Electronic Supplementary Information

Stepped copper sites coupling voltage-induced surfactant assembly to achieve efficient CO² electroreduction to formate

Sicong Qiao,^{‡,a} Guikai Zhang,^{‡,b} Dong Tian,*^{,c} Wenjie Xu,^a Wei Jiang,^a Yuyang Cao,^a Jun Qian,^d Jing Zhang,^b Qun He,*,a and Li Song*,a,e

^a National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China.

b Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, China.

^c State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China.

^d High-End Chemicals and Cutting-Edge New Materials Technology Innovation Center of Hefei, East China Engineering Science and Technology Co., LTD., Hefei 230088, China.

^e Zhejiang Institute of Photonelectronics, Jinhua 321004, China.

‡These authors contributed equally to this work.

E-mail: song2012@ustc.edu.cn, hqun@ustc.edu.cn, dong.tian@kust.edu.cn

Methods

Synthesis of $Cu_2O@Cu$ *.* The $Cu_2O@Cu$ was synthesized via an electrochemical etching method. Initially, a Cu foil (10 μm in thickness) was cleaned sequentially under sonication using 0.5 M $H₂SO₄$, deionized water, and ethanol. Electrochemical redox processes were then performed using a conventional three-electrode system, where a 1×1 cm² Cu foil served as the working electrode, a Pt wire as the counter electrode, and an Ag/AgCl electrode as the reference. The electrolyte solution was Ar-saturated 0.5 M KHCO₃. The oxidized Cu foil precursor was obtained by subjecting the electrode to a potential of 3.3 V_{RHE} for 240 seconds. Subsequently, the final Cu₂O@Cu precatalyst was produced through further reduction at -0.55 V_{RHE} for 480 seconds.

Material Characterization. XRD patterns were collected using a Rigaku TTR III diffractometer equipped with Cu K_a radiation ($\lambda = 1.54178$ Å). SEM images were recorded using a Zeiss GeminiSEM 360 microscope. TEM, HRTEM, and EDX mapping images were obtained through a FEI Talos F200X microscope. For TEM tests, the $Cu₂O@Cu$ sheet was cut into pieces and immersed in water, followed by sonication for 20 minutes, with the resulting supernatant used for imaging. ATR-IR spectra were obtained through a Thermo Nicolet iN10 spectrometer. In-situ Raman measurements were performed using a Horiba LabRAM HR Evolution spectrometer in 0.5 M KHCO₃ with moderate amounts of CTAB. XPS survey spectra were collected using a Thermo ESCALAB 250Xi spectrometer. XPS and AES tests with Ar⁺ ething were carried out at the Catalysis and Surface Science end-station of the BL11U beamline at the National Synchrotron Radiation Laboratory (NSRL), China. XAFS and DAFS spectra were measured at the 1W1B beamline of the Beijing Synchrotron Radiation Facility (BSRF), China. All data processing adhered to standard procedures. $1-3$

Electrochemical Measurements. Electrochemical CO₂RR measurements were conducted using a CHI760E workstation configured with a standard three-electrode system. During these tests, all potentials were carefully calibrated and corrected for resistance compensation. In the H-cell configuration, a free-standing 1×0.5 cm² Cu₂O@Cu served as the working electrode, while a Pt wire and an Ag/AgCl electrode acted as the counter and reference electrodes, respectively. The electrolyte solution was CO_2 -saturated 0.5 M KHCO₃ containing moderate amounts of CTAB. The cathodic and anodic compartments of the cell were separated by a Nafion 117 membrane. Once the CV curves stabilized, chronoamperometry (CA) experiments were performed under applied potentials. Gas products were analyzed using online gas chromatography (GC, Agilent 7890B), and liquid products were quantified by mixing 700 μL of the electrolyte with 500 μ L of deuterated water and analyzing the mixture with a ¹H nuclear magnetic resonance spectrometer (¹H NMR, Bruker AVANCE III 400).^{4,5} Additionally, flow cell tests were conducted in a commercial reactor, also separated by a Nafion 117. In this setup, a 1×0.5 cm² Cu₂O@Cu and a gas diffusion electrode (GDE) were employed as the working electrode, with a Ni foam and an Ag/AgCl used as the counter and reference electrodes, respectively. The electrolyte solution was CO_2 -saturated 0.5 M KHCO₃ containing 0.5 mM CTAB, and the $CO₂$ flow rate was maintained at 30 sccm. To assess the stability, chronopotentiometry (CP) tests were conducted at a constant current density of -40 mA cm-2 . *DFT calculations*. Spin-polarized density functional theory (DFT) calculations were carried out using the Vienna ab initio simulation package (VASP) code.⁶⁻⁸ The generalized gradient approximation of Perdew-Burke-Ernzerhof (PBE) was employed for the electronic exchange

and correlation. $9-11$ The plane wave pseudopotential with a kinetic cutoff energy of 400 eV was used through the projector augmented wave (PAW) method.^{12,13} The vacuum layer was set to \sim 15 Å. For the structural optimization, atoms in the bottom two layers were fixed, while all other atoms were released until the force on each ion was smaller than 0.01 eV \AA ⁻¹. The convergence criteria of 1×10^{-5} were chosen. The Brillouin-zone integration was performed using the Monkhorst-Pack grids of $3\times3\times1$ and Methfessel-Paxton smearing of 0.05 eV. In addition, the van der Waals correction was implemented for the weak interaction with the catalyst using the DFT-PBE-D3 method.^{11,14} The changes in Gibbs free energies (ΔG) were calculated at 298.15 K with the equation of $\Delta G = \Delta E + \Delta ZPE$ - T ΔS , where ΔE was the binding energy difference of adsorbed species, ΔZPE was the difference of zero-point energy, and TΔS was the entropy contribution.¹⁵⁻¹⁷

Fig. S1 Digital photographs of (a) bare Cu foil, (b) oxidized Cu foil, and (c) $Cu₂O@Cu$.

Fig. S2 (a) TEM and (b) HRTEM images of $Cu_2(OH)_2CO_3$ in the oxidized Cu foil.

Fig. S3 (a-c) Digital photographs of $Cu₂O@Cu$.

Fig. S4 (a, b) SEM images of Cu₂O@Cu (a) and bare Cu foil (b), respectively. (c, d) Elemental mapping of $Cu₂O@Cu$ (c) and Cu foil (d), respectively.

Fig. S5 (a) CV curves of Cu₂O@Cu collected at various scan rates. (b) CV curves of Cu foil collected at various scan rates. (c) Plots of current densities versus scan rates.

Fig. S6 (a) The chronoamperometry curve of the electrochemical oxidation of Cu foil. (b) The chronoamperometry curve of the electrochemical reduction of oxidized Cu foil precursor.

Fig. S7 The EDX spectrum of Cu₂O@Cu.

Fig. S8 (a) XPS survey spectra of Cu foil and Cu₂O@Cu. (b, c) Cu 2p (b) and O 1s (c) XPS spectra without and with different durations of Ar^+ etching.

Fig. S9 (a) Total current densities of Cu foil measured in an H-type cell. (b) FE_{formate} and *j*_{formate} of Cu foil without 0.5 mM CTAB. (c) FEformate and *j*formate of Cu foil with 0.5 mM CTAB.

Fig. S10¹H NMR spectra of Cu₂O@Cu with 0.5 mM CTAB.

Fig. S11 GC spectra of Cu₂O@Cu with 0.5 mM CTAB.

and *j*_{formate} of Cu₂O@Cu with 0.2 mM CTAB. (d) FE_{formate} and *j*_{formate} of Cu₂O@Cu with 1.0 mM CTAB.

Fig. S13 (a) Total current densities of Cu₂O@Cu in an H-type cell with 0.5 mM KBr as the additive of electrolyte solution. (b) FE_{formate} and j_{format} of Cu₂O@Cu with 0.5 mM KBr.

Fig. S14 (a) ¹H NMR peak areas of CTAB at applied potentials. (b) FTIR spectra of KHCO₃ $(H₂O)$ and KHCO₃ (D₂O) electrolyte after CO₂RR.

Fig. S15 (a) Total current densities and (b) production rates of formate in a flow cell without and with 0.5 mM CTAB.

Fig. S16 Comparison of *j*_{formate} for various reported catalysts in a flow cell.

Fig. S17 (a) The applied potentials during in-situ electrochemical modulating differential XAFS measurements. (b) The differential spectrum of $Cu₂O$ and Cu foil.

Fig. S18 (a) Ex-situ XANES spectra of Cu₂O@Cu. (b) k^3 -weighted k -space Cu K-edge spectra.

(c) Ex-situ FT-EXAFS spectra. (d) Ex-situ Cu(111) FT-EXAFS spectra extracted from DAFS.

Fig. S19 (a) TEM image of $Cu₂O@Cu₋CO₂RR$. (b, c) HRTEM image and corresponding intensity profiles along Cu(111) lattices.

Fig. S20 Ex-situ HRTEM tests of $Cu₂O@Cu$. (a-d) HRTEM images and corresponding intensity profiles along $Cu₂O(111)$ and $Cu(111)$ lattices before $CO₂RR$. (e-h) HRTEM images and corresponding intensity profiles along Cu(111) lattices after CO_2RR . In detail, $Cu_2O@Cu$ was initially loaded on the Cu TEM grid to observe the morphology of $Cu₂O@Cu$ precatalyst. Then, a two-electrode system was assembled using the Cu grid as the cathode and carbon cloth as the anode. After the reduction at -1 mA for 1 hour in CO_2 -saturated 0.5 M KHCO₃, the Cu grid was used to observe the morphology of the resultant catalyst.

Fig. S21 Schematic diagram for the formation of Cu_{step} sites.

Fig. S22 Ex-situ XRD spectra of $Cu_2O@Cu$ and $Cu_2O@Cu_CO_2RR$.

Fig. S23 (a, b) Nyquist plots without and with CTAB measured at various potentials, respectively. (c, d) Solution resistances (c) and charge transfer resistances (d) without and with CTAB, respectively.

Fig. $S24$ (a, b) Schematic diagram of Cu_{flat} (a) and Cu_{step} (b) models.

Fig. S25 (a-d) Schematic diagram of H^* adsorbed on Cu_{flat} (a), Cu_{step} (b), Cu_{flat}-BTA⁺ (c), and

 $Cu_{step}-BTA⁺(d).$

Fig. S26 (a, b) Schematic diagram of *COOH (a) and *CO (b) adsorbed on $Cu_{flat}-BTA⁺$. (c, d) Schematic diagram of *COOH (a) and *CO (b) adsorbed on $Cu_{step}-BTA⁺$.

Fig. S27 (a) Free energy diagrams of $CO₂RR$ on $Cu_{flat}-BTA⁺$. (b) Free energy diagrams of $CO₂RR$ on $Cu_{step}-BTA⁺$.

Fig. S28 (a-c) Schematic diagram of two *CO (a), *OCCO (b), and *OCCHO (c) adsorbed on Cu_{flat}-BTA⁺. (d-f) Schematic diagram of two *CO (d), *OCCO (e), and *OCCHO (f) adsorbed on Cu_{step}-BTA⁺.

Fig. S29 Free energy diagrams of C-C coupling on $Cu_{flat}-BTA⁺$ and $Cu_{step}-BTA⁺$.

Fig. S30 (a, b) Schematic diagram of a BTA⁺ ligand adsorbed on Cu_{flat} (a) and Cu_{step} (b). (c, d) Schematic diagram of two BTA⁺ ligands adsorbed on Cu_{flat} (c) and Cu_{step} (d).

Fig. S31 The adsorption energies for BTA⁺ on Cu_{flat} and Cu_{step} sites.

Catalyst	Potential	j_{formate}	Electrolyte	Reference
	(V vs. RHE)	$(mA cm-2)$		
Cu ₂ O@Cu	-0.90	-77.44	0.5 _M	This work
			KHCO ₃	
Pb ₁ Cu ¹⁸	-0.87	-27.33	0.5 M	Nat. Nanotechnol., 2021,
			KHCO ₃	16, 1386-1393
$Bi-TiO2-70019$	-1.40	-18.57	0.1 M	J. Am. Chem. Soc., 2023,
			KHCO ₃	145, 14133-14142
SnPC/CNT-OH ²⁰	-1.20	-2.33	0.5 M	J. Am. Chem. Soc., 2023,
			KHCO ₃	145, 7242-7251
PSB-Cu N_3 ²¹	-1.13	-49.78	0.5 M	Nat. Commun., 2023, 14,
			KHCO ₃	6849
In-SAs/NC 22	-0.95	-29.01	0.5 M	Angew. Chem. Int. Ed.,
			KHCO ₃	2020, 59, 22465-22469
$SnO_2/Cu_6Sn_5/CuO^{23}$	-0.95	-23.70	0.5 M	Adv. Energy Mater.,
			NaHCO ₃	2023, 13, 2203506
$1T/1H$ SnS ₂ ²⁴	-1.11	-2.97	0.1 M	ACS Nano, 2023, 17,
			KHCO ₃	11318-11326
SnIn- 3^{25}	-1.10	-34.15	0.1 M	Appl. Catal. B: Environ.,
			KHCO ₃	2021, 288, 119979
Co-PbCO ₃ @CNS ²⁶	-1.10	-14.76	0.5 M	Appl. Catal. B: Environ.,
			KHCO ₃	2023, 326, 122404

Table S1. Comparison of CO₂RR performances in the H-type cell.

Catalyst	Potential	\dot{J} formate	Electrolyte	Reference
	(V vs. RHE)	$(mA cm-2)$		
Cu ₂ O@Cu	-0.90	-146.40	0.5 M KHCO ₃	This work
$SnPC/CNT-OH20$	-1.20	-95.94	1 M KOH	J. Am. Chem. Soc., 2023,
				145, 7242-7251
$Sn_{0.80}Bi_{0.20}Q_9Bi$ - SnO _x ²⁷	-1.38	74.60	0.5 M KHCO ₃	Adv. Mater., 2020, 32,
				2002822
PSB-CuN ₃ ²¹	-1.07	-125.08	0.5 M KHCO ₃	Nat. Commun., 2023, 14,
				6849
$SnO_2/Cu_6Sn_5/CuO^{23}$	-1.15	-71.69	1 M KOH	Adv. Energy Mater.,
				2023, 13, 2203506
Bi_2O_3/BiO_{2-x}^{28}	-1.3	-111.42	0.5 M KHCO ₃	Nano Lett., 2022, 22,
				1656-1664
InN ²⁹	-0.90	-47.29	1 M KOH	Nano Lett., 2020, 20,
				8229-8235
InS $NRs30$	-1.10	-89.23	1 M KOH	ACS Appl. Mater.
				Interfaces, 2022, 14,
				25257-25266
SnO ₂ /PANI ³¹	-1.30	-56.12	2 M KHCO ₃	ACS Appl. Mater.
				<i>Interfaces</i> , 2022, 14,
				42144-42152
$SnIn-325$	-1.20	-116.00	1 M KHCO ₃	Appl. Catal. B: Environ.,
				2021, 288, 119979

Table S2. Comparison of CO₂RR performances in the flowing cell.

References

- (1) B. Ravel and M. Newville, *J. Synchrotron Radiat.*, 2005, **12**, 537-541.
- (2) I. Pickering, M. Sansone, J. Marsch and G. George, *J. Am. Chem. Soc.*, 1993, **115**, 6302- 6311.
- (3) W. Xu, G. Zhang, H. Shou, J. Zhou, S. Chen, S. Chu, J. Zhang and L. Song, *J. Synchrotron. Radiat.*, 2022, **29**, 1065-1073.
- (4) Y. Zhou, Q. Zhou, H. Liu, W. Xu, Z. Wang, S. Qiao, H. Ding, D. Chen, J. Zhu, Z. Qi, X. Wu, Q. He and L. Song, *Nat. Commun.*, 2023, **14**, 3776.
- (5) B. Wei, Y. Xiong, Z. Zhang, J. Hao, L. Li and W. Shi, *Appl. Catal. B: Environ.*, 2021, **283**, 119646.
- (6) W. Kohn and L. Sham, *Phys. Rev.*, 1965, **140**, A1133-A1138.
- (7) P. Hohenberg and W. Kohn, *Phys. Rev.*, 1964, **136**, B864-B871.
- (8) G. Kresse and J. Furthmüller, *Phys. Rev. B*, 1996, **54**, 11169-11186.
- (9) J. Perdew and Y. Wang, *Phys. Rev. B*, 1992, **46**, 12947-12954.
- (10) J. Zheng, G. Ceder, T. Maxisch, W. Chim and W. Choi, *Phys. Rev. B*, 2007, **75**, 104112.
- (11) Q. Liang, Y. Zhao, J. Chen, J. Dai, X. Ding, Z. Tong, S. Xie, J. Zhang, Z. Zhou, J. Li, J.
- Li and Y. Zhou, *Chem. Mater.*, 2022, **34**, 5607-5620.
- (12) P. Blöchl, *Phys. Rev. B*, 1994, **50**, 17953-17979.
- (13) L. Liang, K. Niu, L. Zhang, J. Tian, K. Zhou, X. Wang, X. Zhang and M. Hong, *ACS Appl. Nano Mater.*, 2021, **4**, 6135-6144.
- (14) W. Cao, B. He, C. Liao, L. Yang, L. Zeng and C. Dong, *J. Solid State Chem.*, 2009, **182**, 3353-3357.
- (15) R. Xia, D. Tian, S. Kattel, B. Hasa, H. Shin, X. Ma, J. Chen and F. Jiao, *Nat. Commun.*, 2021, **12**, 1949.
- (16) Y. Liu, D. Tian, A. Biswas, Z. Xie, S. Hwang, J. Lee, H. Meng and J. Chen, *Angew. Chem. Int. Ed.*, 2020, **59**, 11345-11348.
- (17) D. Tian, S. Denny, K. Li, H. Wang, S. Kattel and J. Chen, *Chem. Soc. Rev.*, 2021, **50**, 12338-12376.
- (18) T. Zheng, C. Liu, C. Guo, M. Zhang, X. Li, Q. Jiang, W. Xue, H. Li, A. Li, C. Pao, J. Xiao, C. Xia and J. Zeng, *Nat. Nanotechnol.*, 2021, **16**, 1386-1393.
- (19) G. Jia, Y. Wang, M. Sun, H. Zhang, L. Li, Y. Shi, L. Zhang, X. Cui, T. Lo, B. Huang and J. Yu, *J. Am. Chem. Soc.*, 2023, **145**, 14133-14142.
- (20) Y. Deng, J. Zhao, S. Wang, R. Chen, J. Ding, H. Tsai, W. Zeng, S. Hung, W. Xu, J. Wang,
- F. Jaouen, X. Li, Y. Huang and B. Liu, *J. Am. Chem. Soc.*, 2023, **145**, 7242-7251.
- (21) J. Dong, Y. Liu, J. Pei, H. Li, S. Ji, L. Shi, Y. Zhang, C. Li, C. Tang, J. Liao, S. Xu, H. Zhang, Q. Li and S. Zhao, *Nat. Commun.*, 2023, **14**, 6849.
- (22) H. Shang, T. Wang, J. Pei, Z. Jiang, D. Zhou, Y. Wang, H. Li, J. Dong, Z. Zhuang, W. Chen, D. Wang, J. Zhang and Y. Li, *Angew. Chem. Int. Ed.*, 2020, **59**, 22465-22469.
- (23) Y. Shi, Y. Wang, J. Yu, Y. Chen, C. Fang, D. Jiang, Q. Zhang, L. Gu, X. Yu, X. Li, H. Liu and W. Zhou, *Adv. Energy Mater.*, 2023, **13**, 2203506.
- (24) Y. Kawabe, Y. Ito, Y. Hori, S. Kukunuri, F. Shiokawa, T. Nishiuchi, S. Jeong, K. Katagiri,
- Z. Xi, Z. Li, Y. Shigeta and Y. Takahashi, *ACS Nano*, 2023, **17**, 11318-11326.
- (25) J. Wang, S. Ning, M. Luo, D. Xiang, W. Chen, X. Kang, Z. Jiang and S. Chen, *Appl. Catal. B: Environ.*, 2021, **288**, 119979.
- (26) N. Zhang, D. Li, X. Wang, R. Cai, C. Dong, T. Thi Thuy Nga, L. Zhang and D. Yang, *Appl. Catal. B: Environ.*, 2023, **326**, 122404.
- (27) Q. Yang, Q. Wu, Y. Liu, S. Luo, X. Wu, X. Zhao, H. Zou, B. Long, W. Chen, Y. Liao, L.
- Li, P. Shen, L. Duan and Z. Quan, *Adv. Mater.*, 2020, **32**, 2002822.
- (28) X. Feng, H. Zou, R. Zheng, W. Wei, R. Wang, W. Zou, G. Lim, J. Hong, L. Duan and H. Chen, *Nano Lett.*, 2022, **22**, 1656-1664.
- (29) A. Zhang, Y. Liang, H. Li, B. Zhang, Z. Liu, Q. Chang, H. Zhang, C. Zhu, Z. Geng, W. Zhu and J. Zeng, *Nano Lett.*, 2020, **20**, 8229-8235.
- (30) Y. Zhang, J. Lan, F. Xie, M. Peng, J. Liu, T. Chan and Y. Tan, *ACS Appl. Mater. Interfaces*, 2022, **14**, 25257-25266.
- (31) D. Sassone, J. Zeng, M. Fontana, M. Farkhondehfal, C. Pirri and S. Bocchini, *ACS Appl. Mater. Interfaces*, 2022, **14**, 42144-42152.