
(1) Electrochemical performance comparison:

We have summarized the recently reported results on the electrochemical 

performance of metal-single atoms in liquid/solid-state lithium-sulfur (Li-S) batteries 

in Table R1 and Figure R1. It is evident that although many reports demonstrate 

seemingly excellent electrochemical performance, they often lack a comprehensive 

evaluation of performance metrics, including the sulfur content in the battery, the 

cathode-to-anode ratio (N/P), and the overall energy density of the battery. The 

introduction of inactive materials can significantly reduce the overall energy density 

of the battery. 

Our self-supporting, ultra-lightweight FeCFs, with their integrated design and 

superior conductivity and catalytic effect towards LPSs, exhibit a very high sulfur 

content (~90%). Additionally, our FeCFs also serve as an excellent lithium metal host. 

There are few reports on the modification effects of single-atom host materials on 

lithium-metal anodes. As shown in Figure R1(c), our FeCFs@Li can cycle for over 

10,000 hours, and it exhibits very low overpotential even at a charge/discharge current 

density of 8 mA cm⁻². Thus, the assembled pouch cells demonstrate excellent 

electrochemical performance, with an energy density approaching 400 Wh kg⁻¹. As 

illustrated in Figure R1 (a,b), our uniquely designed FeCFs@S//pDOL//FeCFs@Li 

lithium-sulfur full cell device exhibits electrochemical performance that is on par with 

or superior to both liquid and solid-state Li-S batteries.
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Figure R1 (a-c) The electrochemical performance of solid-state Li-S batteries based 
on single-metal atom composite materials in this work is compared with the 
performance of metal single-atom materials reported in recent literature for 
liquid/solid Li-S batteries (a, b) and in Li-S batteries and lithium-metal anodes (c).



Table R1. The electrochemical performance of solid-state Li-S batteries based on 
single-metal atom composite materials in this work is compared with the performance 
of metal single-atom materials in liquid/solid-state Li-S batteries reported in recent 
literature, including metrics such as electrode sulfur loading, cycle number, and areal 
capacity.

This work Ref.1 Ref.2 Ref.3 Ref.4 Ref.5 Ref.6, Ref.7 Ref.8 Ref.9 Ref.10
Pouch Cell 

specific energy 
(Wh kg-1)

396 - - 350 - - - - - - 343

Capacity (mAh) 1470 47 8.2 1200 10 6 6 7 2 2 470
Half (0) or Full (1) 

Cell 1 0 0 0 0 0 0 0 0 0 0

N/P ratio 1.4 - - - - - - - - - 3.3
Areal sulfur 

loading (mg cm-2) 12.1 2 7.7 9 8 4.5 5.75 8.2 1.2 4 2

Area capacity 
(mAh cm-2) 8.5 1.9 8 7.8 8.1 5.1 6.18 7 1.2 2 2

Cylce life for Li-S 
batteries 500 1000 400 100 300 300 200 500 1000 1000 500

Capacity retention 
(%) 85 81.9 91.3 85.2 94 75 87 75.2 55 50 80

E/S ratio* 10 - 4.8 7 7.5 - 7.35 8.9 - 10 4
Sulfur content 

(%) 90 40 78.8 - 65 40 83 - 85 - 60

* The E in E/S in this work is based on the mass of the DOL/LiTFSI used before in-
situ polymerization.



(2) Descriptor model comparison:

We have summarized the descriptors used for lithium polysulfides (LPSs) 

adsorption and conversion in Li-S batteries from recent reports, along with their 

characteristics. The results are presented in Figure R2 and Table R2. It is evident that 

employing a unified descriptor to rationally describe the complex LPSs conversion 

kinetics in Li-S batteries is a goal pursued by many researchers. However, almost all 

proposed descriptors are often limited to specific models, and their transferability has 

not been validated. With the introduction of machine-learning (ML) algorithms, this 

situation has somewhat improved. However, the models obtained through machine 

learning lack physical interpretability and cannot deeply reveal the physical factors 

influencing polysulfide conversion. Furthermore, the descriptors reported in current 

literature generally describe only the adsorption energy of LPSs, often neglecting the 

conversion energy barriers of LPSs and the decomposition energy barriers of the 

discharge product Li₂S.

Our new descriptor, based on a d-p coupling model and incorporating machine-

learning algorithms with electronic/atomic geometric structure factors, can effectively 

provide a unified description of LPSs adsorption, conversion, and the decomposition 

energy barriers of the discharge product Li₂S. Additionally, this descriptor can 

accurately describe the LPSs conversion effectiveness in models other than single 

atoms, revealing the influence of the valence electrons of metals and non-metals on 

LPSs conversion kinetics. Futhermore, the proposed descriptor in this work also 

achieves a synergistic integration of machine-learning algorithms, physical models, 



and experimental results. This approach provides a new research paradigm for 

achieving high-performance Li-S batteries in the future.

Figure R2. (a,b) Comparison of universality and transferability of the model 
constructed with the assistance of machine-learning algorithms in this work and the 
models reported in recent reports to describe the catalytic conversion kinetics of LPSs 
in Li-S batteries



Table R2. Comparing results of the uniqueness and generalizability of descriptors 
describing LPSs conversion kinetics in Li-S batteries between this work and recently 
published papers.

This work Ref.11 Ref.12 Ref.13 Ref.14 Ref.15 Ref.16 Ref. 17 Ref.18 Ref.19 Ref.20

Materials_number 53 4 5 4 10 5 27 2 30 65 5
Physical_equation (yes 

(1)/no (0)) 1 1 1 1 1 1 1 0 0 0 1

E_LPSs_binding 
(yes(1)/no(1)) 1 1 1 0 1 0 1 1 1 1 0

E_Li2S_decomposition 
(yes (1)/no (0)) 1 0 1 0 1 0 0 0 0 0 0

LPSs_concersion_path 
(yes (1)/no (0)) 1 1 0 0 1 0 1 0 0 0 0

Gibbs_energy_LPSs 
(yes (1)/no (0)) 1 0 0 1 1 1 1 0 0 0 0

Model transferability 
verification (yes (1)/no 

(0))
1 0 0 0 0 0 1 1 0 0 0

ML_Algrithms_explana
ble (yes (1)/no (0)) 1 - 1 - - - - 0 0 1 -

ML_modle_explanable 
(yes (1)/no (0))

Quadratic 
polynomial 
algorithm

- Solving 
coefficients - - - - Neural 

Network
Neural 

Network XGBoost -

Physical equation λ = εd/εp εd
I(band), 
I(latt) εd - εp εd - εp p charge εp + χd - - - d-states

Descriptors β0+β1λ+β2λ2 εd

Genetic 
Algorithm 
+ Monte 

Carlo 
Simulation

εd - εp εd - εp p charge εp + χd - - - t2g
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