## A wearable DC tribovoltaic power textile woven by P/N-type

## organic semiconductor fibers

Beibei Fan <sup>a,c</sup>, Guoxu Liu <sup>a,b</sup>, Yiming Dai <sup>a,c</sup>, Zefang Dong <sup>a,b</sup>, Ruifei Luan <sup>a,b</sup>, Likun Gong <sup>a,b</sup>, Zhi Zhang <sup>a,b</sup>, Zhong Lin Wang <sup>a,b,d,e</sup>, Chi Zhang <sup>a,b,c \*</sup>

<sup>a</sup> CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
<sup>b</sup> School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
<sup>c</sup> Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
<sup>d</sup> Georgia Institute of Technology, Atlanta, GA, USA
<sup>e</sup> Guangzhou Institute of Blue Energy, Knowledge City, Huangpu District, Guangzhou 510555, China

\* Corresponding author at: Tribotronics Research Group, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences E-mail addresses: czhang@binn.cas.cn (C. Zhang)



Fig. S1 | (A, B) PEDOT:PF solution and SEM image of PEDOT:PF. (C, D) PBFD solution and SEM image of

PBFD. (E, F)  $Ti_3C_2$  powder and SEM image of  $Ti_3C_2$ .



Fig. S2 | (A) Ti<sub>3</sub>C<sub>2</sub>@CFs fibers. (B) PEDOT:PF@Ti<sub>3</sub>C<sub>2</sub>@CFs fibers. (C) PBFD@CFs fibers.







Fig. S4 | Work function measurements of PBFD and PEDOT:PF from KPFM tests.



Fig. S5 | (A) The surface potential of of PEDOT:PF in sliding state. (B) The surface potential of of PEDOT:PF in

compression state.



Fig. S6 | The distribution of gain and loss electrons at the interface between PBFD and PEDOT:PF molecules.



Fig. S7 | Electron-cloud-potential-well model of the electron transition process and the release of "bindington" as the excitation energy of the tribovoltaic effect.



Fig. S8 | V<sub>oc</sub> and I<sub>sc</sub> of sliding mode generated by PEDOT:PF/PBFD interface under different materials.



Fig. S9 | V<sub>oc</sub> and I<sub>sc</sub> of compression mode generated by PEDOT:PF/PBFD interface under different materials.



Fig. S10 | The tensile-strain curves of different fibers.



**Fig. S11** | (A) Schematic diagram of SFs electrical output tested in the tensile state. (B, F) The  $V_{oc}$  and  $I_{sc}$  of SFs based 0.2 mm CFs. (C, G) The  $V_{oc}$  and  $I_{sc}$  of SFs based 0.5 mm CFs. (D, H) The  $V_{oc}$  and  $I_{sc}$  of SFs based 1 mm CFs. (E, I) The  $V_{oc}$  and  $I_{sc}$  of SFs based 2 mm CFs. (J, N) The  $V_{oc}$  and  $I_{sc}$  of SFs based 3 mm CFs. (K, O) The  $V_{oc}$  and  $I_{sc}$  of SFs based 4 mm CFs. (L, P) The  $V_{oc}$  and  $I_{sc}$  of SFs based 5 mm CFs. (M, Q) The  $V_{oc}$  and  $I_{sc}$  of SFs based 7 mm CFs. (R, S) The  $V_{oc}$  and  $I_{sc}$  of SFs based 10 mm CFs.



Fig. S12 | (A) The tensile-strain curves of SFs. (B- D) The  $V_{oc}$  and  $I_{sc}$  of SFs at 10-80% -strain.



**Fig. S13** | (A) Schematic diagram of SFs electrical output tested in the compression state. (B, F) The  $V_{oc}$  and  $I_{sc}$  of SFs based 0.2 mm CFs. (C, G) The  $V_{oc}$  and  $I_{sc}$  of SFs based 0.5 mm CFs. (D, H) The  $V_{oc}$  and  $I_{sc}$  of SFs based 1 mm CFs. (E, I) The  $V_{oc}$  and  $I_{sc}$  of SFs based 2 mm CFs. (J, N) The  $V_{oc}$  and  $I_{sc}$  of SFs based 3 mm CFs. (K, O) The  $V_{oc}$  and  $I_{sc}$  of SFs based 4 mm CFs. (L, P) The  $V_{oc}$  and  $I_{sc}$  of SFs based 5 mm CFs. (M, Q) The  $V_{oc}$  and  $I_{sc}$  of SFs based 7 mm CFs. (R, S) The  $V_{oc}$  and  $I_{sc}$  of SFs based 10 mm CFs.



**Fig. S14** | (A, B) The Serial  $V_{oc}$  and  $I_{sc}$  of SFs in the tensile state and compression state. (C, D) The Parallel  $V_{oc}$  and  $I_{sc}$  of SFs in in the tensile state and compression state.



Fig. S15 | The weaving manufacturing process of WDPs.



Fig. S16 | Comparison of plane/plane mode and three-dimensional friction mode



Fig. S17 | The  $V_{oc}$  and  $I_{sc}$  of WDPs in tensile state. (A) Schematic diagram of WDPs electrical output tested in the tensile state. (B, C) The  $V_{oc}$  and  $I_{sc}$  of 5×10 cm<sup>2</sup> WDPs. (D, E)The  $V_{oc}$  and  $I_{sc}$  of 10×10 cm<sup>2</sup> WDPs. (F, G) The  $V_{oc}$ 

and  $I_{sc}$  of 10×20 cm<sup>2</sup> WDPs. (H, I) The  $V_{oc}$  and  $I_{sc}$  of 10×30 cm<sup>2</sup> WDPs.



Fig. S18 | The  $V_{oc}$  and  $I_{sc}$  of WDPs in compression state. (A) Schematic diagram of WDPs electrical output tested in the compression state. (B, C) The  $V_{oc}$  and  $I_{sc}$  of 5×10 cm<sup>2</sup> WDPs. (D, E) The  $V_{oc}$  and  $I_{sc}$  of 10×10 cm<sup>2</sup> WDPs. (F, G) The  $V_{oc}$  and  $I_{sc}$  of 10×20 cm<sup>2</sup> WDPs. (H, I) The  $V_{oc}$  and  $I_{sc}$  of 10×30 cm<sup>2</sup> WDPs.



Fig. S19 | The Lithium-ion battery device.



Fig. S20 | Comparison of the charging of batteries by the kinetic energy collected by WDP at 5Hz and the





Fig. S21 | The investigation of WDPs' cycle washability and long-term durability.



Fig. S22 | The influence of environmental humidity on the electrical output of WDPs.



Fig. S23 | (A) The durability test of WDPs in compression state. (B) The durability test of WDPs in tensile state.



Fig. S24 | The demonstration of driving a smart bracelet, a mini player and a thermohygrometer.



Fig. S25 | The charging characteristics of WDPs with1 mF capacitor by harvesting biokinetic energies at different bending speeds.



Fig. S26 | (A, B) The voltage generated by WDP under walking and running.



Fig. S27 | The bluetooth transmitting system and e-ink screen.



Fig. S28 | The output of WDP on skin and different clothing materials.

| Table 1 The perform | nance of different ty | pe TVNGs and TENG |
|---------------------|-----------------------|-------------------|
|---------------------|-----------------------|-------------------|

| Material   | TVNG/ | DC/ | Textile | Hydrop        | Flexi  | Stretc | V <sub>oc</sub> | Power density         | Resistance | Durability | Refere |
|------------|-------|-----|---------|---------------|--------|--------|-----------------|-----------------------|------------|------------|--------|
|            | TENG  | AC  |         | hobi <i>c</i> | bility | habili | (V)             | (W/m <sup>2</sup> )   | (MΩ)       | (Cycles)   | nce    |
|            |       |     |         |               |        | ty     |                 |                       |            |            |        |
| Cu/PTFE    | TENG  | AC  | ~       | ×             | ~      | ×      | 6               | 1.25×10 <sup>-3</sup> | 10         | _          | 11     |
| CNT/PTFE   | TENG  | AC  | ~       | ×             | ~      | ×      | 20              | 4×10 <sup>-3</sup>    | 1000       | 10000      | 18     |
| Ag/PTFE    | TENG  | AC  | ~       | ×             | ~      | ×      | 900             | 2×10-3                | 100        | _          | 22     |
| Water/PTFE | TENG  | AC  | ×       | ~             | ×      | ×      | 150             | 50.1                  | 0.3        | _          | 32     |
| Ag/PDMS    | TENG  | AC  | ~       | ×             | ~      | ~      | 48              |                       | 2000       |            | 12     |
| Graphene/  | TENG  | AC  | ~       | ×             | ~      | ×      | 70              | 30×10-3               | 100        | _          | 23     |
| PDMS       |       |     |         |               |        |        |                 |                       |            |            |        |
| PE/PDMS    | TENG  | AC  | ~       | ~             | ~      | ~      | 200             | 0.8×10 <sup>-3</sup>  | 1000       | 5700       | 21     |
| Ag/PDMS    | TENG  | AC  | ~       | ×             | ~      | ~      | 20              | 22×10 <sup>-6</sup>   | 150        | 1800       | 27     |
| Conductive | TENG  | AC  | ~       | ~             | ~      | ~      | 140             | 70×10-6               | 1000       | _          | 25     |
| yarn/PI    |       |     |         |               |        |        |                 |                       |            |            |        |
| Conductive | TENG  | AC  | ~       | ~             | ~      | ~      | 0.12            | 0.12                  | 10         | 1000       | 29     |

| polyamide/PI                                     |      |    |   |   |   |   |      |                       |        |       |      |
|--------------------------------------------------|------|----|---|---|---|---|------|-----------------------|--------|-------|------|
| Bi <sub>2</sub> Te <sub>3</sub> /Kapton          | TENG | AC | × | × | × | × | 50   |                       | 30     | _     | 17   |
| Ag/PE                                            | TENG | AC | ~ | × | × | ~ | 40   | 10.5×10 <sup>-3</sup> | 1000   | 10000 | 28   |
| Ag/Nylon                                         | TENG | AC | ~ | × | ~ | ~ | 20   | 2.2×10 <sup>-3</sup>  | 20     | 10000 | 20   |
| Ag/EP                                            | TENG | AC | ~ | × | × | ~ | 18   | 0.7                   | 24     | —     | 24   |
| Conductive                                       | TENG | AC | ~ | ~ | ~ |   | 30   | 350×10-6              | 500    | _     | 26   |
| yarn/PAN:PVDF                                    |      |    |   |   |   |   |      |                       |        |       |      |
| n-SWCNT/ p-                                      | TVNG | DC | ~ | × | × | × | 0.3  | _                     | 3.3    | 1280  | 47   |
| SWCNT                                            |      |    |   |   |   |   |      |                       |        |       |      |
| GaN/Bi <sub>2</sub> Te <sub>3</sub>              | TVNG | DC | × | × | × | × | 48   | 11.85                 | 0.16   | _     | 53   |
| MoS <sub>2</sub> /Ta <sub>4</sub> C <sub>3</sub> | TVNG | DC | ~ | × | ~ | × | 0.3  | 37×10 <sup>-3</sup>   | 0.55   | 54000 | 41   |
| Al/PEDOT:PSS                                     | TVNG | DC | ~ | × | ~ | × | 0.6  |                       | _      | 4000  | 33   |
| Al/PEDOT:PSS                                     | TVNG | DC | × | × | ~ | × | 2    |                       | 0.2    | 20000 | 34   |
| Al/PEDOT:PSS                                     | TVNG | DC | ~ | × | ~ | × | 0.45 | 1.2×10 <sup>-3</sup>  | 30     | 3350  | 42   |
| Al/PEDOT:PSS                                     | TVNG | DC | ~ | × | ~ | × | 0.8  | 0.13                  | 0.01   | 5000  | 43   |
| Al/PPy                                           | TVNG | DC | ~ | × | × | × | 0.4  | 0.17                  | 0.43   | 20000 | 45   |
| Au/PPy                                           | TVNG | DC | × | × | ~ | × | 0.7  | 0.15                  | 0.0082 | _     | 46   |
| PBFD/                                            | TVNG | DC | ~ | ~ | ~ | ~ | 40   | 1.05                  | 0.035  | 72000 | This |
| PEDOT:PF                                         |      |    |   |   |   |   |      |                       |        |       | work |

Video.S1. The  $V_{oc}$  of WDPs.

Video.S2. The  $I_{sc}$  of WDPs.

Video.S3. The WDPs charge a commercial lithium-ion battery at 5 Hz.

**Video.S4.** The WDPs charge drive the 25, 32, and 40 V colored electric lamps at 3 Hz, 4Hz and 5 Hz.

**Video.S5.** The WDPs drive the 3, 10, and 20 V colored lights by harvesting the kinetic energy of the human body.

**Video.S6.** The WDPs drive a 25 mW mobile phone, a10 mW smart bracelet and a 8 mW thermo-hygrometer by harvesting the kinetic energy of the human body.

**Video.S7.** The WDPs charge a 1 mF capacitor by harvesting the kinetic energy of the human body.

**Video.S8.** The WDPs drive the bluetooth transmitting system (Fig. S27) and the e-ink screen.