Singlet oxygen is not the main source of electrolyte degradation in lithium-oxygen batteries

Supplementary Information

Ceren Zor¹, Kieran D. Jones^{2,3}, Gregory J. Rees^{1,2}, Sixie Yang¹, Alexander Pateman¹, Xiangwen Gao¹, Lee R. Johnson^{2,3,4*}, and Peter G. Bruce^{1,2,4*}

¹Department of Materials, University of Oxford, Oxford, U.K.

²The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, OX11 0RA, UK

³Nottingham Applied Materials and Interfaces Group, School of Chemistry, University of Nottingham, Nottingham, U.K.

⁴Department of Chemistry, University of Oxford, Oxford, U.K.

[*peter.bruce@materials.ox.ac.uk,](mailto:*peter.bruce@materials.ox.ac.uk) lee.johnson@nottingham.ac.uk

Contents

General information

Reagents and solvents. Tetraethylene glycol dimethyl ether (tetraglyme, ≥99%) and dimethyl sulfoxide (DMSO) were purchased from Sigma-Aldrich and dried over 4 Å molecular sieves for at least three days before use (H₂O <10 ppm determined by Karl Fischer titration). Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI, 99.99%, Sigma-Aldrich) was dried at 85 °C under vacuum overnight (>12 h). 9,10-Dimethylanthracene (DMA, Sigma-Aldrich, 99%) was purified by recrystallisation in ethanol, melted under constant argon flow followed by recrystallisation in ethanol. The purified powder was dried at 85 °C under vacuum overnight (>12 h). 5,10,15,20-Tetraphenyl-21*H*,23*H*-porphine (TPP), 4,5,6,7-tetrachloro-2′,4′,5′,7′-tetraiodofluorescein disodium salt (rose bengal, RB) and 1,4-dicyanobenzene were purchased (Sigma-Aldrich) and used without further purification.

Nuclear magnetic resonance (NMR) spectroscopy details. The ¹H NMR spectroscopy details for samples presented in **Figure S2** are as follows: Deuterated benzene (C₆D₆) was used as the lock solvent in a 1:9 solvent: sample ratio. NMR experiments were performed on a Bruker AVIII 400 (*υ*⁰ (¹H) = 400.17 MHz) spectrometer equipped with 5 mm z-gradient broadband multinuclear probe. The *T*¹ was calculated using an inversion recovery sequence, and a 10-second recycle delay (>5*T*1) was used throughout.

Samples for quantitative NMR studies (**Figure S3**) were prepared using CD₃CN as the lock solvent with a 9:1 solvent: sample ratio. The 1D and 2D NMR experiments were performed on a Bruker AVIII 600 (*υ*⁰ (¹H) = 600.13 MHz, with a proton-optimised TCI HCN cryoprobe spectrometer). The *T*¹ was determined using an inversion recovery sequence, and a 30-second recycle delay (>5*T*1) was used throughout.

¹H and ¹⁹F NMR spectra for **Figures 3, S5 - S8** were acquired on a Bruker AV(III)400 HD or a Bruker AV(III)500 HD fitted with a 5 mm BBFO and 5 mm prodigy BBO probes, respectively. Deuterated chloroform (CDCl3) was used as the lock solvent.

The chemical shifts in ¹H spectra were referenced to the residual (partially) non-deuterated solvent according to Fulmer et al.^{1 19}F NMR spectra were referenced through the solvent lock (²H) signal according to the IUPAC-recommended secondary referencing method following Bruker protocols.² Processing of all NMR data was conducted with Bruker TopSpin or Mestrelab Research Mnova software suites.

Experimental

On-line Mass-Spectrometry Analysis

On-line MS (Thermofisher Prima BT process mass spectrometer) was used to monitor the reactivity of ${}^{1}O_{2}$ with the selected solvents and to quantify the CO₂ evolved during the analysis of carbonate and carboxylate formed due to degradation. For monitoring the reactivity of ${}^{1}O_{2}$, the gas outlet of the 3 O₂ purged samples was connected to an on-line MS, and once a stable 3 O₂ baseline was achieved, samples were irradiated to begin ${}^{1}O_2$ production. When irreversible reactions occur with ${}^{1}O_2$, the measured ${}^{3}O_{2}$ concentration decreases as O_{2} has been removed from flow. It is assumed all ${}^{1}O_{2}$ returns to the ground state before reaching the MS due to its short half-life (10-100 μ s).^{3,4}

To study the amount of carbonate and carboxylate groups generated on WEs, acid and Fenton's reagent treatments were used as previously described.⁵ For ¹³C samples, the electrodes were rinsed with DME and dried under vacuum. Samples were connected to the on-line MS and Ar was used as the carrier gas. Once m/z 44 (CO₂) and m/z 45 (¹³CO₂) signals stabilised, phosphoric acid was added and after the baseline stabilised for the second time, Fenton's reagent was added to decompose all the carbonate and carboxylate species, accordingly.

Carbonate analysis - Acid treatment

2 M H3PO⁴ is added to the electrodes to decompose all present inorganic carbonates to CO² *i.e.* $Li₂CO₃$ to $CO₂$.⁵

Carboxylate analysis – Fenton's reagent treatment

Fenton's reagent⁶ was used to decompose carboxylates into $CO₂$. The reaction for Fenton's reagent generates radicals such as OH^{*} and HO₂^{*} which can attack electron deficient carbonyl sites such as in acetate and formate, releasing $CO₂$. 0.5 M FeSO₄ in 2 M H₃PO₃ and H₂O₂ (30%) was added to the electrodes after all CO² evolution from carbonate analysis had ceased.

Singlet Oxygen (¹O2) Generation for On-line MS Experiments

Photocatalytic generation of ${}^{1}O_2$ was achieved using RB or TPP (<10 µM) with 530 nm or 660 nm light sources, respectively. The solutions were saturated with dry ${}^{3}O_{2}$ by continued sparging throughout the experiments. The experiments were either conducted in an Ar-filled glovebox or a cell connected to an on-line mass spectrometer. For experiments connected to the on-line massspectrometer, 20% O₂:80% Ar gas (dried over activated molecular sieves in the gas line) was bubbled into the samples whilst constantly stirring. 100% $O₂$ (N5.0 grade) was used for the experiments carried out in a glovebox. The chemical stability of the photosensitiser with the electrolyte and its electrochemical stability at 3.8 V are important selection criteria. Hence, RB was only used for chemical experiments, while TPP which is stable at higher oxidising potentials (**Figure S1**) was used in the electrochemical experiments.

Figure S1. Cyclic voltammogram of 7 μM TPP in 0.1 M LiTFSI and tetraglyme. The CV was recorded with a planar Au working and counter electrodes and a fritted delithiated LiFePO₄ reference electrode at a scan rate of 100 mV s⁻¹.

¹O² oxidation of DMSO

DMSO was treated with ${}^{1}O_2$ and O_2 consumption was monitored via online-mass spectrometry using the procedures described above (Scheme S1). Dimethyl sulfone (DMSO₂) was determined to be the major product, and the spectroscopic data (**Figure S2**) is consistent with those reported previously.⁷

Scheme S1. Photo-oxidation of DMSO via singlet oxygen.

FTIR spectra of the resulting mixture were recorded in an N2-filled glovebox using a Thermo Fischer Nicolet iS50 FTIR Spectrometer. The spectra showed new peaks consistent with DMSO² (**Figure** S2). **FTIR** (cm^{−1}) 1142 (ν_{as}SO₂), 763 (ν_sCSC), 499 (δOSO), 465 (γ or ρSO₂).

Figure S2. a) ¹H NMR (400 MHz, C₆D₆, 298.1 K) spectra of the DMSO reaction solution before and after exposure to ¹O₂. **b**) FTIR spectra for DMSO (purple) and ¹O₂ treated DMSO (pink, DMSO₂) peaks highlighted.

Determination of ¹O² formation rate and comparison to the cell

The amount of ${}^{1}O_2$ generation was confirmed by NMR spectroscopic experiments. DMA (75 mM) and TPP (7 μ M) were dissolved in 0.1 M LiTFSI tetraglyme electrolyte and 100% dry O₂ was bubbled into the solution. The light was turned on after 2 h to ensure that the solution was initially saturated with ${}^{3}O_{2}$ before ${}^{1}O_{2}$ generation. The duration of light exposure was recorded, and samples were analysed by quantitative NMR to quantify DMA and 9,10-dimethyl-9,10-dihydro-9,10 epidioxyanthracene (DMAO₂) (**Figure S3**). The amount of DMAO₂ was calculated by integration of the NMR data, and the rate of ${}^{1}O_2$ generation under these photochemical conditions was estimated to be 1.56 x 10⁻⁵ mol min⁻¹ assuming 100% capture of ¹O₂ by DMA. The efficiency of the ¹O₂ generation was tested under an applied potential of 3.8 V and the amount of $DMAO₂$ is not affected by the voltage. Correcting for volume, 750 µL of electrolyte gives a rate per volume of 2.08 \times 10⁻² mol ¹O₂ L⁻¹min⁻¹. The rate of ¹O₂ formation in a cell containing 100 µL electrolyte and 1 mg carbon electrode discharging at 100 mA g⁻¹carbon, and assuming 2% ¹O₂ generation, is 6.12 x 10⁻⁶ mol ¹O₂ L⁻¹min⁻¹ which is ~1000 times less than that found in in the online-MS experiments. Assuming the steady-state concentration of ${}^{1}O_2$ is directly proportional to the rate of formation, then the ${}^{1}O_2$ concentration is also ~1000 greater in our degradation analysis compared to the cell and can be considered a harsher test of stability.

Figure S3. The ¹H NMR (600 MHz, CD₃CN, 298.1 K) spectra of a solution containing 75 mM DMA (*bottom*) and a ¹O₂ exposed solution (*top*) show resonances for DMA and DMAO₂. The aromatic peaks for DMAO² are marked in the dashed box.

Electrode Preparation

For ¹³C-PTFE composite working electrodes (WEs), amorphous carbon-13 powder (¹³C, Sigma-Aldrich) was treated at 900 °C under Ar:H² (95:5, v/v) flow for 5 h. The carbon powder was transferred to an Ar-filled glovebox. The WEs were prepared in an Ar-filled glovebox by mixing ¹³C and PTFE powder in an agate mortar. 10 mg of the composite material was pressed into a 7 mm diameter. The pellet was then pressed onto a stainless-steel mesh (100 mesh, Advent-RM) current collector.

 $Li₂O₂$ -preloaded working electrodes (¹³C-Li₂O₂ WEs) were prepared by grinding carbon-13 powder and in-house synthesised Li₂O₂ (80:20 w/w), and adding 15% PTFE powder to this mixture. Similar to ¹³C WE, ¹³C- Li₂O₂ composite material was pressed into 7 mm diameter pellets with 10 mg material loading.

LiFePO₄ was used as the counter and reference electrode material. To make LiFePO₄ electrodes, LiFePO4, Super P, and PTFE (in water) were mixed in an 80:10:10 w/w ratio with isopropanol into a homogenous paste. This paste was cast on stainless steel mesh. The LiFePO₄ electrodes were chemically delithiated to \sim 20 % total capacity (Li_xFePO₄, x<1). For this, the electrodes were soaked in 1.5 mL acetic acid (Aldrich), 3.6 ml 30% H_2O_2 (Aldrich) and 250 ml MilliQ water for 20 minutes.⁹ The electrodes were washed with MilliQ water (18.2 MΩ cm) and isopropanol until all the acetic acid was removed, dried under vacuum at 85 °C overnight, and transferred into an Ar-filled glovebox.

Electrochemical Experiments

The effect of $1O₂$ under applied potential was investigated by applying a constant potential of 3.8 V Li $|Li^+$ for 12 hours whilst photochemically generating ${}^{1}O_2$ in-situ. The same electrochemical experiments were repeated with ${}^{3}O_{2}$ (without turning on the light source). The electrodes were carbon-13 (WE), LiFePO₄ (CE), and delithiated LiFePO₄ (REF). The electrolyte was 0.1 M in LiTFSI in tetraglyme containing 7 μM TPP.

 $13C$ -Li₂O₂ WEs were used to investigate the effect of Li₂O₂ on degradation and for these experiments the cell was charged under Ar atmosphere at a constant potential of 3.8 V.

Cyclic voltammetry was performed in a heart-shaped flask with a planar Au working and counter electrodes and a fritted delithiated LiFePO₄ reference electrode at a scan rate of 100 mV s⁻¹.

Singlet Oxygen Induced Degradation Studies (Batch)

Photochemical Set-up

Photochemical reactions were conducted using green LED bulbs (5 W). Lamps were positioned with a bulb-to-vial distance of approximately 10-15 mm and fan cooling was used to maintain an external temperature of ~25-30 °C (**Figure S4**). Internal temperatures were measured to not exceed 27 °C. All reactions were magnetically stirred at 500 rpm using a PTFE coated stirrer bar.

Warning: Oxygenated ethers. Extended storage of oxygenated ether solvents, particularly in the absence of a stabiliser, is hazardous due to the accumulation of organic peroxides which can lead to unexpected explosions.¹⁰ Ensure temperatures do not exceed 30 °C due to the risk of detonation.

Figure S4. Photochemical set-up for reactions using green LED bulbs (5 W).

Tetraglyme & LiTFSI Experiments

Photosensitisation of triplet oxygen with RB or TPP has been reported as an efficient method for ${}^{1}O_{2}$ formation and subsequent ${}^{1}O_2$ mediated C-H hydroperoxidation of cyclic ethers (such as THF) and activated linear ethers.¹¹ Having successfully reproduced these results with THF (not shown), the method was deemed suitable for the evaluation of tetraglyme and 1 M LiTFSI in tetraglyme stability to ${}^{1}O_{2}$ by both flow and batch. A modified general procedure deviating from Su, M and co-authors' method is described below. Results for tetraglyme and 1 M LiTFSI in tetraglyme are summarised in **Tables S1** and **S2,** respectively. In both cases, no change to tetraglyme or the TFSI anion following prolonged exposure to $3O₂$ with and without photocatalyst, nor when irradiated with green light in the absence of photocatalyst was detected by ¹H and ¹⁹F NMR spectroscopies (**Figure S5-7**). Under reaction conditions producing ¹O₂ (*Entry 4*, **Tables S1 & S2**) new resonances were observed in the ¹H NMR spectra at 11.0 – 8.5 ppm and 5.5 – 4.5 ppm suggesting tetraglyme degradation (**Figure S5 & S6, Scheme S2**). Conversely, the TFSI anion showed no change by ¹⁹F NMR spectroscopy following prolonged exposure to ¹O₂ (**Figure S7**), even with organic hydroperoxide species present, suggesting stability to both ${}^{1}O_{2}$ and tetraglyme degradation products.

Scheme S2. Photo-oxidation of tetraglyme via singlet oxygen.

General procedure: An oven-dried microwave vial equipped with a stirrer bar was taken inside a glovebox (nitrogen atmosphere) before the addition of tetraglyme solution (with or without 1 M LiTFSI) and rose bengal stock solution (if using) to a total volume of 4 mL. The vial was sealed with a septum-lined cap, removed from the glovebox and sparged with oxygen (5-10 min) before irradiating according to the described photochemical setup for 18 h. An internal standard, 1,4 dicyanobenzene (5.1 mg, 0.04 mmol, 0.01 M), was added to the resulting solution, a 50 μL aliquot was taken, added to CDCl₃ (0.75 mL) and NMR spectroscopies measured.

Table S1. Stability test of tetraglyme under the photocatalytic generation of singlet oxygen. *a*

*^a*Reaction conducted according to the *general procedure*: Photocatalyst (1×10−5 M), tetragylme (4 mL) , O_2 , irradiated for 18 h. NPD = No products detected. Trace is denoted when the concentration of products is <1 mM.

Table S2. Stability test of 1 M LiTFSI tetraglyme solution under the photocatalytic generation of singlet oxygen.*^a*

*^a*Reaction conducted according to the *general procedure*: Photocatalyst (1×10−5 M), 1 M LiTFSI tetragylme (4 mL), O_2 , irradiated for 18 h. NPD = No products detected. Trace is denoted when the concentration of products is <1 mM.

Supplementary Note 1: Tetraglyme degradation calculations

As indicated by ¹H NMR spectroscopy, tetraglyme underwent degradation in the presence ${}^{1}O_{2}$ with observable signals in the regions of 11.0 – 8.5 ppm and 5.5 – 4.5 ppm (**Figure 3 & S5, S6 & S8**). These resonances are in the expected regions for organic hydroperoxide proton (OOH) and associated tertiary proton (OCH) environments, respectively. Given tetraglyme contains multiple sites vulnerable to oxidation (eight α-CH² positions), a series of mono, bis, or greater hydroperoxide species are the likely contributors to the observed signals. Under the assumption that each new resonance in the region of 11.0 – 8.5 ppm corresponds to a reacted ${}^{1}O_2$, we note seven significant peaks with the concentration for each of these new species to be approximately 0.2 – 0.8 mM as determined by ¹H NMR spectroscopic analysis. Thus, the estimated maximum concentration of accumulated ${}^{1}O_2$ products is ca. 5.6 mM, with moles of ${}^{1}O_2$ consumed approximated to be 2.2 \times 10⁻⁵ mol.

$$
0
$$

\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n<math display="</math>

Scheme S3. Photo-oxidation sites at tetraglyme by singlet oxygen and highlighting the new ¹H NMR resonance region of 11.0 – 8.5 ppm

To understand the impact of tetraglyme degradation by ${}^{1}O_{2}$ on the cell, we can compare the amount of degradation products formed per ${}^{1}O_2$ in model experiments and relate this to known ${}^{1}O_2$ formation in the cell. The NMR spectroscopic analysis above suggests that the rate of ${}^{1}O_{2}$ formation is ca. 2.08 \times 10⁻² mol ¹O₂ L⁻¹min⁻¹ for photochemical reactions, considering the variance between our ¹O₂ quantification and degradation (Batch) studies, this value is expected to be a minimum rate and thus an overestimate of the impact of ${}^{1}O_2$. Assuming the photocatalyst was active for only 4 hours before bleaching, the total amount of ${}^{1}O_2$ formed is ca. 5.0 moles ${}^{1}O_2$ L⁻¹. Taking the concentration of degradation products above and normalising this to the total ${}^{1}O_{2}$ formed per unit volume, the moles of degradation products per mole of ${}^{1}O_{2}$ is 1.1 x 10⁻³ mol mol⁻¹. Assuming 2 % of all moles of oxygen form ${}^{1}O_2$ in the cell during charge, then the percentage of degradation due to singlet oxygen in the cell is ca. 2.2 x 10-3%. Assuming a worst-case scenario where 10 % of oxygen used within the cell forms $1O₂$, then the estimated amount of degradation is still only 0.01 % of the discharge product which is not consistent with the 10 % found in practical cells. In summary, $1O₂$ degradation pathways of the solvent and salt are likely minor compared to other challenges existing in state-of-the-art systems.

Spectra

Figure S5. Highlighted baseline of ¹H NMR (500 MHz, CDCl3, 298 K) spectra of tetraglyme experiments from **Table S1**, notable degradation products detected only under singlet oxygen forming reaction conditions (*entry 4*). PC = photocatalyst.

Figure S6. The highlighted baseline of ¹H NMR (400 MHz, CDCl3, 298 K) spectra of 1 M LiTFSI tetraglyme experiments from **Table S2**, notable degradation products detected only under singlet oxygen forming reaction conditions (*entry 4*). PC = photocatalyst

Figure S7. ¹⁹F NMR (377 MHz, CDCl₃, 298 K) spectra of 1 M LiTFSI tetraglyme experiments from Table S2 indicating complete stability of LiTFSI to ¹O² under photochemical conditions. *Left*) Full spectra window shown, the broad resonance at ~ 170 ppm is the PTFE probe background. *Right*) Highlight of LiTFSI singlet region indicating no change in multiplicity.

Figure S8.¹H NMR (500 MHz, CDCl₃, 298 K) spectroscopy highlighting degraded tetraglyme attributed to singlet oxygen (Table S1, *entry 4*). Internal standards in the tetraglyme solution (0.01 M) and tetraglyme ¹³C carbon satellites are shown to indicate the trace quantities of degradation products.

References

(1) Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. *Organometallics* **2010**, *29* (9), 2176–2179. https://doi.org/10.1021/om100106e.

(2) Harris, R. K.; Becker, E. D.; Menezes, S. M. C. de; Granger, P.; Hoffman, R. E.; Zilm, K. W. Further Conventions for NMR Shielding and Chemical Shifts (IUPAC Recommendations 2008). *Pure Appl. Chem.* **2008**, *80* (1), 59–84. https://doi.org/10.1351/pac200880010059.

(3) Boneva, M.; Ivanov, S. K.; Oliveros, E.; Braun, A. M. Singlet Oxygen Quenching by Tertiary Alkyl Ethers. *J. Photochem. Photobiol. Chem.* **1992**, *68* (3), 343–351. https://doi.org/10.1016/1010- 6030(92)85243-N.

(4) Schweitzer, C.; Schmidt, R. Physical Mechanisms of Generation and Deactivation of Singlet Oxygen. *Chem. Rev.* **2003**, *103* (5), 1685–1758. https://doi.org/10.1021/cr010371d.

(5) Ottakam Thotiyl, M. M.; Freunberger, S. A.; Peng, Z.; Bruce, P. G. The Carbon Electrode in Nonaqueous Li–O2 Cells. *J. Am. Chem. Soc.* **2013**, *135* (1), 494–500. https://doi.org/10.1021/ja310258x.

(6) Fenton, H. J. H. LXXIII.—Oxidation of Tartaric Acid in Presence of Iron. *J. Chem. Soc. Trans.* **1894**, *65* (0), 899–910. https://doi.org/10.1039/CT8946500899.

(7) Kwabi, D. G.; Batcho, T. P.; Amanchukwu, C. V.; Ortiz-Vitoriano, N.; Hammond, P.; Thompson, C. V.; Shao-Horn, Y. Chemical Instability of Dimethyl Sulfoxide in Lithium–Air Batteries. *J. Phys. Chem. Lett.* **2014**, *5* (16), 2850–2856. https://doi.org/10.1021/jz5013824.

(8) Mourad, E.; Petit, Y. K.; Spezia, R.; Samojlov, A.; Summa, F. F.; Prehal, C.; Leypold, C.; Mahne, N.; Slugovc, C.; Fontaine, O.; Brutti, S.; Freunberger, S. A. Singlet Oxygen from Cation Driven Superoxide Disproportionation and Consequences for Aprotic Metal–O2 Batteries. *Energy Environ. Sci.* **2019**, *12* (8), 2559–2568. https://doi.org/10.1039/C9EE01453E.

(9) Lepage, D.; Michot, C.; Liang, G.; Gauthier, M.; Schougaard, S. B. A Soft Chemistry Approach to Coating of LiFePO4 with a Conducting Polymer. *Angew. Chem. Int. Ed.* **2011**, *50* (30), 6884–6887. https://doi.org/10.1002/anie.201101661.

(10) Mason, D. Those Pesky Peroxides…. *J. Chem. Health Saf.* **2014**, *21* (3), 13–15. https://doi.org/10.1016/j.jchas.2013.12.011.

(11) Sagadevan, A.; Hwang, K. C.; Su, M.-D. Singlet Oxygen-Mediated Selective C–H Bond Hydroperoxidation of Ethereal Hydrocarbons. *Nat. Commun.* **2017**, *8* (1), 1812. https://doi.org/10.1038/s41467-017-01906-5.