Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2024

## **Supplementary information**

for

## Importance of the catalyst–water Coulomb interaction for oxygen reduction reaction kinetics

Teng Liu, Yinghe Zhao\* and Tianyou Zhai\*

State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

\*E-mail: zhaoyh@hust.edu.cn; zhaity@hust.edu.cn

Note S1. Fig. S1a presents the initial structure of the Pt/water interface. The flat bilayer ice structure of water at the interface was constructed by reference to the study by Ogasawara et al.<sup>1</sup> The water molecules in a disordered arrangement above the flat bilayer ice structure were generated by the genbox tool of the GROMACS software. Fig. S1b presents the representative equilibrium AIMD (ab-initio molecular dynamics) simulation snapshot. The statistical results of the distribution of water molecules near Pt at 298.15 K are shown by the red curve in Fig. S1c. Our statistical results agree well with Groß et al.<sup>2</sup> The statistical results from the MD simulation with UFF parameters are shown by the black curve in Fig. S1c. From comparison of red and black curves, it can be concluded that the simulation based on UFF parameters cannot well capture the main features of the distribution profile from the AIMD simulation. For example, there is a very obvious peak in the red curve, whereas the corresponding peak is not very obvious in the black curve. It is therefore necessary to further validate whether the conclusions based on UFF are reliable. To this end, we made new forcefield parameters by fitting the AIMD simulation results (the new force field is available from GitHub at https://github.com/yhzhao1989/New-FF). The blue curve in Fig. S1c shows the distribution from the MD simulation with new parameters. A very obvious peak can be observed in the blue curve. Importantly, the conclusions based on new parameters are consistent with those based on UFF parameters: first, although the O<sub>2</sub>(interface) concentration decreases from  $5.87 \times 10^{-1}$  to  $4.15 \times 10^{-1}$ , it is still significantly larger than the O<sub>2</sub>(interface) concentrations of TMOs (Fig. S2); second, the Pt-water Coulomb interaction is still significantly weaker than the TMO-water Coulomb interactions (Fig. S2); third, and most importantly, the simulated polarization curve representing the ORR kinetics of Pt changes very little (e.g., the half-wave potential  $E_{1/2}$  only changes slightly from 0.87 V to 0.86 V, as shown in Fig. S3) and still shows good agreement with the experimental result.<sup>3</sup> Overall, by comparing the conclusions based on UFF parameters with those based on new forcefield parameters (which were obtained by fitting the AIMD simulation results), it can be concluded that MD with UFF is valid to learn the Pt/water interface. Next, we focus on proving the validity of the MD simulation with UFF for learning the TMO/water interface. Fig. S4a and S5a present the initial structures. The water molecules in a disordered arrangement were generated by the genbox tool of the GROMACS software. Fig. S4b and S5b present the representative equilibrium AIMD simulation snapshots. The statistical results of the distributions of water molecules near TMOs at 298.15 K are shown by red curves in Fig. S4c and S5c. Black curves in Fig. S4c and S5c show the statistical results from the MD simulations with UFF parameters. The MD simulations based on UFF can well capture the main features of the distribution profiles from the AIMD simulations, as shown in Fig. S4c and S5c. For example, two very obvious peaks and a deep valley between two peaks can be observed within 0.5 nm in both red and black curves. Therefore, MD with UFF is also valid to learn the TMO/water interface.

Note S2. Pt is a typical noble metal, and  $HfO_2(111)$  and  $ZrO_2(111)$  belong to the family of TMOs. Consequently, it is interesting to validate whether transitional and noble metals exhibit similar catalyst-water Coulomb interactions and transitional and noble metal oxides (NMOs) exhibit similar catalyst-water Coulomb interactions. Five metals are used here to validate whether transitional and noble metals exhibit similar catalyst-water Coulomb interactions. Specifically, besides Pt(111), we also calculated the catalystwater Coulomb interactions of four other metals (Ni, Cu, Ag, and Au). The four metals are all commonly used in heterogeneous electrocatalysis. Ni is an excellent electrocatalyst for hydrogen oxidation,<sup>4</sup> and Cu, Ag, and Au are commonly used to catalyse electrochemical CO2 reduction.5-7 The most energetically stable facet was chosen as the representative for validation. The (111) facet is the most energetically stable facet for all four metals. From the results in Table S4, it can be concluded that similar to noble metals, transitional metals also exhibit a significantly weaker catalyst-water interaction compared with transitional and noble metal oxides. Five metal oxides are used here to validate whether transitional and noble metal oxides exhibit similar catalyst-water Coulomb interactions. Specifically, besides  $HfO_2(111)$  and  $ZrO_2(111)$ , we also calculated the catalyst-water Coulomb interactions of three other metal dioxides (RuO<sub>2</sub>, IrO<sub>2</sub>, and MnO<sub>2</sub>). The three metal dioxides are all commonly used in heterogeneous electrocatalysis-they are excellent electrocatalysts for water oxidation.<sup>8-10</sup> The most energetically stable facet was chosen as the representative for validation. The (110) facet is the most energetically stable facet for all three metal dioxides. From the results in Table S4, it can be concluded that similar to transitional metal oxides, noble metal oxides also exhibit a significantly stronger catalyst-water Coulomb interaction compared with transitional and noble metals.

Note S3. The high-throughput experimental study by Nørskov et al. reveals the limited ORR kinetic performance of TMOs.<sup>11</sup> By taking HfO<sub>2</sub>(111) and ZrO<sub>2</sub>(111) as models and comparing with Pt(111), our calculations revealed that the low O<sub>2</sub>(interface) concentration is an important factor leading to the limited ORR kinetic performance of TMOs. Our calculations further showed that the reason behind the low O<sub>2</sub>(interface) concentration lies in the strong catalyst-water Coulomb interaction. Apart from HfO<sub>2</sub>(111) and  $ZrO_2(111)$ , Nørskov et al. provided the atomic coordinates of 30 TMOs. We calculated the  $O_2(interface)$ concentrations and catalyst-water Coulomb interactions of all 30 TMOs based on the coordinates that they provided (Table S8). As revealed by the microkinetic analysis based on Pt(111) (Fig. S14a), the half-wave potential is below 0.80 V when the  $O_2$ (interface) concentration falls beneath 0.1  $c_{Pt}$ ; the diffusion-limiting current density begins to decrease dramatically once the O2(interface) concentration is below 0.1 cPt. These results mean that materials with an O<sub>2</sub>(interface) concentration of less than 0.1 c<sub>Pt</sub> encounter difficulty in becoming an excellent ORR electrocatalyst, even if they are endowed with comparable ORR activity to Pt(111). Consistent with  $HfO_2(111)$  and  $ZrO_2(111)$ , all 30 TMOs have an  $O_2(interface)$  concentration of less than 0.1  $c_{Pt}$  (Fig. S14b), which supports the conclusion that the low O<sub>2</sub>(interface) concentration is an important factor leading to the limited ORR kinetic performance of TMOs. Also consistent with HfO<sub>2</sub>(111) and ZrO<sub>2</sub>(111), all 30 TMOs have a significantly stronger catalyst-water Coulomb interaction compared with Pt(111) (Table S8). Remarkably, when not considering the catalyst-water Coulomb interactions in the simulations, all 30 TMOs experience a marked increase in the O2(interface) concentration and their  $O_2$ (interface) concentrations are able to exceed 0.1 c<sub>Pt</sub> (Table S8), which unambiguously shows that the reason behind the low O<sub>2</sub>(interface) concentration lies in the strong catalyst–water Coulomb interaction.

Note S4. Fig. S25 presents the free energy profiles for the dissociation of the product water from the Pt site under different water wall conditions. It emerges from the results in Fig. S25 that the water wall also affects the water dissociation—a stronger water wall renders the water dissociation more difficult. To further explore the effect of the water dissociation on the catalytic performance, we incorporated the water dissociation step into the microkinetic model. Accordingly, Fig. S26a presents the calculated polarization curves representing ORR kinetic performance under different water wall conditions. The half-wave potentials derived from the polarization curves are shown in Fig. S26b. Besides, Fig. S26b further compares the half-wave potentials in the absence and presence of water dissociation effect. The comparison unambiguously shows that the effect arising from the water dissociation becomes increasingly evident as the water wall strengthens. Remarkably, the fundamental conclusion of this work is that a stronger catalyst–water Coulomb interaction leads to a stronger water wall, thereby resulting in a poorer kinetic performance. Importantly, factoring in the water dissociation effect not only does not undermine our conclusion, but also further strengthens it. In addition, it is worth emphasizing that the effect resulting from the water dissociation is relatively weaker than that caused by the  $O_2$  penetration.



**Fig. S1** (a) Snapshot of the initial Pt(111)/water interface, along with the top view of the flat bilayer ice structure of water at the interface. (b) Representative AIMD simulation snapshot of the Pt(111)/water interface at equilibrium at 298.15 K. The simulation box is repeated periodically to exhibit the boundary of the simulation box more clearly. The black dash lines denote the boundary of the box. (c) Distributions of water molecules near Pt at 298.15 K.  $\rho_{bulk}$  represents the water density in bulk water. The red curve indicates the distribution from the AIMD simulation, the black curve indicates the distribution from the MD simulation with new forcefield parameters (newFF).



**Fig. S2**  $O_2$ (interface) concentrations and catalyst–water Coulomb interactions of Pt(111), HfO<sub>2</sub>(111), and ZrO<sub>2</sub>(111). Empty bars denote the results from the MD simulation with new forcefield parameters. Shadowed bars denote the results from the MD simulation with UFF parameters.



**Fig. S3** Simulated polarization curves of Pt(111). The  $O_2(interface)$  concentration for the polarization curve calculation is obtained by (a) the MD simulation with UFF parameters and (b) the MD simulation with new forcefield parameters (newFF).



**Fig. S4** (a) Snapshot of the initial HfO<sub>2</sub>(111)/water interface. (b) Representative AIMD simulation snapshot of the HfO<sub>2</sub>(111)/water interface at equilibrium at 298.15 K. The simulation box is repeated periodically to exhibit the boundary of the simulation box more clearly. The black dash lines denote the boundary of the box. (c) Distributions of water molecules near HfO<sub>2</sub> at 298.15 K.  $\rho_{bulk}$  represents the water density in bulk water. The red curve indicates the distribution from the AIMD simulation and the black curve indicates the distribution from the MD simulation with UFF parameters.



**Fig. S5** (a) Snapshot of the initial  $ZrO_2(111)$ /water interface. (b) Representative AIMD simulation snapshot of the  $ZrO_2(111)$ /water interface at equilibrium at 298.15 K. The simulation box is repeated periodically to exhibit the boundary of the simulation box more clearly. The black dash lines denote the boundary of the box. (c) Distributions of water molecules near  $ZrO_2$  at 298.15 K.  $\rho_{bulk}$  represents the water density in bulk water. The red curve indicates the distribution from the AIMD simulation and the black curve indicates the distribution from the MD simulation with UFF parameters.



**Fig. S6** Evolution processes of the distributions of  $O_2$  molecules on the catalysts in water. The catalysts in (a)–(c) are Pt(111), HfO<sub>2</sub>(111), and ZrO<sub>2</sub>(111), respectively. Orange, green, and blue balls represent Pt, Hf, and Zr atoms, respectively. The O atoms of  $O_2$  molecules and the O atoms of HfO<sub>2</sub> and ZrO<sub>2</sub> are denoted by red and grey balls, respectively. H<sub>2</sub>O molecules are not displayed to clearly show the distributions of  $O_2$  molecules.



**Fig. S7** Representative equilibrium simulation snapshots of studied multiphase models. The multiphase models consist of catalysts,  $O_2$  molecules, and water. The catalysts in (a)–(c) are Pt(111), HfO<sub>2</sub>(111), and ZrO<sub>2</sub>(111), respectively. Orange, green, and blue balls represent Pt, Hf, and Zr atoms, respectively. The O atoms of  $O_2$  molecules and the O atoms of HfO<sub>2</sub> and ZrO<sub>2</sub> are denoted by red and grey balls, respectively. H<sub>2</sub>O molecules are displayed in the line mode.



**Fig. S8** O<sub>2</sub>(interface) concentrations of Pt, HfO<sub>2</sub>, and ZrO<sub>2</sub>. Red and blue bars indicate the SPC/E and TIP3P model results, respectively.



**Fig. S9** Distributions of  $O_2$  molecules at the catalyst/water interfaces. (a) Representative equilibrium simulation snapshots of studied multiphase models. The multiphase models consist of catalysts,  $O_2$  molecules, and water. The catalysts from left to right are Pt(111), HfO<sub>2</sub>(111), and ZrO<sub>2</sub>(111). Orange, green, and blue balls represent Pt, Hf, and Zr atoms, respectively. The O atoms of  $O_2$  molecules and the O atoms of HfO<sub>2</sub> and ZrO<sub>2</sub> are denoted by red and grey balls, respectively. H<sub>2</sub>O molecules are not displayed to clearly show the distributions of  $O_2$  molecules. (b) Number densities of  $O_2$  molecules near catalyst surfaces. z = 0 represents the position of the catalytic site at the interface. (c)  $O_2$ (interface) concentrations and catalyst–water Coulomb interactions corresponding to the three systems. The  $O_2$  concentration of the simulated system is about 100 times higher than the saturating concentration at atmospheric pressure and room temperature (298.15 K).



**Fig. S10** Distributions of  $O_2$  molecules at the catalyst/water interfaces. (a) Representative equilibrium simulation snapshots of studied multiphase models. The multiphase models consist of catalysts,  $O_2$  molecules, and water. The catalysts from left to right are Pt(111), HfO<sub>2</sub>(111), and ZrO<sub>2</sub>(111). Orange, green, and blue balls represent Pt, Hf, and Zr atoms, respectively. The O atoms of  $O_2$  molecules and the O atoms of HfO<sub>2</sub> and ZrO<sub>2</sub> are denoted by red and gray balls, respectively. H<sub>2</sub>O molecules are not displayed to clearly show the distributions of  $O_2$  molecules. (b) Number densities of  $O_2$  molecules near catalyst surfaces. z = 0 represents the position of the catalytic site at the interface. (c)  $O_2$ (interface) concentrations and catalyst–water Coulomb interactions corresponding to the three systems. The  $O_2$  concentration of the simulated system is about 50 times higher than the saturating concentration at atmospheric pressure and room temperature (298.15 K).



**Fig. S11** Distributions of  $O_2$  molecules at the catalyst/electrolyte interfaces. (a) Representative equilibrium simulation snapshots of studied multiphase models. The multiphase models consist of catalysts,  $O_2$  molecules, and 0.1 M HClO<sub>4</sub> solution. The catalysts from left to right are Pt(111), HfO<sub>2</sub>(111), and ZrO<sub>2</sub>(111). Orange, green, and blue balls represent Pt, Hf, and Zr atoms, respectively. The O atoms of  $O_2$  molecules and the O atoms of HfO<sub>2</sub> and ZrO<sub>2</sub> are denoted by red and gray balls, respectively. H<sub>2</sub>O molecules, H<sub>3</sub>O<sup>+</sup> ions, and ClO<sub>4</sub><sup>-</sup> ions are not displayed to clearly show the distributions of O<sub>2</sub> molecules. (b) Number densities of O<sub>2</sub> molecules near catalyst surfaces. z = 0 represents the position of the catalytic site at the interface. (c) O<sub>2</sub>(interface) concentrations and catalyst–water Coulomb interactions corresponding to the three systems.



**Fig. S12** Densities of states of Pt(111), HfO<sub>2</sub>(111), and ZrO<sub>2</sub>(111). (a)–(c) Densities of states of (a) Pt(111), (b) HfO<sub>2</sub>(111), and (c) ZrO<sub>2</sub>(111) at U = 0.4 V vs. RHE. (d)–(f) Densities of states of (d) Pt(111), (e) HfO<sub>2</sub>(111), and (f) ZrO<sub>2</sub>(111) at U = 0.6 V vs. RHE. (g)–(i) Densities of states of (g) Pt(111), (h) HfO<sub>2</sub>(111), and (i) ZrO<sub>2</sub>(111) at U = 0.8 V vs. RHE. (j)–(l) Densities of states of (j) Pt(111), (k) HfO<sub>2</sub>(111), and (l) ZrO<sub>2</sub>(111) at U = 0.9 V vs. RHE. The Fermi level is denoted by  $E_F$  and marked by a vertical dashed line.



**Fig. S13** Distributions of  $O_2$  molecules at the catalyst/electrolyte interfaces in 0.1 M HClO<sub>4</sub> solution. (a) and (b) Results at U = 0.4 V vs. RHE. (c) and (d) Results at U = 0.6 V vs. RHE. (e) and (f) Results at U = 0.8 V vs. RHE. The involved catalysts are Pt(111), HfO<sub>2</sub>(111), and ZrO<sub>2</sub>(111). (a), (c) and (e) Number densities of O<sub>2</sub> molecules near catalyst surfaces. z = 0 represents the position of the catalytic site at the interface. (b), (d), and (f) O<sub>2</sub>(interface) concentrations and catalyst–water Coulomb interactions corresponding to the three systems.



**Fig. S14** (a) Half-wave potential  $(E_{1/2})$  and diffusion-limiting current density  $(j_L)$  of Pt(111) as a function of the O<sub>2</sub>(interface) concentration. c<sub>Pt</sub> represents the O<sub>2</sub>(interface) concentration of actual Pt(111). (b) Statistical distribution of the c<sub>O<sub>2</sub>(interface)</sub>/c<sub>Pt</sub> values of the 30 TMOs in Table S8.



**Fig. S15** Representative equilibrium simulation snapshots of the multiphase model consisting of Pt(111),  $O_2$  molecules, and water at CCS = 0, -0.4, -0.8, -1.2, and -1.6 e. Orange and red balls represent Pt atoms and the O atoms of  $O_2$  molecules, respectively. H<sub>2</sub>O molecules are displayed in the line mode.



**Fig. S16** Free energy profiles of  $O_2$  movement towards Pt(111) in aqueous solution at CCS = 0, -0.8, and -1.6 e. z = 0 represents the position of the Pt site at the interface.



**Fig. S17** Relation between the catalyst–water Coulomb interaction and the  $O_2(interface)$  concentration. (a) Catalyst–water Coulomb interaction as a function of CCS. (b)  $O_2(interface)$  concentration as a function of CCS. (c) and (d) Partial zones of representative equilibrium simulation snapshots at CCS = 0, 0.4, 0.8, 1.2, and 1.6 e. The whole snapshots are presented in Fig. S18. In (c), H<sub>2</sub>O molecules are not displayed to clearly show the distribution of  $O_2$  molecules. In contrast, in (d),  $O_2$  molecules are hidden to clearly display the water wall at the interface. Red and orange balls denote the O atoms of  $O_2$  molecules and Pt atoms, respectively. H<sub>2</sub>O molecules are displayed in the line mode.



**Fig. S18** Representative equilibrium simulation snapshots of the multiphase model consisting of Pt(111),  $O_2$  molecules, and water at CCS = 0, 0.4, 0.8, 1.2, and 1.6 e. Orange and red balls represent Pt atoms and the O atoms of  $O_2$  molecules, respectively.  $H_2O$  molecules are displayed in the line mode.



**Fig. S19** Ratios of the  $O_2$ (interface) concentrations and the  $O_2$  concentrations beyond the interfaces. The set  $O_2$  concentrations in our simulation systems are about 150, 100, and 50 times higher than the real  $O_2$  concentration, respectively. Although the set  $O_2$  concentrations are different, the ratios remain almost unchanged. Therefore, it can be concluded that the ratio is not dependent on the set  $O_2$  concentration.



**Fig. S20** Partial charge distributions of TMOs: (a) FeO, (b) FeO<sub>3</sub>, (c) Y<sub>2</sub>O<sub>3</sub>, (d) NiO, (e) MnO, (f) Mn<sub>2</sub>O<sub>7</sub>, and (g) La<sub>2</sub>O<sub>3</sub>. The numbers before the chemical formulae are the corresponding ID numbers in Crystal Open Database (http://www.crystallography.net/cod/).



**Fig. S21** Optimised structures and CCSs of SACs and DACs in Table S9. The structures are constructed by reference to those presented in their respective papers.



**Fig. S22** Optimised structures and CCSs of SACs and DACs in Table S9. The structures are constructed by reference to those presented in their respective papers.



**Fig. S23** Free energy profiles of (a)  $H_2$  movement towards Pt(111) and (b)  $N_2$  movement towards Ru(0001) in aqueous solution at CCS = 0, -0.8, and -1.6 e. z = 0 represents the position of the catalytic site at the interface.



**Fig. S24** Interfacial zones of the representative equilibrium simulation snapshots of studied multiphase models at CCS = 0, -0.4, -0.8, -1.2, and -1.6 e. (a) Snapshots for the multiphase model consisting of Pt(111), H<sub>2</sub> molecules, and water. (b) Snapshots for the multiphase model consisting of Ru(0001), N<sub>2</sub> molecules, and water. H<sub>2</sub>O molecules are not displayed to clearly show the distribution of H<sub>2</sub> or N<sub>2</sub> molecules. Pink, orange, light blue, and greyish brown balls denote H, Pt, N, and Ru atoms, respectively.



**Fig. S25** Free energy profiles of the water dissociation from the Pt site in aqueous solution under the conditions of a weak water wall, a medium water wall, and a strong water wall. The three water walls correspond to the water walls of Pt(111) at CCS = 0, 0.8, and 1.6 e, respectively. z = 0 represents the position of the Pt site at the interface.



**Fig. S26** (a) Polarization curves with the effect of the water dissociation under the conditions of a weak water wall, a medium water wall, and a strong water wall. The three water walls correspond to the water walls of Pt(111) at CCS = 0, 0.8, and 1.6 e, respectively. (b) Comparison of the half-wave potentials ( $E_{1/2}$ ) in the absence (empty bar) and presence (shadowed bar) of water dissociation effect. The half-wave potentials in the absence of water dissociation effect were taken from Fig. 5.

**Table S1** Geometric structure and partial charge distribution of the unit cell of the slab model of Pt(111). Lattice vectors are: [(2.804700, 0.000000, 0.000000), (0.000000, 4.857800, 0.000000), (0.000000, 36.869999)]. The unit is Angstrom (Å). An accuracy level of 0.03 falls within medium accuracy for the Gamma-centred k-point mesh. An accuracy level of 0.015 corresponds to the high level of accuracy. Comparing atomic charges calculated at medium and high k-point accuracy levels reveals that the differences between them are extremely small, which shows that an accuracy level of 0.03 is sufficient for achieving convergence.

|         |          |                           |           | Char                    | ge (e)                   |
|---------|----------|---------------------------|-----------|-------------------------|--------------------------|
| Element | Cart     | Cartesian coordinates (Å) |           | Accuracy level:<br>0.03 | Accuracy level:<br>0.015 |
| Pt      | 0.000000 | -0.025547                 | 14.988798 | -0.030475               | -0.030354                |
| Pt      | 1.402350 | 2.403353                  | 14.988798 | -0.030475               | -0.030354                |
| Pt      | 0.000000 | 1.619250                  | 17.289817 | 0.030475                | 0.030354                 |
| Pt      | 1.402350 | 4.048150                  | 17.289817 | 0.030474                | 0.030354                 |
| Pt      | 1.402350 | 0.809650                  | 19.580182 | 0.030475                | 0.030354                 |
| Pt      | 0.000000 | 3.238550                  | 19.580182 | 0.030475                | 0.030354                 |
| Pt      | 0.000000 | 0.025547                  | 21.881201 | -0.030475               | -0.030354                |
| Pt      | 1.402350 | 2.454447                  | 21.881201 | -0.030474               | -0.030354                |

**Table S2** Geometric structure and partial charge distribution of the unit cell of the slab model of  $HfO_2(111)$ . Lattice vectors are: [(7.258087, 0.000000, 0.000000), (-2.917651, 5.944904, 0.000000), (0.000000, 0.000000, 41.970402)]. The unit is Angstrom (Å). An accuracy level of 0.03 falls within medium accuracy for the Gamma-centred k-point mesh. An accuracy level of 0.015 corresponds to the high level of accuracy. Comparing atomic charges calculated at medium and high k-point accuracy levels reveals that the differences between them are extremely small, which shows that an accuracy level of 0.03 is sufficient for achieving convergence.

|         |           | Cartesian coordinates (Å) |           | Charge (e)              |                          |  |
|---------|-----------|---------------------------|-----------|-------------------------|--------------------------|--|
| Element | Cart      |                           |           | Accuracy level:<br>0.03 | Accuracy level:<br>0.015 |  |
| Hf      | 0.244073  | 4.046863                  | 16.114578 | 2.175749                | 2.175749                 |  |
| Hf      | 3.838342  | 5.819009                  | 19.270878 | 2.187213                | 2.187213                 |  |
| Hf      | 3.166532  | 1.697205                  | 22.508559 | 2.184041                | 2.184041                 |  |
| Hf      | -0.420972 | 3.452931                  | 25.556953 | 2.155163                | 2.155163                 |  |
| Hf      | 3.591809  | 3.737757                  | 16.367408 | 2.115088                | 2.115088                 |  |
| Hf      | -0.023736 | 5.581129                  | 19.766381 | 2.174914                | 2.174914                 |  |
| Hf      | 6.522061  | 1.409489                  | 22.932040 | 2.177177                | 2.177177                 |  |
| Hf      | 2.948926  | 3.171386                  | 26.144916 | 2.166810                | 2.166811                 |  |
| Hf      | 1.080885  | 0.705095                  | 16.413281 | 2.155262                | 2.155262                 |  |
| Hf      | 4.751830  | 2.460631                  | 19.461843 | 2.183617                | 2.183618                 |  |
| Hf      | 1.162220  | 4.283618                  | 22.699272 | 2.187372                | 2.187372                 |  |
| Hf      | 0.415689  | 0.110878                  | 25.855992 | 2.175107                | 2.175107                 |  |
| Hf      | 4.968813  | 0.986801                  | 15.825528 | 2.166362                | 2.166362                 |  |
| Hf      | 1.396207  | 2.748020                  | 19.038362 | 2.178588                | 2.178588                 |  |
| Hf      | -2.233610 | 4.521623                  | 22.203854 | 2.175869                | 2.175869                 |  |
| Hf      | 4.326007  | 0.420346                  | 25.603372 | 2.113944                | 2.113944                 |  |
| О       | -0.297548 | 1.973619                  | 15.476166 | -1.093061               | -1.093061                |  |
| О       | 3.255307  | 3.863349                  | 18.722325 | -1.102430               | -1.102431                |  |
| Ο       | -0.372649 | 5.677912                  | 21.913418 | -1.115553               | -1.115553                |  |
| Ο       | 6.172885  | 1.517633                  | 25.057967 | -1.127672               | -1.127672                |  |
| Ο       | 2.056348  | 4.754871                  | 15.357306 | -1.065284               | -1.065284                |  |
| Ο       | 1.437594  | 0.575657                  | 18.483807 | -1.096001               | -1.096001                |  |
| Ο       | 5.082022  | 2.383211                  | 21.687576 | -1.106215               | -1.106215                |  |
| Ο       | 1.431161  | 4.188542                  | 24.845764 | -1.140467               | -1.140468                |  |
| Ο       | 1.744798  | 2.640209                  | 16.912645 | -1.128391               | -1.128391                |  |
| Ο       | -1.885055 | 4.424667                  | 20.056942 | -1.115350               | -1.115350                |  |
| Ο       | 4.662787  | 0.294439                  | 23.247448 | -1.102069               | -1.102069                |  |
| Ο       | 0.957315  | 2.184645                  | 26.494194 | -1.093061               | -1.093061                |  |
| О       | 3.569546  | 5.914383                  | 17.124638 | -1.141309               | -1.141309                |  |
| О       | 2.836407  | 1.774590                  | 20.282700 | -1.106861               | -1.106861                |  |
| Ο       | -0.776992 | 3.581912                  | 23.486595 | -1.096553               | -1.096553                |  |

| 0 | 2.943796  | 5.348077 | 26.613516 | -1.065231 | -1.065231 |
|---|-----------|----------|-----------|-----------|-----------|
| 0 | 2.998335  | 0.215479 | 15.888567 | -1.081421 | -1.081421 |
| 0 | -0.519391 | 2.007071 | 19.212077 | -1.075966 | -1.075966 |
| 0 | 3.126599  | 3.812729 | 22.413915 | -1.065210 | -1.065210 |
| 0 | -0.474519 | 5.541209 | 25.915758 | -1.088217 | -1.088217 |
| 0 | 4.559958  | 2.106048 | 17.440633 | -1.063886 | -1.063886 |
| 0 | 0.953951  | 3.947523 | 20.634286 | -1.067990 | -1.067990 |
| 0 | -2.599591 | 5.721821 | 23.870079 | -1.061393 | -1.061393 |
| 0 | 3.817912  | 1.656381 | 27.051267 | -0.984308 | -0.984308 |
| 0 | -1.783404 | 4.561697 | 16.054854 | -1.088427 | -1.088427 |
| 0 | 4.791599  | 0.344953 | 19.556277 | -1.065016 | -1.065016 |
| 0 | 1.179821  | 2.150212 | 22.758115 | -1.076047 | -1.076047 |
| 0 | 4.919701  | 3.942577 | 26.082129 | -1.081655 | -1.081655 |
| 0 | 4.099481  | 2.501699 | 14.919177 | -0.984556 | -0.984556 |
| 0 | 0.341865  | 4.380669 | 18.100491 | -1.061283 | -1.061283 |
| 0 | 6.964023  | 0.210081 | 21.335906 | -1.067437 | -1.067437 |
| 0 | 3.357800  | 2.051569 | 24.529979 | -1.063957 | -1.063957 |

**Table S3** Geometric structure and partial charge distribution of the unit cell of the slab model of  $ZrO_2(111)$ . Lattice vectors are: [(7.334865, 0.000000, 0.000000), (-2.942679, 6.003801, 0.000000), (0.000000, 0.000000, 42.086899)]. The unit is Angstrom (Å). An accuracy level of 0.03 falls within medium accuracy for the Gamma-centred k-point mesh. An accuracy level of 0.015 corresponds to the high level of accuracy. Comparing atomic charges calculated at medium and high k-point accuracy levels reveals that the differences between them are extremely small, which shows that an accuracy level of 0.03 is sufficient for achieving convergence.

|         |          | Cartesian coordinates (Å) |          | Charge (e)      |                 |  |
|---------|----------|---------------------------|----------|-----------------|-----------------|--|
| Element | Cart     |                           |          | Accuracy level: | Accuracy level: |  |
|         |          |                           |          | 0.03            | 0.015           |  |
| Zr      | 1.957931 | 0.759937                  | 16.39142 | 2.331007        | 2.331293        |  |
| Zr      | 5.650153 | 2.623619                  | 19.80913 | 2.408330        | 2.408472        |  |
| Zr      | 1.991934 | 4.419428                  | 23.00685 | 2.411083        | 2.411186        |  |
| Zr      | 1.331231 | 0.19256                   | 26.25246 | 2.371020        | 2.371130        |  |
| Zr      | 3.806204 | 3.697237                  | 16.4168  | 2.356269        | 2.356381        |  |
| Zr      | 0.190554 | 5.473431                  | 19.50185 | 2.416701        | 2.416844        |  |
| Zr      | -0.48776 | 1.316219                  | 22.77251 | 2.421997        | 2.421610        |  |
| Zr      | 3.155756 | 3.107946                  | 25.95962 | 2.383737        | 2.383509        |  |
| Zr      | 5.907516 | 1.05844                   | 16.12745 | 2.383644        | 2.383410        |  |
| Zr      | 2.216271 | 2.849752                  | 19.31431 | 2.420410        | 2.420463        |  |
| Zr      | -1.40446 | 4.696119                  | 22.58501 | 2.417409        | 2.417438        |  |
| Zr      | 5.257273 | 0.469059                  | 25.67002 | 2.357324        | 2.357581        |  |
| Zr      | 0.397396 | 3.974138                  | 15.83419 | 2.371656        | 2.371528        |  |
| Zr      | 4.12901  | 5.750327                  | 19.0801  | 2.411256        | 2.411439        |  |
| Zr      | 3.413062 | 1.542238                  | 22.27782 | 2.408759        | 2.408395        |  |
| Zr      | -0.22951 | 3.406473                  | 25.69582 | 2.330916        | 2.331180        |  |
| О       | -0.46664 | 5.512444                  | 14.93445 | -1.038060       | -1.038012       |  |
| О       | 6.010886 | 1.408035                  | 18.12969 | -1.172897       | -1.173002       |  |
| О       | 2.431616 | 3.202175                  | 21.40174 | -1.177109       | -1.176984       |  |
| О       | -1.19905 | 5.07996                   | 24.62138 | -1.174389       | -1.174635       |  |
| Ο       | -1.59901 | 3.197769                  | 15.87762 | -1.180102       | -1.180072       |  |
| Ο       | 2.19156  | 5.013012                  | 19.24954 | -1.182589       | -1.182601       |  |
| Ο       | 1.493834 | 0.837692                  | 22.47908 | -1.171594       | -1.171272       |  |
| Ο       | 5.198736 | 2.591114                  | 26.0063  | -1.202490       | -1.202453       |  |
| О       | 4.477678 | 5.646071                  | 16.93884 | -1.242345       | -1.242404       |  |
| О       | 3.759776 | 1.447624                  | 20.1127  | -1.239100       | -1.239260       |  |
| О       | 0.100068 | 3.284812                  | 23.33946 | -1.224131       | -1.223991       |  |
| О       | 3.697054 | 5.197953                  | 26.60923 | -1.211828       | -1.211714       |  |
| О       | 1.942634 | 2.950262                  | 17.1388  | -1.256102       | -1.256238       |  |
| О       | -1.73706 | 4.779728                  | 20.32667 | -1.230875       | -1.230970       |  |

| Ο | 4.898792 | 0.602391 | 23.56403 | -1.221069 | -1.221166 |
|---|----------|----------|----------|-----------|-----------|
| 0 | 1.328479 | 2.392413 | 26.71495 | -1.175914 | -1.175847 |
| 0 | 0.400014 | 1.774231 | 15.37266 | -1.176229 | -1.176102 |
| Ο | 4.164781 | 3.563934 | 18.52287 | -1.220794 | -1.220933 |
| Ο | 0.523062 | 5.389948 | 21.76023 | -1.231499 | -1.231285 |
| Ο | -0.21408 | 1.216268 | 24.94823 | -1.255852 | -1.255907 |
| 0 | 2.423543 | 4.97218  | 15.47737 | -1.211599 | -1.211485 |
| 0 | 1.628669 | 0.881034 | 18.74727 | -1.224172 | -1.224183 |
| 0 | 5.30366  | 2.718245 | 21.97433 | -1.239812 | -1.239775 |
| 0 | 1.642762 | 4.523828 | 25.1481  | -1.242566 | -1.242712 |
| 0 | 3.864337 | 1.575271 | 16.08098 | -1.202158 | -1.202197 |
| 0 | 0.234455 | 3.327631 | 19.60715 | -1.170722 | -1.170812 |
| 0 | 3.929247 | 5.156737 | 22.83804 | -1.182723 | -1.182833 |
| Ο | 3.327459 | 0.968179 | 26.20848 | -1.180758 | -1.180780 |
| 0 | -0.01494 | 5.089602 | 17.46535 | -1.174144 | -1.174328 |
| 0 | 6.631469 | 0.963424 | 20.68495 | -1.177608 | -1.177592 |
| 0 | 3.051981 | 2.757378 | 23.95742 | -1.172617 | -1.172586 |
| Ο | -0.74788 | 4.658061 | 27.15241 | -1.037671 | -1.037727 |

| Materia                   | ls                     | $E_{\text{Coulomb}} \text{ (eV nm}^{-2}\text{)}$ |
|---------------------------|------------------------|--------------------------------------------------|
| T                         | Ni(111)                | $-9.40 \times 10^{-6}$                           |
| I ransitional metal       | Cu(111)                | 7.39×10 <sup>-6</sup>                            |
|                           | Pt(111)                | $1.34 \times 10^{-4}$                            |
| Noble metal               | Ag(111)                | $1.37 \times 10^{-4}$                            |
|                           | Au(111)                | 8.11×10 <sup>-4</sup>                            |
| Nahla matal avidas        | RuO <sub>2</sub> (110) | -2.36                                            |
| Noble metal oxides        | IrO <sub>2</sub> (110) | -1.85                                            |
|                           | HfO <sub>2</sub> (111) | -5.44                                            |
| Transitional metal oxides | ZrO <sub>2</sub> (111) | -9.03                                            |
|                           | MnO <sub>2</sub> (110) | -2.15                                            |

**Table S4**Catalyst-water Coulomb interactions of Ni(111), Cu(111), Pt(111), Ag(111), Au(111), $RuO_2(110)$ ,  $IrO_2(110)$ ,  $HfO_2(111)$ ,  $ZrO_2(111)$ , and  $MnO_2(110)$ .

|      | Charge (e)    |           |                |           |  |
|------|---------------|-----------|----------------|-----------|--|
| Atom | Low potential |           | High potential |           |  |
|      | <b>0.4</b> V  | 0.6 V     | 0.8 V          | 0.9 V     |  |
| Pt1  | -0.069797     | -0.054301 | -0.038525      | -0.030882 |  |
| Pt2  | -0.069799     | -0.054301 | -0.038525      | -0.030881 |  |
| Pt3  | 0.033548      | 0.032301  | 0.031025       | 0.030381  |  |
| Pt4  | 0.033548      | 0.032301  | 0.031025       | 0.030381  |  |
| Pt5  | 0.033548      | 0.032301  | 0.031025       | 0.030382  |  |
| Pt6  | 0.033548      | 0.032301  | 0.031025       | 0.030382  |  |
| Pt7  | -0.069797     | -0.054301 | -0.038525      | -0.030882 |  |
| Pt8  | -0.069799     | -0.054301 | -0.038525      | -0.030881 |  |

**Table S5**Atomic charges of the unit cell of the Pt(111) slab model at U = 0.4 V, 0.6 V, 0.8 V and 0.9 Vvs. RHE.

|      | Charge (e) |           |           |           |  |  |
|------|------------|-----------|-----------|-----------|--|--|
| Atom | Low p      | otential  | High p    | otential  |  |  |
|      | 0.4 V      | 0.6 V     | 0.8 V     | 0.9 V     |  |  |
| Hf1  | 2.272556   | 2.282281  | 2.306162  | 2.315994  |  |  |
| Hf2  | 2.188521   | 2.188861  | 2.192065  | 2.193804  |  |  |
| Hf3  | 2.183970   | 2.184700  | 2.187072  | 2.187198  |  |  |
| Hf4  | 2.291917   | 2.307878  | 2.341384  | 2.355257  |  |  |
| Hf5  | 2.120265   | 2.122065  | 2.124935  | 2.125601  |  |  |
| Hf6  | 2.178834   | 2.180145  | 2.182498  | 2.184121  |  |  |
| Hf7  | 2.178652   | 2.180369  | 2.182635  | 2.183282  |  |  |
| Hf8  | 2.291307   | 2.301010  | 2.324133  | 2.335186  |  |  |
| Hf9  | 2.291932   | 2.307667  | 2.341035  | 2.354886  |  |  |
| Hf10 | 2.183591   | 2.184204  | 2.185977  | 2.186833  |  |  |
| Hf11 | 2.187436   | 2.188684  | 2.192578  | 2.193416  |  |  |
| Hf12 | 2.272251   | 2.282494  | 2.305975  | 2.315638  |  |  |
| Hf13 | 2.290998   | 2.300459  | 2.324500  | 2.335643  |  |  |
| Hf14 | 2.179224   | 2.179509  | 2.182429  | 2.182948  |  |  |
| Hf15 | 2.178788   | 2.179770  | 2.182954  | 2.183756  |  |  |
| Hf16 | 2.120288   | 2.122916  | 2.124985  | 2.126128  |  |  |
| O1   | -1.130387  | -1.126113 | -1.117088 | -1.113451 |  |  |
| O2   | -1.101150  | -1.100251 | -1.099064 | -1.098455 |  |  |
| O3   | -1.114685  | -1.113910 | -1.113984 | -1.113651 |  |  |
| O4   | -1.156461  | -1.158364 | -1.161877 | -1.162556 |  |  |
| O5   | -1.109055  | -1.105281 | -1.097900 | -1.094873 |  |  |
| O6   | -1.116751  | -1.118569 | -1.122886 | -1.124889 |  |  |
| O7   | -1.107100  | -1.106801 | -1.106281 | -1.105820 |  |  |
| O8   | -1.164825  | -1.167452 | -1.171910 | -1.173904 |  |  |
| O9   | -1.156178  | -1.158031 | -1.161937 | -1.163221 |  |  |
| O10  | -1.115099  | -1.114519 | -1.113873 | -1.113901 |  |  |
| O11  | -1.100660  | -1.100954 | -1.099243 | -1.098280 |  |  |
| O12  | -1.130020  | -1.126594 | -1.117084 | -1.113403 |  |  |
| O13  | -1.164685  | -1.167046 | -1.171790 | -1.173534 |  |  |
| O14  | -1.106855  | -1.106339 | -1.105750 | -1.105474 |  |  |
| O15  | -1.116326  | -1.118627 | -1.123329 | -1.124865 |  |  |
| O16  | -1.109003  | -1.105760 | -1.097719 | -1.094844 |  |  |
| O17  | -1.120279  | -1.115745 | -1.105013 | -1.100714 |  |  |
| O18  | -1.075243  | -1.074038 | -1.071865 | -1.070786 |  |  |

**Table S6** Atomic charges of the unit cell of the  $HfO_2(111)$  slab model at U = 0.4 V, 0.6 V, 0.8 V and 0.9 V vs. RHE.

| O19 | -1.064341 | -1.064263 | -1.063688 | -1.063157 |
|-----|-----------|-----------|-----------|-----------|
| O20 | -1.111159 | -1.106526 | -1.094957 | -1.090264 |
| O21 | -1.080743 | -1.083185 | -1.089828 | -1.092718 |
| 022 | -1.066925 | -1.065864 | -1.064774 | -1.064101 |
| O23 | -1.081018 | -1.082760 | -1.087591 | -1.089259 |
| O24 | -1.105818 | -1.081397 | -1.023205 | -0.997323 |
| 025 | -1.111477 | -1.106320 | -1.094528 | -1.089827 |
| O26 | -1.064925 | -1.064441 | -1.063442 | -1.063236 |
| O27 | -1.075632 | -1.074044 | -1.071992 | -1.070657 |
| O28 | -1.120139 | -1.115856 | -1.105117 | -1.100744 |
| O29 | -1.105415 | -1.081302 | -1.022629 | -0.997039 |
| O30 | -1.080741 | -1.082818 | -1.087498 | -1.089015 |
| O31 | -1.066529 | -1.065867 | -1.064193 | -1.063600 |
| O32 | -1.080904 | -1.083972 | -1.089284 | -1.092129 |

|      | Charge (e) |           |           |           |  |  |
|------|------------|-----------|-----------|-----------|--|--|
| Atom | Low p      | otential  | High p    | otential  |  |  |
|      | 0.4 V      | 0.6 V     | 0.8       | 0.9 V     |  |  |
| Zr1  | 2.336551   | 2.338605  | 2.344611  | 2.347174  |  |  |
| Zr2  | 2.411051   | 2.412637  | 2.416164  | 2.418454  |  |  |
| Zr3  | 2.412003   | 2.412670  | 2.415423  | 2.416212  |  |  |
| Zr4  | 2.503092   | 2.510930  | 2.530539  | 2.541068  |  |  |
| Zr5  | 2.502037   | 2.514362  | 2.540382  | 2.553501  |  |  |
| Zr6  | 2.415651   | 2.416322  | 2.418458  | 2.419479  |  |  |
| Zr7  | 2.420320   | 2.421287  | 2.424115  | 2.425688  |  |  |
| Zr8  | 2.480272   | 2.488164  | 2.506830  | 2.516778  |  |  |
| Zr9  | 2.480197   | 2.487194  | 2.507210  | 2.516564  |  |  |
| Zr10 | 2.419514   | 2.420984  | 2.424738  | 2.426653  |  |  |
| Zr11 | 2.416439   | 2.417036  | 2.419443  | 2.420366  |  |  |
| Zr12 | 2.501714   | 2.514500  | 2.541058  | 2.554112  |  |  |
| Zr13 | 2.502622   | 2.510801  | 2.530680  | 2.540377  |  |  |
| Zr14 | 2.411998   | 2.413031  | 2.414548  | 2.416396  |  |  |
| Zr15 | 2.411628   | 2.413357  | 2.417473  | 2.420111  |  |  |
| Zr16 | 2.337621   | 2.338995  | 2.344430  | 2.347614  |  |  |
| 01   | -1.164794  | -1.143613 | -1.089588 | -1.060768 |  |  |
| O2   | -1.192880  | -1.194671 | -1.199093 | -1.200637 |  |  |
| O3   | -1.175204  | -1.174687 | -1.173453 | -1.172368 |  |  |
| O4   | -1.192813  | -1.194293 | -1.200300 | -1.203225 |  |  |
| 05   | -1.222474  | -1.216179 | -1.202258 | -1.195967 |  |  |
| O6   | -1.181762  | -1.180625 | -1.177758 | -1.176710 |  |  |
| 07   | -1.170065  | -1.169542 | -1.169491 | -1.169228 |  |  |
| 08   | -1.224050  | -1.217361 | -1.203016 | -1.196797 |  |  |
| 09   | -1.273210  | -1.274451 | -1.276715 | -1.277928 |  |  |
| O10  | -1.238692  | -1.238598 | -1.238676 | -1.238645 |  |  |
| O11  | -1.222896  | -1.222410 | -1.221338 | -1.221197 |  |  |
| O12  | -1.247241  | -1.241143 | -1.227751 | -1.221208 |  |  |
| O13  | -1.282784  | -1.284387 | -1.287772 | -1.288404 |  |  |
| O14  | -1.231704  | -1.231138 | -1.230073 | -1.230216 |  |  |
| O15  | -1.243200  | -1.244522 | -1.248608 | -1.250283 |  |  |
| O16  | -1.217791  | -1.213092 | -1.203118 | -1.198924 |  |  |
| O17  | -1.217414  | -1.212847 | -1.202922 | -1.198624 |  |  |
| O18  | -1.242534  | -1.244722 | -1.248100 | -1.250226 |  |  |

**Table S7** Atomic charges of the unit cell of the  $ZrO_2(111)$  slab model at U = 0.4 V, 0.6 V, 0.8 V and 0.9 V vs. RHE.

| O19 | -1.232005 | -1.231685 | -1.231217 | -1.231473 |
|-----|-----------|-----------|-----------|-----------|
| O20 | -1.282315 | -1.283919 | -1.287113 | -1.288693 |
| O21 | -1.247049 | -1.240931 | -1.227690 | -1.221198 |
| O22 | -1.222660 | -1.221674 | -1.221478 | -1.221477 |
| O23 | -1.239400 | -1.239369 | -1.239059 | -1.238878 |
| O24 | -1.273066 | -1.274744 | -1.276993 | -1.278138 |
| O25 | -1.223986 | -1.216828 | -1.202887 | -1.196555 |
| O26 | -1.169647 | -1.169343 | -1.168863 | -1.168530 |
| O27 | -1.181683 | -1.180330 | -1.177948 | -1.176187 |
| O28 | -1.222487 | -1.216099 | -1.202217 | -1.196597 |
| 029 | -1.192572 | -1.194515 | -1.200063 | -1.202582 |
| O30 | -1.175642 | -1.174565 | -1.172630 | -1.172554 |
| O31 | -1.193588 | -1.195283 | -1.198889 | -1.200636 |
| O32 | -1.165051 | -1.143309 | -1.089025 | -1.060698 |

**Table S8** O<sub>2</sub>(interface) concentrations and catalyst–water Coulomb interactions of Pt(111) and all 30 TMO models provided by Nørskov et al., which are available at https://github.com/cattheory-oxides/data/tree/main/Transition%20metal%20oxide\_adsorption\_coordinates.  $c_{Pt}$  represents the O<sub>2</sub>(interface) concentration of actual Pt(111) (*i.e.*,  $5.87 \times 10^{-1}$ ).  $c_{O_2(interface)}$  without  $E_{Coulomb}$  represents the O<sub>2</sub>(interface) concentration without considering the catalyst–water Coulomb interaction in the simulation. Notably, the sensitivity of the O<sub>2</sub>(interface) concentration to the catalyst–water Coulomb interaction varies among different TMOs. For example, while CoSb<sub>2</sub>O<sub>6</sub>\_101 and FeSb<sub>2</sub>O<sub>6</sub>\_212 have almost the same catalyst–water Coulomb interactions, there is an apparent difference in their O<sub>2</sub>(interface) concentrations. The variation should be due to differences in surface structure and chemical composition. However, the variation does not undermine the conclusion that the low O<sub>2</sub>(interface) concentrations of TMOs are due to their strong catalyst–water Coulomb interactions, because the O<sub>2</sub>(interface) concentrations of all 30 TMOs markedly increase when not considering the catalyst–water Coulomb interactions.

| Materials                                           | $c_{O_2(interface)}$<br>(no.nm <sup>-3</sup> ) | $c_{O_2(interface)}/c_{Pt}$ | $E_{\rm Coulomb}$ (eV nm <sup>-2</sup> ) | $c_{O_2(interface)} (no.nm^{-3})$<br>(without $E_{Coulomb}$ ) |
|-----------------------------------------------------|------------------------------------------------|-----------------------------|------------------------------------------|---------------------------------------------------------------|
| Pt(111)                                             | 5.87×10 <sup>-1</sup>                          | 1                           | 1.34×10 <sup>-4</sup>                    | $6.08 \times 10^{-1}$                                         |
| $CoSb_2O_6_{100}$                                   | 5.43×10 <sup>-4</sup>                          | 9.25×10 <sup>-4</sup>       | -3.73                                    | $2.29 \times 10^{-1}$                                         |
| $CoSb_2O_6_{101}$                                   | 3.96×10 <sup>-4</sup>                          | 6.74×10 <sup>-4</sup>       | -3.47                                    | $4.59 \times 10^{-1}$                                         |
| CoSb <sub>2</sub> O <sub>6</sub> _110               | 6.23×10 <sup>-4</sup>                          | $1.06 \times 10^{-3}$       | -2.46                                    | $1.75 \times 10^{-1}$                                         |
| CoSb <sub>2</sub> O <sub>6</sub> _111               | $1.31 \times 10^{-3}$                          | 2.24×10 <sup>-3</sup>       | -2.79                                    | $2.03 \times 10^{-1}$                                         |
| $CoSb_2O_6_{112}$                                   | $1.01 \times 10^{-3}$                          | $1.72 \times 10^{-3}$       | -2.47                                    | $4.42 \times 10^{-1}$                                         |
| $Fe_2Mo_3O_{12}_{101}$                              | $1.83 \times 10^{-2}$                          | 3.12×10 <sup>-2</sup>       | -2.29                                    | $2.61 \times 10^{-1}$                                         |
| $Fe_2Mo_3O_{12}_{110}$                              | 3.20×10 <sup>-2</sup>                          | 5.45×10 <sup>-2</sup>       | -1.93                                    | 2.33×10 <sup>-1</sup>                                         |
| Fe <sub>2</sub> Mo <sub>3</sub> O <sub>12</sub> 111 | 4.08×10 <sup>-2</sup>                          | 6.95×10 <sup>-2</sup>       | -2.11                                    | $1.47 \times 10^{-1}$                                         |
| $Fe_2Mo_3O_{12}_2010$                               | 3.37×10 <sup>-2</sup>                          | 5.74×10 <sup>-2</sup>       | -2.02                                    | 3.40×10 <sup>-1</sup>                                         |
| $Fe_2Mo_3O_{12}_2100$                               | $1.92 \times 10^{-2}$                          | $3.27 \times 10^{-2}$       | -2.88                                    | 5.26×10 <sup>-1</sup>                                         |
| $FeSb_2O_6_{100}$                                   | $8.18 \times 10^{-4}$                          | 1.39×10 <sup>-3</sup>       | -3.80                                    | 2.99×10 <sup>-1</sup>                                         |
| FeSb2O <sub>6</sub> _111                            | 4.09×10 <sup>-4</sup>                          | 6.97×10 <sup>-4</sup>       | -3.54                                    | $2.20 \times 10^{-1}$                                         |
| $FeSb_2O_6_{112}$                                   | 6.11×10 <sup>-4</sup>                          | $1.04 \times 10^{-3}$       | -4.04                                    | 4.36×10 <sup>-1</sup>                                         |
| $FeSb_2O_6_{212}$                                   | 3.84×10 <sup>-3</sup>                          | 6.55×10 <sup>-3</sup>       | -3.45                                    | 2.89×10 <sup>-1</sup>                                         |
| FeSbO <sub>4</sub> _100                             | $1.70 \times 10^{-4}$                          | 2.90×10 <sup>-4</sup>       | -3.52                                    | $2.10 \times 10^{-1}$                                         |
| FeSbO <sub>4</sub> _112                             | 1.12×10 <sup>-3</sup>                          | 1.91×10 <sup>-3</sup>       | -5.64                                    | $2.86 \times 10^{-1}$                                         |
| FeSbO <sub>4</sub> _201                             | 1.49×10 <sup>-4</sup>                          | 2.54×10 <sup>-4</sup>       | -4.13                                    | $1.63 \times 10^{-1}$                                         |
| FeSbO <sub>4</sub> _211                             | 2.14×10 <sup>-4</sup>                          | 3.65×10 <sup>-4</sup>       | -4.99                                    | $2.04 \times 10^{-1}$                                         |
| $FeSbO_4_2_{111}$                                   | 4.79×10 <sup>-4</sup>                          | $8.16 \times 10^{-4}$       | -5.18                                    | $2.02 \times 10^{-1}$                                         |
| $FeSbO_4_2_{211}$                                   | 3.00×10 <sup>-4</sup>                          | $5.11 \times 10^{-4}$       | -5.16                                    | $2.03 \times 10^{-1}$                                         |
| $FeSbO_4_2_221$                                     | $2.54 \times 10^{-4}$                          | 4.33×10 <sup>-4</sup>       | -4.76                                    | $2.52 \times 10^{-1}$                                         |
| FeSbO <sub>4</sub> _3_100                           | 3.41×10 <sup>-4</sup>                          | $5.81 \times 10^{-4}$       | -3.81                                    | $2.34 \times 10^{-1}$                                         |

| FeSbO <sub>4</sub> _3_110             | $4.74 \times 10^{-4}$ | $8.07 \times 10^{-4}$ | -4.48 | $2.00 \times 10^{-1}$ |
|---------------------------------------|-----------------------|-----------------------|-------|-----------------------|
| FeSbO <sub>4</sub> _3_111             | 6.65×10 <sup>-4</sup> | 1.13×10 <sup>-3</sup> | -4.71 | $1.83 \times 10^{-1}$ |
| FeSbO <sub>4</sub> _3_112             | 6.81×10 <sup>-5</sup> | 1.16×10 <sup>-4</sup> | -4.13 | $2.20 \times 10^{-1}$ |
| FeSbO <sub>4</sub> _3_210             | $1.71 \times 10^{-3}$ | 2.91×10 <sup>-3</sup> | -4.02 | $1.37 \times 10^{-1}$ |
| FeSbO <sub>4</sub> _3_211             | 1.41×10 <sup>-3</sup> | 2.40×10 <sup>-3</sup> | -4.11 | 2.93×10 <sup>-1</sup> |
| NiSb <sub>2</sub> O <sub>6</sub> _101 | $1.02 \times 10^{-3}$ | $1.73 \times 10^{-3}$ | -2.53 | 3.69×10 <sup>-1</sup> |
| NiSb <sub>2</sub> O <sub>6</sub> _211 | 2.34×10 <sup>-3</sup> | 3.99×10 <sup>-3</sup> | -2.92 | $2.44 \times 10^{-1}$ |
| NiSb <sub>2</sub> O <sub>6</sub> -Ir  | 4.33×10 <sup>-4</sup> | 7.37×10 <sup>-4</sup> | -3.45 | $2.24 \times 10^{-1}$ |
|                                       |                       |                       |       |                       |

| Catalysts                      | Reference                                    |  |  |
|--------------------------------|----------------------------------------------|--|--|
| Co@MCM                         | Energy Environ. Sci., 2018, <b>11</b> , 1980 |  |  |
| Cu-N-C                         | Energy Environ. Sci., 2018, <b>11</b> , 2263 |  |  |
| FeN4/CNS                       | En anov Environ Soi 2010 11 2249             |  |  |
| FeCl1N4/CNS                    | Energy Environ. Sci., 2018, 11, 2548         |  |  |
| f-FeCoNC900                    | Energy Environ. Sci., 2019, <b>12</b> , 1317 |  |  |
| 1.5Fe-ZIF                      | Energy Environ. Sci., 2019, <b>12</b> , 2548 |  |  |
| Cu-SA/SNC                      | Energy Environ. Sci., 2019, <b>12</b> , 3508 |  |  |
| Fe/CoN-C                       | Energy Environ. Sci., 2020, <b>13</b> , 3544 |  |  |
| Fe <sub>1</sub> / <i>d</i> -CN | Energy Environ. Sci., 2021, 14, 6455         |  |  |
| 4.2-FeSA                       | Energy Environ. Sci., 2022, <b>15</b> , 1183 |  |  |
| Fe/Zn-N-C                      | Energy Environ. Sci., 2022, <b>15</b> , 1601 |  |  |
| Fe-N,O/G                       | Energy Environ. Sci., 2023, <b>16</b> , 2629 |  |  |
| Fe <sub>x</sub> -N@CF          | Energy Environ. Sci., 2023, 16, 3576         |  |  |
| Fe <sub>x</sub> /Cu-N@CF       |                                              |  |  |
| As-DC1-1050                    | Energy Environ. Sci., 2024, 17, 123          |  |  |
| Fe-N <sub>4</sub> P/NPC        |                                              |  |  |
| Fe-N <sub>4</sub> SP/NPS-HC    | <i>Energy Environ. Sci.</i> , 2024, 17, 249  |  |  |
| ZnCoFe-TAC/NC                  | Energy Environ. Sci., 2024, 17, 2298         |  |  |
| ZnCoFe-TAC/SNC                 |                                              |  |  |

**Table S9**Summary of experimentally reported SACs and DACs (published in *Energy & EnvironmentalScience*) with a half-wave potential of greater than or equal to 0.85 V.

## References

- 1. H. Ogasawara, B. Brena, D. Nordlund, M. Nyberg, A. Pelmenschikov, L. G. M. Pettersson and A. Nilsson, *Phys. Rev. Lett.*, 2002, **89**, 276102.
- 2. S. Sakong and A. Groß, J. Chem. Phys., 2018, 149, 084705.
- 3. R. Subbaraman, D. Strmcnik, A. P. Paulikas, V. R. Stamenkovic and N. M. Markovic, *ChemPhysChem*, 2010, **11**, 2825–2833.
- 4. X. Zhao, X. Li, L. An, K. Iputera, J. Zhu, P. Gao, R.-S. Liu, Z. Peng, J. Yang and D. Wang, *Energy Environ. Sci.*, 2022, **15**, 1234–1242.
- 5. Y. Lum and J. W. Ager, Energy Environ. Sci., 2018, 11, 2935–2944.
- 6. E. L. Clark, C. Hahn, T. F. Jaramillo and A. T. Bell, J. Am. Chem. Soc., 2017, 139, 15848–15857.
- 7. W. Deng, P. Zhang, B. Seger and J. Gong, Nat. Commun., 2022, 13, 803.
- 8. M. Fekete, R. K. Hocking, S. L. Y. Chang, C. Italiano, A. F. Patti, F. Arena and L. Spiccia, *Energy Environ. Sci.*, 2013, 6, 2222–2232.
- L. Li, J. Zhou, X. Wang, J. Gracia, M. Valvidares, J. Ke, M. Fang, C. Shen, J. Chen, Y. Chang, C. Pao, S. Hsu, J. Lee, A. Ruotolo, Y. Chin, Z. Hu, X. Huang and Q. Shao, *Adv. Mater.*, 2023, 35, 2302966.
- J. Xu, D. Aili, Q. Li, E. Christensen, J. O. Jensen, W. Zhang, M. K. Hansen, G. Liu, X. Wang and N. J. Bjerrum, *Energy Environ. Sci.*, 2014, 7, 820–830.
- H. Li, S. Kelly, D. Guevarra, Z. Wang, Y. Wang, J. A. Haber, M. Anand, G. T. K. K. Gunasooriya, C. S. Abraham, S. Vijay, J. M. Gregoire and J. K. Nørskov, *Nat. Catal.*, 2021, 4, 463–468.