
Gallium 0.2 0.2 0.0 0.4 1.0 1.6 1.3
Glass 218985 322916 24336 836430 2063664 3854748 3687399
Gold 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Graphite 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Indium 2.0 3.3 0.2 4.9 7.7 11.4 7.9
Iridium 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Iron 114283.1 48535.5 0.0 0.0 965745.3 2011225.5 1698261.7
Lithium 0.0 0.0 15317 15037 15890.7 27647.5 31020.2
Manganese 4824.4 2350.6 191.2 3823.1 42702.6 90147.1 93413.5
Molybdenum 631.2 268.5 0.0 0.0 5356.1 11158.6 9425.7
Neodymium 170.4 65.9 0.0 0.0 1144.4 2369.3 1986.1
Nickel 2606.3 1286.3 50.3 956.9 23149.1 48127.0 43834.3
Plastic 112170.1 82230.5 4518.8 155371.1 824399.7 1645356.1 1517297.1
Platinum 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Praseodymium 41.3 17.2 0.0 0.0 330.5 684.7 575.2
Resin 0.0 0.0 0.0 0.0 0.0 0.0 1.0
Selenium 1.8 2.4 0.2 4.3 7.7 12.7 10.6
Silica 0.0 0.0 1819.6 1789.6 1818.0 3147.4 3430.7
Silicon 17745.3 21414.0 1242.7 37732.3 81360.1 133610.1 111151.3
Silver 79.9 98.3 7.0 150.7 229.5 388.6 308.6
Steel 1048043 732636 36967 1249165 8065432 16187947 14874057
Tellurium 7.2 15.1 0.9 28.5 60.6 109.5 101.0
Terbium 5.6 2.4 0.0 0.0 47.4 98.6 83.3
Titanium 0.0 0.0 0.0 0.0 0.0 0.0 0.3
Vanadium 167.1 77.8 0.2 3.2 1731.9 3669.1 3159.2
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Zinc 36372.7 15708.7 0.0 0.0 310220.7 638300.1 532582.9

Table S15: Materials annual demand, based on maximum values across scenarios [ton].
Materials 2020 2025 2030 2035 2040 2045 2050
Activated carbon 58.8 106.7 199.1 739.1 1439.6 3867.9 7392.8
Aluminium 1812202 4791170 9690448 13260975 15370312 17341446 18865155
Cadmium 435.1 2029.7 5780.8 10113.6 14142.1 17655.3 21379.0
Cement 5546556 22499308 22584053 33490551 33485745 31520519 30995030
Chromium 39467.2 197658.5 203658.8 275285.4 280031.5 220114.3 298248.7
Cobalt 72145.6 44630.8 255440.7 337313.5 403271.7 646266.6 800623.1
Concrete 42552544 171674480 172318684 256402911 256366393 243276922 239436170

Copper 1160247 3197534 5692857 7797968 9009154 9576423 10004045
Dysprosium 445.9 2423.6 2682.0 4133.6 4704.5 3386.0 4176.3
Fiberglass 649475 3157588 3161239 4203255 4207135 3264965 4368525
Gallium 7.9 68.5 203.2 397.7 595.5 726.3 864.5
Glass 8554225 26492213 47140203 65908593 76747704 80235609 83570669
Gold 1.3 2.4 4.5 16.8 32.7 87.8 167.8
Graphite 228919 190830.9 1429555 1818315 2095153 3357108 4169166
Indium 106.9 650.9 1889.7 3494.3 5061.4 6242.5 7492.5
Iridium 4.0 7.2 13.5 50.0 97.5 261.8 500.4
Iron 1454362 7270284 7477996 10133718 10333703 8106797 10963575
Lithium 37487.0 31918.5 255259.4 387581.9 518810.1 951188.5 1325084
Manganese 118242 280282.9 425237.7 541609.1 638782.2 952438.9 1180557
Molybdenum 8136.9 40737.6 41961.2 56744.9 57748.7 45376.4 61462.7
Neodymium 3292.8 18970.0 21949.7 34972.7 40787.6 28804.6 34732.3
Nickel 158359 192178.1 1270745 1654463 1948754 3197836 4178685
Plastic 2235640 6222393 10822731 14796901 17070479 17881345 18430439
Platinum 1.1 2.1 3.8 14.2 27.7 74.4 142.2
Praseodymium 646.6 3658.9 4177.7 6857.8 8165.9 5670.5 6696.1
Resin 614.9 1116.7 2082.7 7731.8 15060.7 40464.5 77339.9
Selenium 71.9 668.0 1981.1 3877.8 5805.7 7081.1 8429.1
Silica 4606.4 3774.2 28284.0 35955.7 41417.2 66490.6 82668.6
Silicon 707936 2146783 3819982 5340869 6219211 6501851 6772106
Silver 3194.8 9661.8 17189.9 24033.9 27991.5 29436.5 30538.1
Steel 20500420 60788239 95375058 129796162 149790125 155726664 157464932

Tellurium 470.1 2183.9 6217.6 10866.4 15184.1 18960.9 22963.9
Terbium 119.3 706.7 834.0 1383.5 1659.2 1145.8 1343.5
Titanium 153.7 279.2 520.7 1932.9 3765.2 10116.1 19335.0
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Vanadium 4354.6 24314.5 27486.0 39320.9 42129.6 31796.1 41353.2
Zinc 443452 2153462 2153462 2860649 2860649 2218995 2967649

Table S16: Comparison of estimated values with similar studies.

Material comparison with 
similar studies 6

Comparison with 
“IEA data Explorer” 46 Reason 

Ag OV_U √
Al OV_L -
Cd OV √
Cem. OV_L -
Co - √
Cr - √
Cu - √

Dy X √ Electric motors and in turn the demand driven by 
them is not included in our study. 

Ga X √
It is used in certain types of PV panels, and 
variations in its demand are possible depending 
on the capacity assigned to each type

GCC OV_L -
Gla. OV_U -
Gra. - √

In X √
It is used in certain types of PV panels, and 
variations in its demand are possible depending 
on the capacity assigned to each type

Ir - √
Li - √ -
Mn OV_U √
Mo - √

Nd X √ Electric motors and in turn the demand driven by 
them is not included in our study. 

Ni X √ Electric motors and in turn the demand driven by 
them is not included in our study. 

Pt - √
Pr - √

Se X √
It is used in certain types of PV panels, and 
variations in its demand are possible depending 
on the capacity assigned to each type

Si - √
Ste. OV_L -

Te X √
It is used in certain types of PV panels, and 
variations in its demand are possible depending 
on the capacity assigned to each type
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Tb - √
V - √
Z - √

OV_U: There is considerable overlap in the range of estimations, and our estimate represents a conservative upper bound.
OV_L: There is considerable overlap in the range of estimations, and our estimate represents a conservative lower bound.
X: While there are some overlaps in the data, it does not seem enough to consider them at the same range. 

√: While the ranges provided may not align precisely, they exhibit striking similarity. It is noteworthy that for certain elements, like those 
used in the electrolyzers, while the IEA's range follows an inverted U-shaped pattern, our estimations derived from IAMs consistently show 
a rising trend.
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Fig.S3  Material demands from clean energy technologies. Panel (a) compares the demand for materials from 
CETs with their production rate dedicated to all sectors in 2020. Panel (b) represents materials demand from 
CETs compared with their estimated demand in 2020. OO: Materials primarily used in electrolyzers, does not 
exhibit demand until 2030 and therefore rely on this year or later years, depending on the scenario, as the basis 
for calculations. Timeframes are indicated as follows: 20: 2020, 30: 2030, 40: 2040, 50: 2050. The results of the 
continued trend and technological change are distinguished by red and blue colors, respectively. In both cases, 
the median is depicted with a thicker line. The effect of the reductions in material intensities due to learning 
curves is indicated with star signs, only for median projections. CETs: clean energy technologies.
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B.7: Links between problematic materials and technology types 
Figure S4 presents the intricate relationships among different types of clean energy technologies and 
materials, addressing potential challenges in terms of supply and pricing. On the right side, we list 
various technology types contributing to the 2050 market, with box widths indicating their reliance on 
featured materials compared to other technologies. On the left side, we show problematic materials 
highlighted (i.e., those whose demand-to-production ratio is more than 0.5). The ribbons in the figure 
represent connections between materials and their respective technology hosts, affected by 
technologies learning curve. Shortages or price increases in these materials may impact the 
development and market penetration of the associated CETs. 
Fig.S4 corresponds to Fig.5 in the main manuscript, illustrating the connections between materials and 
clean energy technologies for the years 2050 and 2020, respectively. It is important to note that in 
both figures, the intensity values are normalized, meaning that the intensity value for each material is 
divided by the largest intensity value for that year.

Fig.S4 Links between the materials (left-hand side) and clean energy technologies (right-hand side), based on 
material intensity values in 2050, considering the effect of learning curves. The width of the ribbons is 
proportional to material intensity values. Technologies that penetrate the market after 2020 are distinguished 
by a star. Note that to make all the materials visible and comparable with 2020 values, the materials relative to 
2020 intensity values are normalized. For clarity, technology types are enclosed in brackets, with the 
corresponding acronyms found in Table S1. 
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B.8: Demand-to-reserves comparison
We also made a comparison between the demand values of materials and their reserve capacities 
(refer to Table S11). We found that cobalt, indium, selenium, silver, and tellurium exhibited a demand-
to-reserve ratio potentially exceeding one in some scenarios. Additionally, cadmium, copper, lithium, 
nickel, and zinc although display demand-to-reserve ratios smaller than one, are noteworthy. Figure 
S5 illustrates these minerals. 

Fig.S5 Materials demand over their reserve capacities. To aid comparison, dashed horizontal lines are 
included. Timeframes are indicated as 20: 2020, 30: 2030; 40: 2040, 50: 2050. The results of the continued 
trend and technological change are distinguished by red and blue colors, respectively. In both cases, the median 
is depicted with a thicker line. Additionally, the resulting median, accounting for reductions in materials intensity 
based on learning curves, is indicated by star signs. The stacked bars chart presents the share of different 
technology types in specific material demands. Technology type acronyms as given in Table S1.
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C: Optimization model to estimate realistic capacities 
This section is dedicated to estimating the achievable capacity of clean energy technologies while 
accounting for constraints on materials availability. Additionally, we calculate the necessary recycling 
rates of materials to meet their projected capacity by IAMs. The steps involved are as follows:
- C.1: Estimating shortages in technologies developed capacity: Utilizing the projected capacity of 
technologies by IAMs as a starting point, we impose constraints based on materials reserve capacity 
and allocated demand to reassess their achievable capacity and compare them with IAMs projections.
- C.2: Estimating required recycling: Taking into account similar constraints, we estimated the 
required recycling range for each of the materials needed to meet the capacity of clean energy 
technologies as projected by IAMs.

C.1: Estimating shortages in technologies developed capacity
Previous analyses suggest that IAM projections on the of CETs are probably too optimistic when 
factoring in material supply rates, and a higher technological resolution. To assess how far these might 
be from reality, we evaluate the capacity of CETs that could be realistically deployed considering 
material availability. To this end, we formulate an optimization model (M1) to minimize the disparity 
in capacities between IAM projections and what could be realistically manufactured. In all the 
equations, variables are written in italics while parameters are in normal style.

Model M1: minimizing disparities

𝑀𝑖𝑛∑
𝑇,𝑛,𝑠

𝐷𝑖𝑓𝑓 𝑇
𝑛,𝑠 (S13) 

𝑠.𝑡:     𝐷𝑖𝑓𝑓 𝑇
𝑛,𝑠 = ∑

𝑡 ∈ 𝑇𝑇𝑡

(𝐶𝐶𝐼𝑇,𝑂𝑝𝑡
𝑡,𝑛,𝑠 ) ‒ 𝐶𝐶𝑇,𝐼𝐴𝑀𝑠

𝑛,𝑠                            ∀𝑛,𝑠,𝑇 = {𝐵𝐴𝑇, 𝐶𝑆𝑃, 𝐸𝐿𝐸𝐶𝑇𝑍,𝑃𝑉,𝑊𝐼𝑁𝐷} 

         

(S14)

         

       𝐷𝑖𝑓𝑓 𝑇
𝑛,𝑠 ≥ 0                                                                               ∀𝑛,𝑠,𝑇 = {𝐵𝐴𝑇, 𝐶𝑆𝑃, 𝐸𝐿𝐸𝐶𝑇𝑍,𝑃𝑉,𝑊𝐼𝑁𝐷}

(S15)

         ∑
𝑇, 𝑡

𝐶𝐶𝐼𝑇,𝑂𝑝𝑡
𝑡,𝑛,𝑠 ·𝑀𝐼𝑚,𝑡,𝑛 ≤ 𝑃𝑅𝑚,𝑛·𝑆𝐻𝐴𝑅𝐸 𝐶𝐸𝑇𝑠

𝑚,2020                   ∀𝑚,𝑠,𝑛 = 2021, …,2050 (S16)

         
        ∑

𝑡,𝑛, 𝑇

𝐶𝐶𝐼𝑇,𝑂𝑝𝑡
𝑡,𝑛,𝑠 ·𝑀𝐼𝑚,𝑡,𝑛 ≤ 𝑅𝑒𝑠𝑚                                     ∀𝑚,𝑠 (S17)

        𝐷𝑖𝑓𝑓 𝑇
𝑛,𝑠, 𝐶𝐶𝐼𝑇,𝑂𝑝𝑡

𝑡,𝑛,𝑠 ∈ 𝑅 +                                                              ∀𝑛,𝑠,𝑡,𝑇 = {𝐵𝐴𝑇, 𝐶𝑆𝑃, 𝐸𝐿𝐸𝐶𝑇𝑍, 𝑃𝑉, 𝑊𝐼𝑁𝐷}(S18)

The objective of M1 (Eq. S13) is to minimize the disparities in capacity across different technology 

categories T (e.g., PV), IAMs scenario s, and years n, as denoted by . These disparities are Diff T
n,𝑠

quantified in Eq.S14 as the difference between the capacity assigned to each technology based on 

IAM projections ( ) and the “realistic” estimates obtained with this model ( ). For each CCT,IAMs
n,𝑠

∑
𝑡

CCIT,Opt
t,n,𝑠  

technology, this difference should be positive to ban situations where excess capacity for a technology 
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category compared with IAMs projections offsets deficits for other categories (Eq. S15).  is CCT,IAMs
n,𝑠

obtained with Eqs. S2-S6, for the corresponding IAM scenario and material intensity values. 

We acknowledge that not all the materials produced can be allocated to the development of CETs 
since they are also used in other sectors. Hence, we restrict the amount of each material that can be 

used for manufacturing CETs according to the shares observed in 2020 ( ). Hence, the left-SHARE CETs
m,2020

hand side of Eq. S16 estimates the demand for material m driven by all types of technology T 
developed at year n, by multiplying the capacity of each technology type by its material intensity (

), while the right-hand side accounts for the (share of) the realistic production rate that is MIm,t,n

expected for material m in year n ( ). As aforementioned, the available share of each material m PRm,n

is obtained based on 2020 values (Eq. S19). 

         𝑆𝐻𝐴𝑅𝐸 𝐶𝐸𝑇𝑠
𝑚,2020 =

∑
𝑡,𝑇

𝐶𝐶𝐼𝑇, 𝐼𝐴𝑀𝑠
𝑡,2020 ·𝑀𝐼𝑚,𝑡,2020

𝑃𝑅𝑚,2020
               ∀𝑚,𝑛 = 2021, …,2050  (S19)

Capacity projections and material intensities are set at appropriate values depending on the 

corresponding scenario studies, while production rates for 2020 ( ) are detailed in Table S10. PRm,2020

Exceptionally, for iridium, used in electrolyzers, we conducted the estimation based on the initial year 
of the technology (i.e., after 2030, depending on the IAM scenario), instead of in 2020.

The production rates for future years appearing in Eqs. S16 and S19 (PRm,n) are obtained by allowing a 
certain annual growth , starting from the production rate of 2020 (see Eq. S20). Specifically, we used α

 = 2.7%, which is the average annual growth of metals mining 47, and changed this value to 0.7 and α

4.7 for the sensitivity analysis. (i.e., average ± 2%).

               𝑃𝑅𝑚,𝑛 = (1 + 𝛼) ·𝑃𝑅𝑚,𝑛´                                                 𝑛´ = (𝑛 ‒ 1), ∀𝑛 = 2021, …,2050 (S20)

Finally, Eq.S17 is employed to restrict the cumulative demand for material m by year n driven by all 
the technologies according to the capacity of its reserves (Resm), as given in Table S11. 

Notably, by combining three production rates with two materials intensity projections, six sets of 
results are created for each of the 25 IAMs scenario. Figure S6 presents the median shortage values 
for each set and each IAM scenarios. 
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Fig.S6 Shortages in technologies annual developed capacity based on different IAMs scenarios. 

C.2: Estimating required recycling:
To assess the minimum recycling rate for materials to meet the demand from CETs, we construct 
another model with similar constraints. This aids in understanding the significance of materials 
recycling and gauging the disparity between our expectations and their current recycling rates (see 
Table S12). For this purpose, we formulate an optimization model (M2) aimed at minimizing the 
recycling rate required for materials to fulfil IAM’s projected capacities. In all equations, variables are 
denoted in italics while parameters are in normal style.

Model M2: minimizing recycling rates

𝑀𝑖𝑛∑
𝑖,𝑛,𝑠

𝑅𝑒𝑐𝑖,𝑛,𝑠 (S21) 

      ∑
𝑇, 𝑡

𝐶𝐶𝐼𝑇,𝑂𝑝𝑡
𝑡,𝑛,𝑠 ·𝑀𝐼𝑚,𝑡,𝑛 ≤ 𝑃𝑅𝑚,𝑛·𝑆𝐻𝐴𝑅𝐸 𝐶𝐸𝑇𝑠

𝑚,2020 +  𝑅𝑒𝑐𝑖,𝑛,𝑠            ∀𝑚,𝑠,𝑛 = 2021, …,2050 (S22)

         
         ∑

𝑡,𝑛, 𝑇

𝐶𝐶𝐼𝑇,𝑂𝑝𝑡
𝑡,𝑛,𝑠 ·𝑀𝐼𝑚,𝑡,𝑛 ≤ 𝑅𝑒𝑠𝑚 +  𝑅𝑒𝑐𝑖,𝑛,𝑠                ∀𝑚,𝑠 (S23)

        𝐶𝐶𝐼𝑇,𝑂𝑝𝑡
𝑡,𝑛,𝑠  =  𝐶𝐶𝐼𝑇,𝐼𝐴𝑀𝑠

𝑡,𝑛,𝑠                                                             ∀𝑛,𝑠,𝑡,𝑇 = {𝐵𝐴𝑇, 𝐶𝑆𝑃, 𝐸𝐿𝐸𝐶𝑇𝑍, 𝑃𝑉, 𝑊𝐼𝑁𝐷}(S24)

       𝑅𝑒𝑐𝑖,𝑛,𝑠, 𝐶𝐶𝐼𝑇,𝑂𝑝𝑡
𝑡,𝑛,𝑠 ∈ 𝑅 +                                                            ∀𝑛,𝑠,𝑡,𝑇 = {𝐵𝐴𝑇, 𝐶𝑆𝑃, 𝐸𝐿𝐸𝐶𝑇𝑍, 𝑃𝑉, 𝑊𝐼𝑁𝐷}(S25)

Model M2, outlined in equations (S21) to (S25), seeks to minimize the material recycling across 
materials intensity projections i, IAM scenarios s, and years n. The objective (Eq. S21) aims to minimize 

the recycled materials indicated by , while considering IAM projections. This term is 𝑅𝑒𝑐𝑖,𝑛,𝑠

incorporated into the right-hand side of Eqs. S22 and S23 to increase material availability. Eqs. S22 
and S23 are equivalent to Eqs. S16 and S17 in model M1. However, in model M2, we enforce the exact 

capacity values based on IAM projections through Eq. S24. Not that the  contains the market 𝐶𝐶𝐼𝑇,𝐼𝐴𝑀𝑠
𝑡,𝑛,𝑠

contribution trends (see Eq.S7).
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It is important to note that, for each material m and IAM scenario s, 12 sets of results are obtained, 
each considering one of three production rates, one of two material intensity projections, and one of 
two market contribution trends. This comprehensive approach allows for a thorough assessment of 
the recycling rates required across various scenarios and parameters.
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D: Extra warming due to shortages in technology developed capacities 
Our optimization model highlights a potential challenge: achieving the capacities projected by IAMs 
for 1.5oC  and 1.5oC with low overshoot temperature targets may be constrained by material supply. 
This section delves into estimating the additional warming that could result from these shortages. 
Here, "shortage" denotes the disparity between the capacity projected by IAMs and the more realistic 
capacity that could be deployed according to our model. It is important to note that electrolyzers are 
excluded from this analysis as we conservatively assume that the hydrogen generated would be 
utilized in chemical industries (i.e., not for energy applications). The steps involved in this estimation 
are outlined below:

- D.1: Expected energy delivered: First, we estimate the energy that could be delivered by CETs if we 
could achieve the capacity projected by IAMs. 

- D.2: Real energy delivered: Then, we calculate the energy that can be delivered by the capacity of 
technologies obtained from our optimization model, which includes constraints on material 
supplies. 

- D.3: Replacement energy: The difference between the energy expected to be delivered and that 
actually delivered should be substituted by alternative sources. 

- D.4: Additional greenhouse gas emissions: Shortages in the capacity developed for CETs requires 
contributions from business-as-usual sources for compensation. Specifically, we assume the 
electricity mix would supply shortages in CSP, PV and wind capacity, while diesel-engine trucks 
would replace missing EVs due to shortages in the capacity of batteries. This substation would result 
in the release of additional CO2-eq emissions compared to the original IAM estimates. To quantify 
them, we resort to prospective life cycle assessment. 

- D.5: Additional warming: We translate non-avoided CO2-eq emissions into additional warming.

Each step is discussed in detail in the following sections.

D.1: Expected energy delivered 
To estimate the amount of energy delivered (ED) by all the capacity installed in each year for all 

technologies during their lifetime, Eqs. S26-S27 have been employed. 

𝐸𝐷𝐵𝐴𝑇𝐸𝑉,𝐼𝐴𝑀𝑆
𝑛,𝑠 = 𝐶𝐶𝐵𝐴𝑇𝐸𝑉,𝐼𝐴𝑀𝑠

𝑛,𝑠 ·
𝑅𝐸𝐶𝐵𝐴𝑇

𝑅𝑃𝐶𝐵𝐴𝑇
·𝑂𝐶𝐿𝑇𝐵𝐴𝑇·𝐷𝑂𝐷𝐵𝐴𝑇·𝑅𝑇𝐸𝑓𝑓𝐵𝐴𝑇            ∀𝑛,𝑠 (S26)

𝐸𝐷𝑇,𝐼𝐴𝑀𝑠
𝑛,𝑠 = 𝐶𝐶𝑇,𝐼𝐴𝑀𝑠

𝑛,𝑠 ·𝐺𝐶𝐹𝑇 ·(365 𝑑𝑎𝑦𝑠
𝑦𝑒𝑎𝑟

·
24 ℎ
𝑑𝑎𝑦

·𝐿𝐹)                                           ∀𝑛,𝑠, 𝑇 = {𝐶𝑆𝑃, 𝑃𝑉, 𝑊𝐼𝑁𝐷} (S27)

The term  used in Eq. S26 indicates the energy delivered by installed capacity of batteries EDBATEV,IAMS
n,s

according to IAMs scenario s in year n [GWh]. In this equation,  is the rated energy capacity of RECBAT

batteries [GWh], while  is its rated power capacity [GW]. These parameters represent the RPCBAT

nominal energy or power output of a battery in each cycle, respectively. Here, the ratio of 20/6 is used 

as rated energy-to-rated power capacity of batteries48.  is the number of operational cycles OCLTBAT
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expected during the lifetime of the battery (e.g., 3000 cycles during 15 years). Then,  is the DODBAT

depth of discharge, providing the amount of energy discharged compared with the total storage 

capacity (e.g., 80%).  denotes the battery round-trip efficiency, which reflects the efficiency RTEffBAT

(%) achieved through converting electricity from alternating current to stored energy and back to 

alternating current (e.g., 86%) 5. Finally,  is the annual capacity of batteries used in EVs CCBATEV, IAMs
n,s

[GW], estimated from IAM projections using Eqs. S3-S5.

 in Eq. S27 represents the energy delivered from the capacity of CSP, PV or wind installed in EDT, IAMs
n,s

year n according to IAM scenario s [GWh]. In this equation,  is the global capacity factor for the GCFT

desired technology [%], equal to 32.8% for wind and 22.4% for PV49. For CSP, the value of 45% related 

to CSP systems with thermal storage is used50. Also, LF is the lifespan, which is assumed to be 30 years 

for these technologies.  is the capacity of each technology installed in year n [GW], which is CCT, IAMs
n,s

directly reported by IAMs for CSP, PV, and wind.

We aim to emphasize that our goal in conducting these estimations is to calculate the additional 

warming resulting from capacity shortages and add it into the initial target of limiting global warming 

to 1.5°C by 2100. Hence, even if part of the energy generated by some technologies installed in the 

2020-2050 will occur after 2050, it will still occur before 2100 (note the lifespan of 30 years). Thus, 

this approach is relevant and meaningful in this context.

D.2: Real energy delivered
Analogous to the estimation of the expected energy delivered, we calculate the amount of energy that 

would be delivered in practice during the lifetime of the technologies installed with the available 

capacity according to the optimization model (Eqs. S28-S29). The only difference compared with Eqs. 

S26 and S27 is the replacement of the capacities obtained by the IAMs by those obtained from model 

M1 (see section C). 

𝐸𝐷𝐵𝐴𝑇𝐸𝑉,𝑂𝑝𝑡
𝑛,𝑠 = 𝐶𝐶𝐵𝐴𝑇𝐸𝑉, 𝑂𝑝𝑡

𝑛,𝑠 ·
𝑅𝐸𝐶𝐵𝐴𝑇

𝑅𝑃𝐶𝐵𝐴𝑇
·𝑂𝐶𝐿𝑇𝐵𝐴𝑇·𝐷𝑂𝐷𝐵𝐴𝑇·𝑅𝑇𝐸𝑓𝑓𝐵𝐴𝑇                 ∀𝑛,𝑠 (S28)

𝐸𝐷𝑇,𝑂𝑝𝑡
𝑛,𝑠 = 𝐶𝐶𝑇, 𝑂𝑝𝑡

𝑛,𝑠 ·𝐺𝐶𝐹𝑇 ·(365 𝑑𝑎𝑦𝑠
𝑦𝑒𝑎𝑟

·
24 ℎ
𝑑𝑎𝑦

·𝐿𝐹)                                                ∀𝑛,𝑠 𝑇 = {𝐶𝑆𝑃, 𝑃𝑉, 𝑊𝐼𝑁𝐷} (S29)

The term  used in Eq. S28 indicates the energy delivered by the capacity of batteries EDBATEV, Opt
n,s

according to scenario s installed in year n according to the optimization model [GWh], while  in EDT, Opt
n,s

Eq. S29 represents the same for CSP, PV, or wind [GWh]. 
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As discussed in the previous section, our aim is to calculate the additional warming and add it into the 

target of limiting global warming to 1.5°C by 2100, even for technologies installed close to 2050, as 

the energy they will generate will be expended by 2100.

D.3: Replacement energy 
To estimate the amount of energy that could not be delivered because of shortages in the capacity of 
each technology and needs to be provided by business-as-usual options, we employ Eqs. S30-S32. 

𝑆𝐸𝐷𝐵𝐴𝑇𝐸𝑉
𝑛,𝑠 = 𝐸𝐷𝐵𝐴𝑇𝐸𝑉,𝐼𝐴𝑀𝑆

𝑛,𝑠,𝑘,𝑖  ‒  𝐸𝐷𝐵𝐴𝑇𝐸𝑉,𝑂𝑝𝑡
𝑛,𝑠                 ∀𝑛,𝑠 (S30)

𝑀𝑆𝐸𝐷 𝑇
𝑛,𝑠 = 𝐸𝐷𝑇,𝐼𝐴𝑀𝑠

𝑛,𝑠 ‒ 𝑥𝑇
𝑛 · 𝑆𝐸𝐷𝐵𝐴𝑇𝐸𝑉

𝑛,𝑠                        ∀𝑛,𝑠𝑇 = {𝐶𝑆𝑃,𝑃𝑉, 𝑊𝐼𝑁𝐷}  (S31)

𝑆𝐸𝐷 𝑇
𝑛,𝑠 = 𝑀𝑆𝐸𝐷 𝑇

𝑛,𝑠 ‒   𝐸𝐷𝑇,  𝑂𝑝𝑡
𝑛,𝑠                                   ∀𝑛,𝑠 𝑇 = {𝐶𝐴𝑃,𝑃𝑉, 𝑊𝐼𝑁𝐷} (S32)

Eq. S30 is used for batteries, with the term  [GWh] representing the substitute energy that SEDBAT𝐸𝑉
n,s

should be delivered in year n to compensate for the capacity that could not be developed owing to 

shortages in material supplies. Parameters  and  are estimated using Eq. S26 and EDBATEV,IAMS
n,s  EDBATEV,Opt

n,s

Eq.S28, respectively. 
We could use the same approach for the case of CSP, PV, and wind. However, we adopt a conservative 
approach and assume that part of the capacity that was projected for CSP, PV, and wind by IMAs was 
going to be dedicated to batteries used in EVs. Hence, if the expected capacity of batteries (and 
consequently EVs) could not be developed, there is also no need to develop the corresponding 
capacity of CSP, PV panels, and wind turbines required to feed them. To account for this, we introduce 
Eq. S31, where we deduct the energy that does not need to be delivered anymore owing to the 

shortage in batteries. To allocate this capacity between CSP, PV, and wind the term  is used to reflect 𝑥𝑇
𝑛

the contribution of each of these technologies in feeding the batteries. This value is given by the share 
of CSP, PV, and wind capacities in year n according to IAM estimates. At the end, the equation 
estimates the “modified” replacement energy that needs to be delivered according to IAMs scenario 

s in year n ( ).  in Eq. S32 represents the energy that could not be supplied by CSP, PV MSED T
n, s SED T

n,s

panels, or wind turbines because of material shortages, and, therefore, should be replaced by the grid 

in each year n [GWh]. Finally,  and  are estimated using Eqs. S29 and S31, respectively. EDT,Opt
n,s MSED T

n,s 

Fig. S7 depicts this approach. 
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Fig.S7: Approach used to estimate the replacement energy requirements for each clean energy technology. 

D.4: Additional greenhouse gas emissions 
In order to calculate the extra greenhouse gas emissions, it is important to note that IAMs anticipate 
a specific level of emissions for the projected capacity of clean energy technologies for a particular 
temperature target. Indeed, their projections are based on expected emission levels. Therefore, to 
estimate the additional emissions, we need to determine the difference between their expected 
emissions and the emissions that would occur based on the realistic capacities derived from our 
optimization model (Section C). We also consider the services, such as transportation or electricity, 
that these technologies would provide but they cannot due to capacity shortages (i.e., difference 
between IAMs and optimized capacities). We replace these unmet services with equivalent options 
and estimate the corresponding resulting emissions, which are included in our additional greenhouse 
gas emissions calculation.

We provide a detailed methodology for estimating emissions related to batteries, followed by similar 
methodologies for CSP, PV panels, and wind turbines. Electrolyzers' hydrogen generation is excluded 
from this analysis as it is assumed to be used as feedstock in the chemical sector. It is important to 
note that we use prospective life cycle assessment results, as carbon intensity values vary over time. 
Having this roadmap in mind, we turn your attention to the D.4.1 subsection which is related to 
batteries. 

D.4.1: Battery electric vehicles
As aforementioned, we assume that batteries are primarily designed for EVs (Figure S1). Hence, we 
estimate the difference in greenhouse gas emission stemming from shortages in battery capacities (

, in [ton CO2-eq]) by assuming that the missing transportation service by electric vehicles ACEBATEV
n,s

would be replaced by an alternative mean ( ) (Eq. S33). ACEBATEV, Service
n,s

𝐴𝐶𝐸𝐵𝐴𝑇𝐸𝑉
𝑛,𝑠 =‒ 𝐴𝐶𝐸𝐵𝐴𝑇𝐸𝑉,  𝐼𝐴𝑀𝑠

𝑛,𝑠 + (𝐴𝐶𝐸𝐵𝐴𝑇𝐸𝑉, 𝑂𝑝𝑡
𝑛,𝑠 + 𝐴𝐶𝐸𝐵𝐴𝑇𝐸𝑉, 𝑆𝑒𝑟𝑣𝑖𝑐𝑒

𝑛,𝑠 )            ∀𝑛,𝑠 (S33)
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Here,  and  represent the greenhouse gas emissions incurred by EVs according ACEBAT𝐸𝑉, 𝐼𝐴𝑀𝑠
n,s ACEBATEV, Opt

n,s

to the capacity estimated by IAMs and our optimization model, respectively [ton CO2-eq]. Note that 
we calculate life cycle (instead of direct) emissions, thus considering also the emissions incurred while 
producing the energy required to feed the batteries. 

In turn, the life cycle greenhouse gas emissions that would occur if we could develop the capacity of 

batteries projected by IAMs ( ) are calculated from the energy delivered by batteries (ACEBAT𝐸𝑉, 𝐼𝐴𝑀𝑠
n,s

, estimated with Eq. S26 [MJ]), the energy required by a battery EV to transport a tonne EDBATEV, IAMs
n,s

over a km in year n ( , in [kJ/t·km]), and the carbon intensity of a battery EV in year n (CIBATEV, in ERBATEV
n

[ton CO2-eq/t·kmBEV]) (see Eq. S34). 

𝐴𝐶𝐸𝐵𝐴𝑇𝐸𝑉,  𝐼𝐴𝑀𝑠
𝑛,𝑠 = 𝐸𝐷𝐵𝐴𝑇𝐸𝑉, 𝐼𝐴𝑀𝑠

𝑛,𝑠   ·
1

𝐸𝑅𝐵𝐴𝑇𝐸𝑉
𝑛

·𝐶𝐼𝐵𝐸𝑉𝐸𝑉
𝑛 ·1000                                  ∀𝑛,𝑠 (S34)

Acknowledging that EVs performance improves over time and also their carbon intensity will vary over 

time, we resort to prospective LCA to estimate the value of  for different years n (Table S17). CIBEV𝐸𝑉
n

Prospective LCA methodology is discussed in section D.4.3

Next, we use Eq. S35 to estimate the life cycle greenhouse gas emissions for the actual capacity of 

batteries that could be manufactured according to the optimization model ( , in [GWh]). ACEBATEV, Opt
n,s

𝐴𝐶𝐸𝐵𝐴𝑇𝐸𝑉, 𝑂𝑝𝑡
𝑛,𝑠 = 𝐸𝐷𝐵𝐴𝑇𝐸𝑉, 𝑂𝑝𝑡

𝑛,𝑠   ·
1

𝐸𝑅𝐵𝐴𝑇𝐸𝑉
𝑛

·𝐶𝐼𝐵𝐴𝑇𝐸𝑉
𝑛 ·1000                           ∀𝑛,𝑠 (S35)

This equation is analogous to Eq. S34, but uses  instead of . The values for E𝐷BAT𝐸𝑉, Opt
n,s EDBATEV, IAMs

n,s

 are also provided in Table S17.CIBATEV
n

Finally, Eq. S36 is used to estimate the life cycle greenhouse gas emissions incurred by replacing the 
service that would have been delivered by means of the "missing" battery EVs, with the corresponding 
replacement service (i.e., a diesel truck).

𝐴𝐶𝐸𝐵𝐴𝑇𝐸𝑉, 𝑆𝑒𝑟𝑣𝑖𝑐𝑒
𝑛,𝑠 = 𝑆𝐸𝐷𝐵𝐴𝑇𝐸𝑉

𝑛,𝑠 ·
1

𝐸𝑅𝐵𝐴𝑇𝐸𝑉
𝑛

·𝐸𝑅𝐷𝐼𝐶𝑇
𝑛 ·𝐶𝐼𝐷𝐼𝐶𝑇

𝑛 ·1000              ∀𝑛,𝑠  (S36)

Here,  is the energy that will need to be substituted (in [GWh], as estimated by Eq. S30), SDEBAT𝐸𝑉
n,s

 and  denote the energy required by a battery electric vehicle and a diesel ignition ERBATEV
n ERDICT

n

combustion truck, respectively, to transport a tone over a km in year n [kJ/t·km], and  is the CIDICT
n

carbon intensity of the diesel ignition combustion truck in year n [ton CO2-eq/kJdiesel] (Table S17). 
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Table S17: Results for the prospective life cycle assessment of the energy consumption and carbon 
intensity of diesel-engine trucks and battery EVs.

Term Unit 2020 2025 2030 2035 2040 2045 2050

𝐶𝐼𝐵𝐴𝑇𝐸𝑉
𝑛 Kg CO2-eq/t·km 0.132 0.101 0.081 0.068 0.059 0.052 0.046

CIDICT
n kg CO2-eq/kJ 7.56·10-5 6.98·10-5 6.60·10-5 6.78·10-5 6.94·10-5 6.98·10-5 6.98·10-5

ERBATEV
n kJ/t·km 480 386 316 297 281 265 249

ERDICT
n kJ/t·km 1296 1239 1187 1142 1102 1069 1042

D.4.2: Concentrated solar power, photovoltaic panels, and wind turbines
An analogous procedure is followed to estimate the additional greenhouse gas emissions incurred by 

providing an alternative service to CSP, PV, and wind ( , in [ton CO2-eq]).ACE T
n,s,Sc

𝐴𝐶𝐸 𝑇
𝑛,𝑠,𝑆𝑐 = ‒ 𝐴𝐶𝐸𝑇,𝐼𝐴𝑀𝑠

𝑛,𝑠 +  (𝐴𝐶𝐸𝑇,𝑂𝑝𝑡
𝑛,𝑠 + 𝐴𝐶𝐸𝑇, 𝑆𝑒𝑟𝑣𝑖𝑐𝑒

𝑛,𝑠,𝑆𝑐 )           ∀𝑛,𝑠 𝑇 = {𝐶𝑆𝑃, 𝑃𝑉, 𝑊𝐼𝑁𝐷}, 𝑆𝑐 = {𝐶𝑃, 𝑁𝑍} (S37)

In this equation,  and  are the life cycle greenhouse gas emissions that would be ACET,IAMs
n,s ACET,Opt

n,s

released from these technologies according to the capacity estimated by IAMs (Eq. S38) and our 

optimization model (Eq. S39), respectively. Finally,  denotes the greenhouse gas emissions ACET, Service
n,s,Sc

from the replacement energy (i.e., Eq. S40). The first two terms (  and ) are obtained ACET,IAMs
n,s ACET,Opt

n,s

with Eqs. S38-S39:

𝐴𝐶𝐸𝑇,𝐼𝐴𝑀𝑠
𝑛,𝑠 =  𝐸𝐷𝑇, 𝐼𝐴𝑀𝑠

𝑛,𝑠  · 𝐶𝐼𝑇
𝑛                                                   ∀𝑛,𝑠, 𝑇 = {𝐶𝑆𝑃, 𝑃𝑉, 𝑊𝐼𝑁𝐷} (S38)

𝐴𝐶𝐸𝑇,𝑂𝑝𝑡
𝑛,𝑠 =  𝐸𝐷𝑇, 𝑂𝑝𝑡

𝑛,𝑠  · 𝐶𝐼𝑇
𝑛                                                       ∀𝑛,𝑠, 𝑇 = {𝐶𝑆𝑃, 𝑃𝑉, 𝑊𝐼𝑁𝐷} (S39)

Here,  and  correspond to the energy delivered by CSP, PV panels, or wind turbines EDT, IAMs
n,s EDT, Opt

n,s

according to the capacities derived from IAMs or our optimization model, respectively (see Eqs. S27 

and Eq. S29). These are multiplied by the carbon intensity of the desired technology T for year n ( , CITn

in [ton CO2-eq/GWh]), as obtained from prospective LCA data reported in relevant studies51–53 (see 
Table S18). 

Table S18: Collected data for the prospective life cycle carbon intensity of CSP systems, PV panels and 
wind turbines. 

Term Unit 2020 2025 2030 2035 2040 2045 2050
CSP* ton CO2-eq/GWh 34 32 29 27 25 22 20
PV ton CO2-eq/GWh 80 72 64 56 55.2 54.4 53.6
Wind ton CO2-eq/GWh 20.1 19.95 19.8 17.8 15.9 15.9 15.9

* Data are related to a SCP system with storage option. Only two value (i.e., 20-34)were available and a linear 
regression is used.54
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In this case, we assume electricity from the grid will replace the energy that CSP, PV, or wind should 

deliver ( , as estimated by Eq.32). The emissions stemming from this substitution depend on the SED T
n,s

carbon intensity of the mix ( , in [ton CO2-eq/GWh]), which, in turn, could vary differently over CI EM
n,Sc

time depending on the evolution of the different technologies in the mix. Hence, two prospective 
scenarios Sc, Current Policy (CP) or Net Zero (NZ), are used to derive two different sets of carbon 
intensities over time, as discussed in section D.4.3 (Table S19).

𝐴𝐶𝐸𝑇, 𝑆𝑒𝑟𝑣𝑖𝑐𝑒
𝑛,𝑠,𝑆𝑐 = 𝑆𝐸𝐷 𝑇

𝑛,𝑠·𝐶𝐼 𝐸𝑀
𝑛,𝑆𝑐             ∀𝑛,𝑠 𝑇 = {𝐶𝑆𝑃, 𝑃𝑉, 𝑊𝐼𝑁𝐷}, 𝑆𝑐 = {𝐶𝑃, 𝑁𝑍} (S40)

Ultimately,  denotes the greenhouse gas emissions released from the replacement service ACET, Service
n,s,Sc

offered by the grid according to IAM scenario s and policy scenario Sc in year n [ton CO2-eq]. 

D.4.3: Prospective life cycle assessment 
To estimate the carbon intensity and energy requirements of battery electric vehicles and diesel 
ignition combustion truck, as well as the carbon intensity of grid mix, we use the data provided by 
prospective life cycle analysis. In contrast to traditional LCA, prospective LCA takes into account the 
impacts of future changes in the background system of LCA datasets. This approach considers 
potential shifts that could influence environmental impacts over time, ensuring that decisions are not 
solely reliant on present circumstances. To conduct a prospective analysis, we need to generate future 
life cycle inventories under different socioeconomic and environmental policy scenarios.

Our estimation begins with the data provided by IAMs, which project the potential development of 
the energy system, GHG sources, and mitigation technologies across various socioeconomic scenarios 
and climate policies. Next, we create a series of LCA databases, each corresponding to a specific year 
and scenario considered in the analysis. Here, we leverage the IAM data for the chosen scenarios and 
use the Premise v1.5.0 toolbox55, to adapt the Ecoinvent v3.8 LCA database accordingly. Premise 
toolbox is an open-source Python library, operating on BrightWay2 V.0.8.7 56, which is specifically 
crafted to enhance the Ecoinvent v3.8 database by integrating scenario data from IAMs related to five 
pivotal energy-intensive sectors: electricity generation, cement and steel production, road freight and 
passenger transport, and both conventional and alternative fuel supplies. This approach helps us to 
ensure that our LCA databases accurately reflect the evolving environmental impacts associated with 
different policy pathways and socioeconomic conditions over time.

Notably, our starting point involves using results from the REMIND model under Current Policy (CP) 
and Net Zero (NZ) narratives spanning the 2020-2050 timeframe. These narratives account for 
alterations in both technological aspects (e.g., vehicle weight) and policy implementations (e.g., 
decarbonization of the electricity matrix). Table S19 presents the results obtained for grid mix, while 
the results for battery electric vehicles are already presented in Table S17.

 

Table S19: Perspective life cycle results for carbon intensity of the grid mix electricity [kg CO2-eq/kWh].

Scenarios 2020 2025 2030 2035 2040 2045 2050

Current Policy 0.508 0.425 0.361 0.310 0.274 0.236 0.207
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Net zero 0.508 0.316 0.194 0.110 0.081 0.076 0.074

Although prospective LCA can help us to provide more accurate estimations, our calculations are still 
imperfect. First, it is worthnoting that these carbon intensity values are related to a typical battery, 
PV panel, or wind turbine, and are not available for specific types. Notably, life cycle grenhouse gas 
emissions from a battery EV only become lower than those from diesel-based cars after 2031. 
Therefore, in this case, only the extra emissions from 2032 untill 2050 are considered in our 
calculations (i.e., the negative difference that would be generated between 2020-2031 is neglected).

In addition, we acknowledge that a share of the energy provided by CSP, PV panels, and wind turbines 
during the period analysed (2020-2050) would be delivered beyond 2050 in practice (note the 
technology lifespan). Therefore, the carbon intensity of these technologies and that of the grid 
electricity used to compensate for shortages should include years beyond 2050. Unfortunately, these 
data are not available. Hence, in the absence of better data, we estimate the emissions for the whole 
life cycle of the technologies based on the carbon intensity of the year they would be installed.

D.5: Additional warming
In this step, we convert the additional greenhouse gas emissions into a temperature increase, using 

Eq. S41, as suggested by Hare and Meinshausen57.

∆𝑇 𝑇
𝑛',𝑆𝑐 =

0.16º𝐶
100 𝐺𝑡𝐶𝑂2

∙
𝑛'

∑
𝑛 = 2020

𝐴𝐶𝐸 𝑇
𝑛,𝑠,𝑆𝑐            ∀𝑛,𝑠, 𝑇 = {𝐵𝑎𝑡𝑡𝑒𝑟𝑦, 𝐶𝑆𝑃, 𝑃𝑉, 𝑊𝐼𝑁𝐷} ,  𝑆𝑐 = {𝐶𝑃, 𝑁𝑍} (S41)

This equation establishes a temperature change of approximately 0.16°C for every 100 GtCO2 
cumulative fossil CO2 emissions released until year n’. The additional fossil CO2 emissions resulting 

from shortages in the capacity developed for each technology, denoted by , are derived from ACE T
n,s,Sc

Eqs. S33-S40. Hence, the term  provides the temperature increase associated with the “lack” of ∆T T
n’,Sc

each technology, according to CP and NZ scenarios, up to the specific year  [°C].n'

E: Materials and their potential substitutes
Table S20 presents the list of materials that can be used for replacement. 

Table S20: Materials and their potential substitutes28.
Material Replace by Material Replace by Material Replace by

Glass Silver Silicon

Paper Palladium Cerium oxide

Plastic

Gold

Platinum Tellurium

Steel Graphite Molybdenum disulfide Bismuth

Manganese Antimony lead

Titanium Carbon

Selenium

Sulphur dioxide

Wood PEDOTe Aluminium

Vinyl Copper Gallium

Aluminium

Copper Silver

Silicon

Germanium

Zinc Graphene Steel
Cadmium

Nickel

Indium

Zinc
Silver

Tantalum
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Aluminium Hafnium Titanium

Tin Aluminium Aluminium

Fly ash Plastic Rhodium
Cement

GGBFSa Concrete Bismuth

Barium Wood Calcium

SFb Glass Lead

Cerium

Iron/steel

Paper Phosphorus

Iron Calcium Selenium

Lead Magnesium Sulphur

Manganese Mercury Niobium

Vanadium Zinc

Tellurium

Tantalum

Copper Aluminium Ilmenite

Ceramics Sodic fluxes Leucoxene

Nickel

Lithium

Potassic fluxes Rutile

Rhodium Boron Slag

Cobalt

Titanium Chromium

Titanium

Synthetic rutile

Aluminium Niobium Manganese

Titanium Vanadium Molybdenum

Steel Tungsten Niobium
Copper

Plastic Graphite Titanium

LCc Tantalum

Vanadium

Tungsten

SiMeOxd

Molybdenum

Cadmium Aluminium

In-Phosphide Nickel Titanium Cadmium

Helium-Neon Platinum Palladium Plastic

Gallium

Silicon-Germanium REEf -

Zinc

Molybdenum
a Ground granulated blast furnace slag.
b Strontium Ferrites.
c Liquid crystals from organic compounds.
d Silicon based complementary metal oxides. 
e Poly (3,4-ethylene dioxythiophene).
f Substitutes are available for many applications but generally are less effective.
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