Supporting Information

Surface Chemistry Regulated Gradient Multi-Component Solid

Electrolyte Interphase for 460 Wh kg⁻¹ Lithium Metal Pouch Cell

Man Pang¹, Zhongwei Jiang¹, Chongyang Luo¹, Ziqing Yao¹, Tianji Fu¹, Tao Pan¹, Qingpeng Guo¹, Yujie Li^{1*}, Shizhao Xiong², Chunman Zheng¹, Weiwei Sun^{1*}, Guangmin Zhou³, Shuangke Liu^{1*}

¹ College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, China

² Department of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093 China

³ Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, P. R. China

* Corresponding author. <u>liu_sk@139.com</u> (Shuangke Liu) <u>powerlyj@163.com</u> (Yujie Li) <u>wwsun@nudt.edu.cn</u> (Weiwei Sun)

Fig. S1. Cross-sectional SEM images of DFFSA-Li.

Fig. S2. XRD patterns of Li₂O, Li₂CO₃ and Li before and after reaction with excess DFFSA.

 $\begin{aligned} 2C_2O_4SF_3H\ (aq) + Li_2CO_3(s) &\to 3CO_2(g) + H_2O\ (l) + 2LiF\ (s) + 2SO_2(g) + CF_2 = CF_2\ (g) \\ &\Delta G = -132.03\ \text{kcal mol}^{-1} \\ 2C_2O_4SF_3H\ (aq) + Li_2O(s) &\to 2CO_2(g) + H_2O\ (l) + 2LiF\ (s) + 2SO_2(g) + CF_2 = CF_2\ (g) \\ &\Delta G = -188.51\ \text{kcal mol}^{-1} \end{aligned}$

Fig. S3. Chemical reaction of DFFSA with Li₂CO₃, Li₂O and the corresponding calculated Gibbs free energy.

Fig. S4. XRD standard card for LiF.

Fig. S5. The 3D overlays of the ion fragments of a) Li_2F_3 -, b) C-F and c) $C_2SO_3F_3$ ⁻.

Fig. S6. The TOF-SIMS depth sputter curves of DFFSA-Li surface.

Fig. S7. Time-of-flight secondary ion mass spectrum (TOF-SIMS) of the DFFSA-Li anode.

Fig. S8. Infrared spectra of DFFSA-Li and DFFSA.

Fig. S9. Rate capability of coin cells with DFFSA-Li and Bare-Li for cycling from 0.2 to 5C.

Fig. S10. Electrochemical impedance spectroscopy (EIS) tests of the Li||LCO cells with different DFFSA concentration treatment.

Fig. S11. Depth-dependent XPS spectra of different DFFSA concentration treatment.

Fig. S12. Equivalent circuit diagram of the Li||LCO battery.

Fig. S13. Performance comparison of Bare-Li and DFFSA-Li in Li||Cu batteries.

Fig. S14. Voltage profiles of the symmetric cells with Li deposition amount of 1 mA h cm⁻² at the current density of 0.5, 1, 3 and 5 mA cm⁻² using (a) carbonate electrolyte 1M LiPF₆ in EC and DEC (v/v = 3:7) with 10% FEC; (b) ether-based electrolyte 1M

LiTFSI in DOL and DME (v/v = 1:1) with 1.0wt% LiNO₃.

Fig. S15. XPS spectra of C 1s of Li||Li symmetric cells after 10 cycles with a)Bare-Li, b) DFFSA-Li.

Fig. S16. Atomic composition ratios of the SEI obtained by XPS spectra for (a) Bare-Li and (b) DFFSA-Li.

Fig. S17. TOF-SIMS results comparisons of LiF_2^- , PO₂⁻ and S²⁻ species in symmetric cells after 10 cycles for Bare-Li and DFFSA-Li anodes.

Fig. S18. TOF-SIMS results of P-containing species in symmetric cells after 10 cycles for Bare-Li and DFFSA-Li anodes.

Table S1.	. The detailed parameters of the DFFSA-Li LCO and Bare-Li LCO pouc	h
	cells.	

	Cell parameters				
	Cathode Materials	LiCoO ₂			
Cathode	Areal density (mg cm ⁻²) Proportion of active materials (%) Electrode length (mm) Electrode width (mm) LCO wight (mg)	51.6 96.34 60 20 597	51.6 96.34 60 20 621	51.6 96.34 60 20 651	51.6 96.34 60 20 622
	Anode Materials	Bare-Li		DFFSA-Li	
Anode	Li thickness (µm) N/P ratio	100 2.24	50 1.12	100 2.24	50 1.12
Electrolyte	Weight (g)	0.5	0.5	0.5	0.5

Cell component	Cell parameters	Value
Cathode	Materials Area weight (each side, mg cm ⁻²) Area capacity (each side, mAh cm ⁻²) Electrode length (mm) Electrode width (mm) NCM811 wight (g) The wight of Al foil + NCM811 (g)	NCM811 19.5 3.9 69 51 1.34 1.5 20
Anode	Materials Number Li thickness (double side, μm) Area capacity (each side, mAh cm ⁻²) N/P ratio	DFFSA-Li 21 50 5 1.28
Electrolyte	E/C ratio (g/Ah) Weight (g)	1.6 8.78
Pouch cell	Total weight (g) Theoretical capacity (Ah) First circulating capacity (Wh) Energy density (Wh/kg)	47.29 5.49 21.84 461.6

 Table S2. The detailed parameters of a high-energy DFFSA-Li||NCM811 pouch cell.

Fig. S19. The weighing mass of the DFFSA-Li||NCM811 pouch cell.