Supporting Information

Molecularly Tailored Perovskite/Poly(3-hexylthiophene) Interfaces for Highperformance Solar Cells

Ming-Hua Li,[‡] ^{ab} Xinbo Ma,^{‡c} Jiaju Fu,^a Shuo Wang,^a Jinpeng Wu,^a Run Long,^{*c} and Jin-Song Hu^{*ad}

^a Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

^b College of Chemical Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China

^c Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China

^d School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

‡ These authors contributed equally to this work.

* Corresponding author. E-mail: runlong@bnu.edu.cn (R. L.); hujs@iccas.ac.cn (J. H.)

Materials and Methods

Materials

The raw materials of Cesium iodide (CsI, 99.999%), lead iodide (PbI₂, 99.999%), lead bromide (PbBr₂, 99.999%), dimethylformamide (DMF, anhydrous, \geq 99.9%), dimethyl sulfoxide (DMSO, anhydrous, \geq 99.9%), chlorobenzene (anhydrous, 99.8%) were purchased from Sigma-Aldrich. Dimethylammonium iodide (DMAI) was purchased from Greatcell Solar. Tris[2-(diphenylphosphino)ethyl]phosphine (PP3, 98%) and other phosphorus-based molecules were purchased from Strem. Poly(3-hexylthiophene) (P3HT) was purchased from 1-Material. Tin (IV) oxide (SnO₂) colloidal solution (15% in H₂O) was purchased from Alfa Aesar. Titanium (IV) chloride (TiCl₄) was purchased from Aladdin. The patterned ITO and FTO glass substrates were purchased from Advanced Election Technology.

Precursor Preparation

The precursor of SnO₂ compact layer was prepared by dissolving SnO₂ colloidal solution with DI water by a weight ratio of 1 : 5. 1.2 mmol CsI, 0.6 mmol PbI₂, and 0.6 mmol PbBr₂ were mixed in 1 mL DMSO to form the CsPbI₂Br precursor. 1 mmol CsI, 1 mmol PbI₂, and 1 mmol DMAI were mixed in 0.9 mL DMF and 0.1 mL DMSO to form the CsPbI₃ precursor. 1.8 mmol PbI₂, 1.8 mmol FAI, 0.036 mmol CsCl and 0.63 mmol MACl were mixed in 0.8 mL DMF and 0.2 mL DMSO to form the CsFAPbI₃ precursor. The different concentrations of PP3 or other phosphine molecules were dissolved in chlorobenzene. The P3HT hole transporting layer solution was prepared by dissolving 10 mg P3HT in 1 mL chlorobenzene.

Device Fabrication

The SnO₂ precursor was spin-coated at 4000 rpm for 30 s on the pre-cleaned ITO substrates and followed by annealing at 150 °C for 30 min in ambient conditions. The inorganic perovskite films were deposited according to our optimized preannealing method. The CsPbI₂Br precursor was spin-coated at 2000 rpm for 120 s and followed by annealing at 50 °C for 2 min and 160 °C for 10 min. It must be noted that carefully controlling the preannealing process is very critical for achieving highly crystalline perovskite films. Then, the PP3 solution was spin-coated on the inorganic perovskite film at 5000 rpm for 30 s and annealed at 100 °C for 5 min to evaporate the solvent. The P3HT solution was dynamically spin-coated at 3000 rpm for 30 s and annealed at 100 °C s and

°C for 5 min to improve the interface contact. Finally, Au layers (about 80 nm) were thermally evaporated to complete the device.

For the CsPbI₃ PSCs, the CsPbI₃ precursor was spin-coated on the pre-heated FTO/TiO₂ substrates at 3000 rpm for 30 s and followed by annealing at 190 °C for 12 min in air. The PP3 solution (5 mM) was subsequently spin-coated on the perovskite film and followed by annealing at 100 °C for 5 min. The other procedures are consistent with the CsPbI₂Br PSCs.

For the CsFAPbI₃ PSCs, the CsFAPbI₃ precursor was spin-coated on FTO/SnO₂ substrate at 5000 rpm for 30 s and 1 mL was dropped on the spinning substrate 10 s before the end. The as-cast films were annealed at 70 °C for 5 min and 120 °C for 30 min. Precise humidity control is important for high-quality perovskite films and device performance. The PP3 solution (5 mM) was subsequently spin-coated on the perovskite film and followed by annealing at 100 °C for 5 min. The other procedures are consistent with the CsPbI₂Br PSCs.

Film and Device Characterization

The absorption spectra were carried out by UV/vis spectrophotometer (Hitachi, UH-4150). The SEM images were captured by Field-Emission Scanning Electron Microscope (Hitachi, SU4800). The XRD diffraction patterns were conducted by Rigaku DMAX-RB with a Cu-Ka X-ray radiation source. Steady-state and time-resolved photoluminescence spectra were measured by Edinburgh Instruments (FLS980). The impedance spectroscopy was carried out by an electrochemical workstation (CHI 660E). The EQE spectra were measured by QE-R3011 (Enlitech) system. The X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) were detected by a combined XPS/UPS system (Thermo Fisher Scientific, ESCALAB250XI). The J-V curves were measured by an ORIEL measurement system with Keithley 2420 source under simulated AM 1.5G irradiation (Oriel Sol3A Class AAA solar simulator, 450W Model 94023A, Newport). The irradiation was calibrated by a certified silicon reference cell (91150-KG5, Newport). The devices were measured under reverse scan (1.2 to -0.2 V) or forward scan (-0.2 to 1.2 V) with a rate of 0.02 V s⁻¹ in ambient conditions below 30% RH. There were no special preconditioning protocols applied before device measurement. The active area was defined by an opaque aperture with a certified area of 0.0895 cm^2 . For the storage stability test, unencapsulated devices were stored in an air atmosphere with $\leq 30\%$ RH at 25 ± 5 °C. For the thermal stability test, unencapsulated devices were continuously heated on a hotplate at 85 °C in

N₂. For long-term operational stability, the encapsulated devices were continuously illuminated in air.

Computational Details

The projector-augmented wave (PAW) method using Vienna Ab initio Simulation Package (VASP) was utilized to carry out DFT calculations. The crystal structure of cubic CsPbI₂Br bulk structure and slabs were optimized by a generalized gradient approximation (GGA) with Perdew–Burke–Ernzerhof (PBE) method. The structural optimization (self-consistent) was defined by plane-wave cutoff energy at 400 eV and a $1 \times 1 \times 1 \Gamma$ point. The structural optimizations and electronic calculations were also carried out by the van der Waals functional vdW-DF3. Surface slabs with a vacuum thickness of 18 Å were modeled as (001)-terminated slabs of the cubic structure. Two-layer supercell of the 4×4 surface was used. All the structures were optimized until the force on each atom was smaller than 0.02 eV Å⁻¹ and the convergence threshold for self-consistent iteration is 10^{-5} eV. The molecular graphics viewer VESTA was used to plot the crystal structures and charge densities.

Fig. S1. Chemical structure of phosphine ligands.

Fig. S2. Simulated interaction model between phosphine ligands and Pb.

Fig. S3. Density of state of CsPbI₂Br with and without PP3 treatment.

Fig. S4. Charge densities of defect state with higher energy level in (A) CsPbI₂Br with antisite defect and (B) CsPbI₂Br with antisite defect under PP3 treatment.

Fig. S5. Photovoltaic parameters analysis of reported high-efficiency PSCs.

Fig. S6. XRD patterns of CsPbI₂Br with and without PP3 treatment.

Fig. S7. Top-view SEM images of CsPbI₂Br and CsPbI₂Br/PP3 films.

Fig. S8. The ³¹P NMR spectrum of PP3.

Fig. S9. The ³¹P NMR spectrum of CsPbI₂Br/PP3.

Fig. S10. SCLC measurements.

Fig. S11. Tauc plots of (A) CsPbI₂Br and (B) CsPbI₂Br/PP3 films.

Fig. S13. 2D TA images of (A) CsPbI₂Br/P3HT and (B) CsPbI₂Br/PP3/P3HT samples.

Fig. S14. TA spectra of CsPbI₂Br/P3HT samples (A) without and (B) with PP3 treatment under different probe times.

Fig. S15. Cross-sectional SEM image of the best PSC with an architecture of ITO/SnO₂/CsPbI₂Br/PP3/dopant-free P3HT/Au.

Fig. S16. J-V curves of CsPbI2Br PSCs with different PP3 concentrations.

Fig. S17. J-V curves of the CsPbI₂Br PSC measured at different scan directions.

Fig. S18. Time-dependent stabilized power output of the CsPbI2Br PSC.

Fig. S19. J-V curves of 1 cm² CsPbI₂Br PSCs with and without PP3 treatment.

Fig. S20. Humidity stability test of unencapsulated CsPbI2Br PSC stored in air.

Fig. S21. Thermal stability test of unencapsulated CsPbI2Br PSC at 85 °C in N2.

Fig. S22. Tauc plot of CsPbI₃ perovskite.

Fig. S23. J-V curves of CsPbI₃ PSCs measured under different scan directions.

Fig. S24. Time-dependent stabilized power output of the CsPbI₃ PSC.

Fig. S25. Statistic Voc and PCE distributions of CsPbI3 PSCs.

Fig. S26. EQE spectrum of the best CsPbI₃ PSC.

Fig. S27. Tauc plot of CsFAPbI₃ perovskite.

Fig. S28. Third-party certification report of the champion CsFAPbI₃/P3HT PSC.

Fig. S29. EQE spectrum of the best CsFAPbI₃ PSC.

Fig. S30. Statistic PCE distributions of CsFAPbI₃ PSCs.

Fig. S31. Stabilized power output of the best CsFAPbI₃ PSC.

Fig. S32. J-V curves of the CsFAPbI₃ PSC measured at different scan directions.

Fig. S33. J-V curves of the (A) control and (B) PP3-treated CsFAPbI₃ PSCs before and after operational stability test.

Condition	τ_1 (ns)	τ_2 (ns)	A ₁ (%)	A ₂ (%)	τ _{-average} (ns)
CsPbI2Br	12.42	37.29	62.61	37.39	21.72
CsPbI ₂ Br/PP3	15.38	72.15	22.98	77.02	59.10

Table S1. Fitted results of time-resolved PL decay curves.

The results were fitted according to the bi-exponential function: $PL_{intensity} = A_1 exp(-t/\tau_1) + A_2 exp(-t/\tau_2)$. All the samples were directly deposited on glass substrates without a charge transfer layer.

Table S2. Summary of energy level parameters for control and PP3-treated CsPbI₂Br.

Condition	E _{Cut-off} (eV)	WF (eV)	Eonset (eV)	E _{VBM} (eV)	E _{CBM} (eV)	E _g (eV)
CsPbI ₂ Br	17.41	3.81	1.56	5.37	3.46	1.91
CsPbI2Br/PP3	17.85	3.37	1.72	5.09	3.18	1.91

Table S3. Statistical photovoltaic parameters of control and PP3-treated CsPbI2Br PSCs.

Condition	V _{oc} (V)	J _{sc} (mA cm ⁻²)	FF	PCE (%)
CsPbI ₂ Br	1.27±0.03	15.45±0.15	0.77±0.02	15.09±0.36
CsPbI2Br/PP3	1.39±0.02	15.47±0.05	0.81±0.01	17.67±0.32

Condition (mM/mL)	V _{oc} (V)	J _{sc} (mA cm ⁻²)	FF	PCE (%)
0	1.29	15.43	0.792	15.79
1	1.34	15.44	0.819	16.96
5	1.43	15.46	0.832	18.39
10	1.40	15.46	0.819	17.72

Table S4. Photovoltaic performance of CsPbI₂Br PSCs with different concentrations of PP3 treatment.

HTL	Dopant	Perovskite	V _{oc} (V)	V _{oc} loss (V)	PCE (%)	Ref.
PSQ2	Free	CsPbI2Br	1.27	0.64	15.50	[1]
TEP-S	Free	CsPbI ₂ Br	1.26	0.65	15.60	[2]
PBDB-T-Si	Free	CsPbI2Br	1.20	0.71	15.60	[3]
PDCBT	Free	CsPbI ₂ Br	1.24	0.67	16.41	[4]
PBDB-T	Free	CsPbI ₂ Br	1.24	0.67	16.40	[5]
PolyTPD	Free	CsPbI ₂ Br	1.24	0.67	16.84	[6]
SFDT-TDM	Free	CsPbI _x Br _{3-x}	1.28	0.54	17.10	[7]
NiOx	Free	CsPbI ₂ Br	1.30	0.61	17.02	[8]
РЗНТ	Free	CsPbI _x Br _{3-x}	1.12	0.63	14.08	[9]
РЗНТ	Free	CsPbI _x Br _{3-x}	1.12	0.63	15.84	[10]
РЗНТ	Free	CsPbI2Br	1.27	0.64	10.8	[11]
РЗНТ	Free	CsPbI ₂ Br	1.07	0.84	11.30	[12]
РЗНТ	Free	CsPbI ₂ Br	1.15	0.76	12.46	[13]
РЗНТ	Free	CsPbI ₂ Br	1.23	0.69	13.25	[14]
РЗНТ	Free	CsPbI ₂ Br	1.19	0.72	13.91	[15]
РЗНТ	Free	CsPbI ₂ Br	1.24	0.67	14.35	[16]
РЗНТ	Free	CsPbI ₂ Br	1.26	0.65	15.50	[17]
РЗНТ	Free	CsPbI2Br	1.30	0.61	15.69	[18]
РЗНТ	Free	CsPbI ₂ Br	1.32	0.59	15.90	[19]
РЗНТ	Free	CsPbI ₂ Br	1.31	0.6	16.30	[20]
РЗНТ	Free	CsPbI ₂ Br	1.38	0.53	16.93	[21]
РЗНТ	Free	CsPbI ₂ Br	1.43	0.48	18.39	This work

Table S5. Summary of photovoltaic parameters for state-of-the-art inorganic CsPbI2BrPSCs with dopant-free HTLs.

Table S6. Statistical photovoltaic parameters of control and PP3-treated CsPbI₃ PSCs.

Condition	V _{oc} (V)	J _{sc} (mA cm ⁻²)	FF	PCE (%)
CsPbI ₃	1.12±0.03	21.07±0.09	0.78±0.02	18.35±0.59
CsPbI ₃ /PP3	1.19±0.01	21.18±0.08	0.82±0.01	20.77±0.42

Table S7. Summary of photovoltaic parameters for state-of-the-art inorganic CsPbI₃ PSCs with dopant-free HTLs.

HTL	Dopant	Perovskite	V _{oc} (V)	V _{oc} loss (V)	РСЕ (%)	Ref.
CI-TTIN-2F	Free	CsPbI ₃	1.10	0.60	15.91	[22]
РЗНТ	Free	CsPbI ₃	1.09	0.61	17.13	[23]
РЗНТ	Free	CsPbI ₃	1.10	0.60	17.92	[24]
P3CT-N	Free	CsPbI ₃	1.07	0.63	16.67	[25]
P3CT-N	Free	CsPbI ₃	1.10	0.60	18.21	[26]
P3CT-N	Free	CsPbI ₃	1.176	0.524	18.93	[27]
P3CT-N	Free	CsPbI ₃	1.172	0.528	19.01	[28]
P3CT-N	Free	CsPbI ₃	1.160	0.54	19.25	[29]
P3CT-N	Free	CsPbI ₃	1.225	0.475	19.27	[30]
P3CT-N	Free	CsPbI ₃	1.213	0.487	19.84	[31]
РЗСТ	Free	CsPbI ₃	1.13	0.58	20.17	[32]
MeO-2PACz	Free	CsPbI ₃	1.16	0.58	20.17	[33]
РТАА	Free	CsPbI ₃	1.21	0.49	19.69	[34]
РЗНТ	Free	CsPbI ₃	1.21	0.49	21.42	This work

HTL	Dopant	Perovskite	Voc (V)	PCE (%)	Certified PCE (%)	Ref.
РЗНТ	Free	FAMAPb(IBr)3	1.152	23.3	22.7	[35]
РЗНТ	Free	FAMAPb(IBr) ₃	1.09	20.67	/	[36]
P3HT:CuPc	Free	CsFAMAPb(IBr) ₃	1.24	23.17	21.698 (1 cm ²)	[37]
P3HT:CuPc	Free	CsFAMAPb(IBr) ₃	1.200	23.38	23.33 (1 cm ²)	[38]
РЗНТ	Free	FAMAPb(IBr) ₃	1.15	24.6	/	[39]
РЗНТ	Free	MAPbI ₃	1.150	21.1	/	[40]
РЗНТ	Free	CsFAMAPb(IBr) ₃	1.15	21.2	/	[41]
РЗНТ	Free	CsFAMAPb(IBr) ₃	1.16	22.87	/	[42]
P3HT:NiPc	Free	FAMAPb(IBr) ₃	1.11	23.11	/	[43]
РЗНТ	Free	CsFAPbI3	1.17	25.08	24.54	This work

Table S8. Summary of photovoltaic parameters for state-of-the-art inorganic CsPbI₃ PSCs with dopant-free P3HT HTLs.

Table S9. Statistical photovoltaic parameters of control and PP3-treated CsFAPbI₃ PSCs.

Condition	V _{oc} (V)	J _{sc} (mA cm ⁻²)	FF	PCE (%)
CsFAPbI ₃	1.08 ± 0.01	25.68±0.13	0.75±0.02	21.00±0.40
CsFAPbI ₃ /PP3	1.16±0.01	25.88±0.06	0.80±0.01	24.21±0.36

References

- [1] Q. Xiao, J. Tian, Q. Xue, J. Wang, B. Xiong, M. Han, Z. Li, Z. Zhu, H.-L. Yip, Z. a. Li, *Angew. Chem. Int. Ed.* **2019**, *58*, 17724-17730.
- [2] K. Jiang, J. Wang, F. Wu, Q. Xue, Q. Yao, J. Zhang, Y. Chen, G. Zhang, Z. Zhu, H. Yan, L. Zhu, H.-L. Yip, Adv. Mater. 2020, 32, 1908011.

- [3] P. Wang, H. Wang, M. Jeong, S. M. Lee, B. Du, Y. Mao, F. Ye, H. Zhang, D. Li, D. Liu, C. Yang, T. Wang, J. Mater. Chem. C 2020, 8, 8507-8514.
- [4] D.-J. Xue, Y. Hou, S.-C. Liu, M. Wei, B. Chen, Z. Huang, Z. Li, B. Sun, A. H. Proppe, Y. Dong, M. I. Saidaminov, S. O. Kelley, J.-S. Hu, E. H. Sargent, *Nat. Commun.* 2020, 11, 1514.
- [5] X. Li, W. Chen, S. Wang, G. Xu, S. Liu, Y. Li, Y. Li, Adv. Funct. Mater. 2021, 2010696.
- [6] P. Wang, H. Wang, Y. Mao, H. Zhang, F. Ye, D. Liu, T. Wang, Adv. Sci. 2020, 7, 2000421.
- [7] J. Wang, X. Wu, Y. Liu, T. Qin, K. Zhang, N. Li, J. Zhao, R. Ye, Z. Fan, Z. Chi, Z. Zhu, Adv. Energy Mater. 2021, 11, 2100967.
- [8] S. Yuan, Y. Xian, Y. Long, A. Cabot, W. Li, J. Fan, *Adv. Funct. Mater.* **2021**, *31*, 2106233.
- [9] B. Parida, J. Ryu, S. Yoon, S. Lee, Y. Seo, J. S. Cho, D.-W. Kang, J. Mater. Chem. A 2019, 7, 18488-18498.
- [10] S. Mu, Q. Ye, X. Zhang, S. Huang, J. You, Front. Optoelectron. 2020, 13, 265-271.
- [11] F. Yang, D. Hirotani, G. Kapil, M. A. Kamarudin, C. H. Ng, Y. Zhang, Q. Shen, S. Hayase, Angew. Chem. Int. Ed. 2018, 57, 12745-12749.
- [12] C. F. J. Lau, M. Zhang, X. Deng, J. Zheng, J. Bing, Q. Ma, J. Kim, L. Hu, M. A. Green, S. Huang, A. Ho-Baillie, *ACS Energy Lett.* 2017, *2*, 2319-2325.
- [13] H. Aqoma, I. F. Imran, F. T. A. Wibowo, N. V. Krishna, W. Lee, A. K. Sarker, D. Y. Ryu, S.-Y. Jang, *Adv. Energy Mater.* **2020**, *10*, 2001188.
- [14] Z. Wang, A. K. Baranwal, M. A. Kamarudin, Y. Kamata, C. H. Ng, M. Pandey, T. Ma, S. Hayase, J. Mater. Chem. A 2019, 7, 20390-20397.
- [15] Z. Wang, A. K. Baranwal, M. Akmal kamarudin, P. Zhang, G. Kapil, T. Ma, S. Hayase, Nano Energy 2019, 66, 104180.
- [16] J. H. Heo, D. H. Kim, J. K. Park, Y. K. Choi, D. S. Lee, S. H. Im, ACS Appl. Mater. Interfaces 2019, 11, 43066-43074.
- [17] M.-H. Li, S.-C. Liu, F.-Z. Qiu, Z.-Y. Zhang, D.-J. Xue, J.-S. Hu, Adv. Energy Mater. 2020, 2000501.
- [18] S. S. Mali, J. V. Patil, J. A. Steele, S. R. Rondiya, N. Y. Dzade, C. K. Hong, ACS Energy Lett. 2021, 6, 778-788.
- [19] Y. Ding, Q. Guo, Y. Geng, Z. Dai, Z. Wang, Z. Chen, Q. Guo, Z. Zheng, Y. Li, E. Zhou, Nano Today 2022, 46, 101586.
- [20] J. Song, H. Xie, E. L. Lim, Y. Li, T. Kong, Y. Zhang, X. Zhou, C. Duan, D. Bi, Solar RRL 2022, 6, 2100880.
- [21] M.-H. Li, J.-Y. Shao, Y. Jiang, F.-Z. Qiu, S. Wang, J. Zhang, G. Han, J. Tang, F. Wang, Z. Wei, Y. Yi, Y.-W. Zhong, J.-S. Hu, *Angew. Chem. Int. Ed.* **2021**, *60*, 16388-16393.
- [22] C. Liu, C. Igci, Y. Yang, O. A. Syzgantseva, M. A. Syzgantseva, K. Rakstys, H. Kanda, N. Shibayama, B. Ding, X. Zhang, V. Jankauskas, Y. Ding, S. Dai, P. J. Dyson, M. K. Nazeeruddin, *Angew. Chem. Int. Ed.* 2021, 60, 20489-20497.
- [23] Z. SunLi, Y. Liu, S. Li, J. Ren, Y. Wu, Q. Sun, Y. Cui, M. Chen, Y. Hao, *ACS Appl. Mater. Interfaces* **2022**, *14*, 7417-7427.
- [24] W. Ren, Y. Liu, Y. Wu, Q. Sun, Y. Cui, Y. Hao, *Phys. Chem. Chem. Phys.* **2021**, *23*, 23818-23826.
- [25] S. Fu, L. Wan, W. Zhang, X. Li, W. Song, J. Fang, ACS Energy Lett. 2020, 5, 3314-3321.

- [26] Z. Xu, N. Liu, X. Liu, W. Han, W. Xu, J. Zhang, L. Huang, Z. Hu, Y. Zhu, Chem. Eng. J. 2023, 451, 139047.
- [27] S. Fu, W. Zhang, X. Li, J. Guan, W. Song, J. Fang, ACS Energy Lett. 2021, 6, 3661-3668.
- [28] C. Lu, X. Li, X. Guo, S. Fu, W. Zhang, H. Yuan, J. Fang, Chem. Eng. J. 2022, 139495.
- [29] S. Fu, X. Li, J. Wan, W. Zhang, W. Song, J. Fang, Adv. Funct. Mater. 2022, 32, 2111116.
- [30] S. Fu, N. Sun, J. Le, W. Zhang, R. Miao, W. Zhang, Y. Kuang, W. Song, J. Fang, *ACS Appl. Mater. Interfaces* **2022**, *14*, 30937-30945.
- [31] S. Fu, J. Le, X. Guo, N. Sun, W. Zhang, W. Song, J. Fang, *Adv. Mater.* **2022**, *34*, 2205066.
- [32] S. Wang, M.-H. Li, Y. Zhang, Y. Jiang, L. Xu, F. Wang, J.-S. Hu, *Energy Environ. Sci.* 2023, 16, 2572-2578.
- [33] R. Ji, Z. Zhang, Y. J. Hofstetter, R. Buschbeck, C. Hänisch, F. Paulus, Y. Vaynzof, Nat. Energy 2022, 7, 1170-1179.
- [34] J. H. Heo, F. Zhang, J. K. Park, H. Joon Lee, D. S. Lee, S. J. Heo, J. M. Luther, J. J. Berry, K. Zhu, S. H. Im, *Joule* 2022, *6*, 1672-1688.
- [35] J. J. Yoo, G. Seo, M. R. Chua, T. G. Park, Y. Lu, F. Rotermund, Y.-K. Kim, C. S. Moon, N. J. Jeon, J.-P. Correa-Baena, V. Bulović, S. S. Shin, M. G. Bawendi, J. Seo, *Nature* 2021, 590, 587-593.
- [36] Y.-W. Jang, S. Lee, K. M. Yeom, K. Jeong, K. Choi, M. Choi, J. H. Noh, *Nat. Energy* 2021, 6, 63-71.
- [37] J. Peng, D. Walter, Y. Ren, M. Tebyetekerwa, Y. Wu, T. Duong, Q. Lin, J. Li, T. Lu, M. A. Mahmud, O. L. C. Lem, S. Zhao, W. Liu, Y. Liu, H. Shen, L. Li, F. Kremer, H. T. Nguyen, D.-Y. Choi, K. J. Weber, K. R. Catchpole, T. P. White, *Science* 2021, 371, 390-395.
- [38] J. Peng, F. Kremer, D. Walter, Y. Wu, Y. Ji, J. Xiang, W. Liu, T. Duong, H. Shen, T. Lu, F. Brink, D. Zhong, L. Li, O. Lee Cheong Lem, Y. Liu, K. J. Weber, T. P. White, K. R. Catchpole, *Nature* 2022, 601, 573-578.
- [39] M. J. Jeong, K. M. Yeom, S. J. Kim, E. H. Jung, J. H. Noh, *Energy Environ. Sci.* **2021**, *14*, 2419-2428.
- [40] F. Cheng, R. He, S. Nie, C. Zhang, J. Yin, J. Li, N. Zheng, B. Wu, J. Am. Chem. Soc. 2021, 143, 5855-5866.
- [41] F. Cao, F. Cheng, X. Huang, X. Dai, Z. Tang, S. Nie, J. Yin, J. Li, N. Zheng, B. Wu, Adv. Funct. Mater. 2022, 32, 2201423.
- [42] D. Xu, Z. Gong, Y. Jiang, Y. Feng, Z. Wang, X. Gao, X. Lu, G. Zhou, J.-M. Liu, J. Gao, *Nat. Commun.* 2022, 13, 7020.
- [43] H. Kim, D. Y. Lee, J. Lim, J. Kim, J. Park, J. Seidel, J. S. Yun, S. I. Seok, Adv. Energy Mater. 2023, 13, 2301046.