Electronic Supplementary Information

Experimental section

Materials. Zinc nitrate hexahydrate (Zn(NO₃)₂·6H₂O), 2-methylimidazole (MeIM), Iron(Ⅲ) nitrate nonahydrate (Fe(NO₃)₃·9H₂O), Copper(II) phthalocyanine (CuPc) Potassium nitrate (KNO₃), potassium nitrate-¹⁵N (K¹⁵NO₃), and deuterium oxide (D₂O, 99.9 atom% D) were obtained from the Shanghai Macklin Biochemical Co., Ltd. Ethanol (C₂H₅OH), sodium hydroxide (NaOH), methanol, hydrochloric acid (HCl), and potassium hydroxide (KOH) were purchased from Tianjin Yuanli Company (Tianjin, China). Sodium nitroferricyanide (III) dihydrate (Na₂Fe(CN)₅NO·2H₂O), para-(dimethylamino) benzaldehyde (C₉H₁₁NO), sodium hypochlorite (NaClO), maleic acid (C₄H₄O₄), sodium citrate (C₆H₅Na₃O₇), and salicylic acid $(C_7H_6O_3)$ were obtained from Aladdin Ltd. Carbon paper was bought from Beijing Chemical Corporation. Nafion solution (5 wt%) was purchased from Sigma-Aldrich Chemical Reagent Co., Ltd. Deionized water (18.2 MΩ cm) was obtained from a Millipore system.

Synthesis of N-C. In a typical procedure, 2.3 g 2-methylimidazole was ultrasonically dissolved in 50 mL methanol for 5 min, and then added into 50 mL methanol containing 1.04 g Zn(NO₃)₂·6H₂O under vigorous stirring. The above solution was stirred for 24 h at room temperature. Then, The resulting precipitates were centrifuged and washed with methanol for several times and dried in vacuum at 70 ℃ overnight. Finally, The

collected sample was placed in a tube furnace and heat-treated to 1000 ℃ for 3 h at a heating rate of 5 ℃/min in Ar atmosphere to obtain N-C. *Synthesis of Cu-Fe-N-C.* In a typical procedure, 2.3 g 2-methylimidazole and 20 mg CuPc were ultrasonically dissolved in 50 mL methanol for 5 min, and then added into 50 mL methanol containing 1.04 g Zn(NO₃)₂·6H₂O and 20 mg Fe(NO₃)₃·9H₂O under vigorous stirring. The above solution was stirred for 24 h at room temperature. Then, The resulting precipitates were centrifuged and washed with methanol for several times and dried in vacuum at 70 ℃ overnight. Finally, The collected sample was placed in a tube furnace and heat-treated to 1000 ℃ for 3 h at a heating rate of 5 ℃/min in Ar atmosphere to obtain Cu-Fe-N-C.

Synthesis of Cu-N-C. Cu-N-C was synthesized using the similar method as Cu-Fe-N-C except that there was no added Fe(NO₃)₃·9H₂O.

Synthesis of Fe-N-C. Fe-N-C was synthesized using the similar method as Cu-Fe-N-C except that there was no added CuPc.

Characterization. The X-ray diffraction (XRD) patterns were obtained from a D8-Focus X-ray diffractometer (BRUKER AXS GMBH) equipped with Cu Kα radiation at 40 kV and 40 mA. Scanning electron microscopy (SEM) images were collected from a S-4800 scanning electron microscope. Transmission electron microscopy (TEM) images were performed on a Tecnai G2F-20 microscope with a field-emission gun, operated at 200 kV. High-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) measurements were carried out on a ARM200F. The Xray photoelectron spectroscopy (XPS) spectra were performed using a PHI-1600 X-ray photoelectron spectrometer equipped with Al Kα radiation. Binding energy was calibrated to the C1s feature located at 284.8 eV. The absorbance data of spectrophotometer were measured on SHIMADZU UV-1800 ultraviolet-visible (UV-Vis) spectrophotometer. In situ Fourier transform infrared (FTIR) spectroscopy were measured with a BRUKER TENSOR FTIR spectrometer. The online differential electrochemical mass spectrometry (DEMS) (QAS 100, Linglu instruments (Shanghai) Co. Ltd) measurements were collected to capture the intermediates. ¹H nuclear magnetic resonance (NMR) spectra were collected on JEOL JNM ECZ600R. *Electrochemical NO3RR measurements.* The electrochemical tests were carried out using corrtest electrochemical workstation on a threeelectrode configuration H-type cell. To prepare the work cathode, 5 mg obtained catalysis were dissolved in 960 µL ethanol and 40 µL of Nafion solution (5wt%) ultrasonically for at least 1 h to form a homogeneous ink. Then, 40 µL of catalyst ink was loaded onto a carbon paper with area of 1 ×0.5 cm² with a mass loading of 0.4 mg cm⁻² and dried under ambient conditions. Pt slice and Hg/HgO were used as counter electrode and reference electrode, respectively. The electrolyte in both the cathode and anode chamber were made up of 1 M KOH with 0.1 M KNO₃. All potentials were converted to the reversible hydrogen electrode (RHE) scale via calibration (E(RHE)= E (Hg/HgO) + 0.098 V + 0.059 × pH. Prior to each measurement, the electrolyte was purged with Ar gas for at least 30 minutes to remove O₂ and N₂. The linear sweep voltammetry (LSV) tests were scanned at a rate of 10 mV s⁻¹. The potentiostatic tests were operated at different potentials for 30 min. The electrolyte in cathodic compartment was stirred with a rate of 600 rpm. The long-term performance of the Cu-Fe-N-C catalysts was evaluated at -0.8 V vs. RHE, in which the 5 L electrolyte with flow rate of 10 mL min⁻¹. The electroreduction reaction maintained 50 h electrolysis each time. The cyclic voltammograms (CV) were perfromed at different scan rate (10, 20, 30, 40, 50, 60 mV s⁻¹) to obtain the double-layer capacitance (C_{dl}). The C_d was recorded by plotting ΔJ against the scan rate.

¹⁵N isotope labelling experiments and quantification by ¹H nuclear magnetic resonance (NMR). To determine the NH₃ yield rate by ¹H NMR, a calibration curve was made using a series of standard ¹⁵NH₄Cl solutions. For K¹⁵NO₃ isotope labelling experiment, the K¹⁵NO₃ was chose rather than K 14 NO₃. After NO₃RR electroreduction, the pH value of the electrolyte after reaction was adjusted to acidic with external standard of maleic

acid. Typically, 0.5 mL above mixture and 50 μL of D₂O were added to the NMR tube for the further analysis using ¹H NMR (600 MHz). The ratio of the peak area of ¹⁵NH₄⁺ to maleic acid were determined to confirm the source of NH₃ qualitatively.

Determination of ammonia. The produced NH³ was determined by the indophenol blue method. In detail, we took out a certain amount of electrolyte after electrochemical measurement and diluted it to the detection range. Firstly, 2 mL of the diluted electrolyte was mixed with 2 mL of 1 M NaOH solution containing salicylic acid (5 wt.%) and sodium citrate (5 wt.%). Then, 1.0 mL of NaClO solution (0.05 M), and 0.2 mL of sodium nitroferricyanide solution (1 wt.%) were added into the solution. The UV-vis absorption spectram were performed after reaction in the dark for 2 h. Finally, The concentration of NH₃ was recored using the absorbance at the wavelength of 655 nm. The calibration curve for NH₃ was measured using a set of different NH4Cl solution as standard.

Determination of nitrite. The concentration of nitrite (NO₂⁻) was determined with sulfonamide in an acidic environment, in which the diazotized compound is coupled with N-(1-naphthyl) ethylenediamine dihydrochloride. Firstly, 0.50 g of sulfanilamide was dissolved in 50.0 mL of 2.0 M HCl solution, and then 0.1 mL of the solution was mixed to 5 mL of diluted electrolyte with 10 minutes reaction at room condition. Next, 0.10 mL N- (1-Naphthyl) ethylenediamine dihydrochloride solution (1 mg/mL) was added to the solution and rested 30 minutes reaction at room condition. Finally, The absorbance at a wavelength of 540 nm was recorded to determine the concentration of NO₂⁻. The calibration curve for NO₂⁻ was measured using a set of different $KNO₂$ solution as standard.

Faradaic efficiency and NH₃ yield rate. The faradaic efficiency (FE) of NH₃ and NO₂[−] production was determined by the following equation:

$$
FE (NH3) = (8F \times C \times V) / Q
$$

FE (NO₂⁻) = (2F \times C \times V) / Q

Where F is Faraday constant (96485 C mol⁻¹), C is the measured NH₄⁺ or NO₂⁻ concentration in the electrolyte, V is the volume of the electrolyte, Q is the the quantity of applied electricity.

The $NH₃$ yield rate can be calculated using the following equation:

NH₃ yield rate = $(C \times V) / (t \times A)$

Where t is the electrolysis time; A is the geometric area of the electrode (0.5 cm−2).

Electrochemical in situ FTIR spectrometry. In situ FTIR measurements were obtained from a BRUKER TENSOR FTIR spectrometer. The electrochemical tests were carried out in a three-electrode configuration H-type cell. The catalyst was used as the working electrode, while Pt slice and Hg/HgO were used as counter electrode and reference electrode, respectively. Before each measurement, the background spectrum of the working electrode was tested at an open circuit voltage. In situ FTIR spectra were obtained at different constant potentials.

Electrochemical online DEMS test. The DEMS measurements were obtained from a Linglu instruments. 1 M KOH with 0.1 M KNO³ was used as electrolyte. The catalyst was used as the working electrode, while Hg/HgO and Pt wire were used as the reference and counter electrodes, respectively. Chronoamperometry at −0.8 V was performed for 60 s, which the corresponding mass signals were detected. After electrochemical test, wait for the mass signal to return to the baseline. The following cycles were carried out under the same conditions to minimize errors. The measurement was finished after four cycles.

Computational Details

All DFT calculations were performed by Vienna ab initio Simulation package (VASP) using spin-polarized density functional with the Hubbard model (DFT+U), and employing the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional with the projector augmented wave (PAW) pseudopotential method to describe interactions between the core and electrons.¹⁻⁴ Besides, the DFT-D3 method of Grimme was used for describing the long-range dispersion interaction.^{5, 6} The value of the U_{eff} was fixed at 4.0 eV. 7,8 All atomic positions were fully relaxed until energy and force reached the tolerance of 1 × 10⁻⁵ eV and 0.02 eV Å⁻¹, respectively. A kinetic energy cut-off of 520 eV was used. The Monkhorst-Pack kpoint of $2\times2\times1$ was used to sample the Brillouin zone. All the slabs were separated by at least 15 Å of vacuum space to reduce spurious interactions between atomic layers. The following pathways are considered the most likely to occur on Cu-Fe-N-C. Involving the intermediates *NO₃, *NO₃H, *NO₂, *NO₂H, *NO, *NHO, *NH₂O, *NH₂OH, *NH₂ and *NH₃. The optimal reaction process can be represented by the following equation.

- * + $NO_3^ \rightarrow$ * NO_3 + e (1)
- $*NO₃ + H⁺ + e⁻ \rightarrow *NO₃H$ (2)
- *NO₃H + H⁺ + e⁻ \rightarrow *NO₂ + H₂O (3)

where * represents the active site. The Gibbs free energy of the reaction can be calculated using the following equation.

$$
\Delta G_{ads} = \Delta E_{ads} + \Delta E_{ZPE} - T\Delta S_{ads}
$$
 (12)

Where ΔE*ads* is the electronic adsorption energy, ∆E*ZPE* and T∆S*ads* are the change in zero-point energy of the adsorbates and the corresponding entropy difference. The zero point energy and entropy were obtained by calculating the vibration frequency of adsorbed molecules. To avoid the difficulties of using periodic DFT calculations for charged NO₃, thermodynamic cycles were used to calculate the overall free energy of NO₃ adsorption.^{9, 10}

Fig. S1 N₂ adsorption-desorption isotherms curves of (a) Cu-N-C, (b) Fe-N-C, and (c) Cu-Fe-N-C.

Fig. S2 (a) SEM and (b)TEM images for N-C.

Fig. S3 (a) SEM, (b, c) TEM, and (d) HAADF-STEM images for Cu-N-C.

Fig. S4 (a) SEM, (b, c) TEM, and (d) HAADF-STEM images for Fe-N-C.

Fig. S5 (a) SEM and (b)TEM images for Cu-Fe-N-C.

Fig. S6 XPS spectra in the (a) Cu 2p region, (b) Fe 2p region.

Fig. S7 XPS spectra of the (a) Cu-N-C, (b) Fe-N-C, and (c) Cu-Fe-N-C in the N 1s region.

Fig. S8 The corresponding Cu K-edge EXAFS fitting for Cu-N-C.

Fig. S9 The corresponding Fe K-edge EXAFS fitting for Fe-N-C.

Fig. S12 The LSV curves of Cu-Fe-N-C in 1 M KOH electrolyte with and without KNO₃.

Fig. S13 The LSV curves of Cu-N-C in 1 M KOH electrolyte with and without KNO3.

Fig. S14 The LSV curves of Fe-N-C in 1 M KOH electrolyte with and without KNO₃.

Fig. S15 (a) The UV-visible absorption spectra of various NH₄⁺ concentrations. (b) The linear fitting results of NH₄⁺ calibration curve.

Fig. S16 (a) The UV-visible absorption spectra of various NO_2^- concentrations. (b) The linear fitting results of NO_2^- calibration curve.

Fig. S17 (a) Time-dependent current density curves of Cu-Fe-N-C for 30 min in 1 M KOH with 0.1 M KNO₃. (b) The corresponding UV-visible absorption spectra after $NO₃RR$ electrocatalysis.

Fig. S18 (a) Time-dependent current density curves of Cu-N-C for 30 min in 1 M KOH with 0.1 M KNO₃. (b) The corresponding UV-visible absorption spectra after NO₃RR electrocatalysis.

Fig. S19 (a) Time-dependent current density curves of Fe-N-C for 30 min in 1 M KOH with 0.1 M KNO₃. (b) The corresponding UV-visible absorption spectra after NO₃RR electrocatalysis.

Fig. S20 (a) Time-dependent current density curves of N-C for 30 min in 1 M KOH with 0.1 M KNO₃. (b) The corresponding UV-visible absorption spectra after NO₃RR electrocatalysis.

Fig. $S21$ j_{NH3} of Cu-Fe-N-C, Cu-N-C, Fe-N-C, and N-C in 1 M KOH with 0.1 M KNO₃.

Fig. S22 (a) The ¹H NMR spectra of various ¹⁴NH₄⁺ concentrations using maleic acid as an internal standard. (b) The linear fitting results of ¹⁴NH₄⁺ calibration curve.

Fig. S23 (a) The ¹H NMR spectra of various ¹⁵NH₄⁺ concentrations using maleic acid as an internal standard. (b) The linear fitting results of ¹⁵NH₄⁺ calibration curve.

Fig. S24 The ¹H NMR spectra of electrolysis after electrocatalytic NO₃RR for Cu-Fe-N-C at -0.8 V using ¹⁴NO₃⁻ and ¹⁵NO₃⁻ as the N source.

Fig. S25 XRD pattern of Cu-Fe-N-C after NO₃RR.

Fig. S26 TEM images of Cu-Fe-N-C after NO₃RR.

Fig. S27 XPS survey spectrum of Cu-Fe-N-C after NO₃RR.

Fig. S28 XPS spectra of Cu-Fe-N-C in the (a) Cu 2p region, (b) Fe 2p region, and (c) N 1s region after NO3RR.

Fig. S29 Time-dependent concentration change of NO_3 -N, NO_2 -N, and NH_4 ⁺-N in the electrolytes for Cu-Fe-N-C.

Fig. S30 The Arrhenius plots of the kinetic current at −0.8 V vs. RHE in 1M KOH + 0.1 M KNO3.

Fig. S31 The electrochemical impedance spectroscopy (EIS) Nyquist plots of (a) Cu-N-C, (b) Fe-N-C, and (c) Cu-Fe-N-C in 1 M KOH at different potentials. (d) The comparison of R_{ct} for the catalysis above in 1 M KOH.

Fig. S32 The electrochemical impedance spectroscopy (EIS) Nyquist plots of (a) Cu-N-C, (b) Fe-N-C, and (c) Cu-Fe-N-C in 1 M KOH with 0.1 M KNO₃ at different potentials. (d) The comparison of R_{ct} for the catalysis above in 1 M KOH with 0.1 M KNO₃.

Fig. S33 Cyclic voltammograms (CV) profiles obtained on the (a) Cu-N-C, (b) Fe-N-C, and (c) Cu-Fe-N-C. (d) The determination of double layer capacitance for catalysts.

Fig. S34 Double layer capacitance normalized LSV curves of Cu-N-C, Fe-N-C, and Cu-Fe-N-C.

Fig. S35 Electrochemical online DEMS of (a) Cu-N-C and (b) Fe-N-C

Fig. S36 EPR spectra of Cu-Fe-N-C catalyzed NO₃RR solutions with different concentrations of KNO₃.

Fig. S37 Free energy profiles of NH₃ formation from NO₃· reduction on Cu-N-C, Fe-N-C, and Cu-Fe-N-C at -0.8 V vs. RHE.

Fig. S38 Differential charge density at the (a) Cu-N-C and (b) Fe-N-C surface (cyan and yellow represent charge depletion and accumulation, respectively).

Fig. S39 Differential charge density of *NO₃H on the (a) Cu-N-C and (b) Fe-N-C surface, respectively (cyan and yellow represent charge depletion and accumulation, respectively).

Fig. S40 Differential charge density of *NH₂O on the (a) Cu-N-C and (b) Fe-N-C surface, respectively (cyan and yellow represent charge depletion and accumulation, respectively).

Table S1 EXAFS fitting parameters at the Cu K-edge for various samples

^{*a*}CN: coordination numbers; ^{*b*}R: bond distance; ^cσ²: Debye-Waller factors; ^{*d*}ΔE₀: the inner potential correction. R factor: goodness of fit.

Table S2 EXAFS fitting parameters at the Fe K-edge for various samples

^{*a*}CN: coordination numbers; ^{*b*}R: bond distance; ^cσ²: Debye-Waller factors; ^{*d*} ΔE₀: the inner potential correction. R factor: goodness of fit.

Table S3 Comparison of the electrocatalytic NO₃RR performance for NH₃ production of Cu-Fe-N-C with reported catalysts.

Table S4 E*^d* analysis of the constructed Cu-Fe-N-C, Cu-N-C, and Fe-N-C structures models (E*^d* represents the d-band center).

Table S5 Bader charge analysis of the constructed Cu-Fe-N-C, Cu-N-C, and Fe-N-C structures models (q represents the total charge).

References

- 1. V. I. Anisimov, F. Aryasetiawan and A. I. Lichtenstein, *J. Phys.: Condens. Matter.*, 1997, **9**, 767-808.
- 2. V. I. Anisimov, J. Zaanen and O. K. Andersen, *Phys. Rev. B.*, 1991, **44**, 943-954.
- 3. P. E. Blochl, *Phys. Rev. B.*, 1994, **50**, 17953-17979.
- 4. L. B. Hansen and J. K. Nørskov, *Phys. Rev. B.*, 1999, **59**, 7413.
- 5. S. Grimme, S. Ehrlich and L. Goerigk, *J. Comput. Chem.*, 2011, **32**, 1456-1465.
- 6. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, *J Chem Phys*, 2010, **132**, 154104.
- 7. K. Liu, J. Fu, Y. Lin, T. Luo, G. Ni, H. Li, Z. Lin and M. Liu, *Nat. Commun.*, 2022, **13**, 2075.
- 8. Z. He, X. Liu, M. Zhang, L. Guo, M. Ajmal, L. Pan, C. Shi, X. Zhang, Z.-F. Huang and J.-J. Zou, *J. Energy Chem.,* 2023, **85**, 570-580.
- 9. S. Guo, K. Heck, S. Kasiraju, H. Qian, Z. Zhao, L. C. Grabow, J. T. Miller and M. S. Wong, *ACS Catal.*, 2017, **8**, 503-515.
- 10. X. Zhang, X. Liu, Z.-F. Huang, L. Guo, L. Gan, S. Zhang, M. Ajmal, L. Pan, C. Shi, X. Zhang, G. Yang and J.-J. Zou, *ACS Catal.*, 2023, **13**, 14670- 14679.
- 11. X. F. Cheng, J. H. He, H. Q. Ji, H. Y. Zhang, Q. Cao, W. J. Sun, C. L. Yan and J. M. Lu, *Adv. Mater.*, 2022, **34**, e2205767.
- 12. J. Yang, H. Qi, A. Li, X. Liu, X. Yang, S. Zhang, Q. Zhao, Q. Jiang, Y. Su, L. Zhang, J. F. Li, Z. Q. Tian, W. Liu, A. Wang and T. Zhang, *J. Am. Chem. Soc.*, 2022, **144**, 12062-12071.
- 13. Z. Y. Wu, M. Karamad, X. Yong, Q. Huang, D. A. Cullen, P. Zhu, C. Xia, Q. Xiao, M. Shakouri, F. Y. Chen, J. Y. T. Kim, Y. Xia, K. Heck, Y. Hu, M. S. Wong, Q. Li, I. Gates, S. Siahrostami and H. Wang, *Nat. Commun.*, 2021, **12**, 2870.
- 14. J. Xu, S. Zhang, H. Liu, S. Liu, Y. Yuan, Y. Meng, M. Wang, C. Shen, Q. Peng, J. Chen, Xiaoyang Wang, K. L. Li Song and W. Chen, *Angew. Chem., Int. Ed.*, **62**, e202308044.
- 15. Z. Ke, D. He, X. Yan, W. Hu, N. Williams, H. Kang, X. Pan, J. Huang, J. Gu and X. Xiao, *ACS Nano*, 2023, **17**, 3483-3491.
- 16. J. Li, M. Li, N. An, S. Zhang, Q. Song, Y. Yang, J. Li and X. Liu, *PANS*, 2022, **119**, e2123450119.
- 17. S. Zhang, J. Wu, M. Zheng, X. Jin, Z. Shen, Z. Li, Y. Wang, Q. Wang, X. Wang, H. Wei, J. Zhang, P. Wang, S. Zhang, L. Yu, L. Dong, Q. Zhu, H. Zhang and J. Lu, *Nat. Commun.*, 2023, **14**, 3634.
- 18. Z. Gao, Y. Lai, Y. Tao, L. Xiao, L. Zhang and F. Luo, *ACS Cent. Sci.*, 2021, **7**, 1066-1072.
- 19. G.-F. Chen, Y. Yuan, H. Jiang, S.-Y. Ren, L.-X. Ding, L. Ma, T. Wu, J. Lu and H. Wang, *Nat. Energy*, 2020, **5**, 605-613.
- 20. R. Daiyan, T. Tran-Phu, P. Kumar, K. Iputera, Z. Tong, J. Leverett, M. H. A. Khan, A. Asghar Esmailpour, A. Jalili, M. Lim, A. Tricoli, R.-S. Liu, X. Lu, E. Lovell and R. Amal, *Energy Environ. Sci.*, 2021, **14**, 3588-3598.
- 21. X. Fu, X. Zhao, X. Hu, K. He, Y. Yu, T. Li, Q. Tu, X. Qian, Q. Yue, M. R. Wasielewski and Y. Kang, *Appl. Mater. Today*, 2020, **19**, 100620.
- 22. Y. Wang, W. Zhou, R. Jia, Y. Yu and B. Zhang, *Angew. Chem. Int. Ed.*, 2020, **59**, 5350-5354.
- 23. J. Li, J. Gao, T. Feng, H. Zhang, D. Liu, C. Zhang, S. Huang, C. Wang, F. Du, C. Li and C. Guo, *J. Power Sources*, 2021, **511**, 230463.
- 24. H. Liu, X. Lang, C. Zhu, J. Timoshenko, M. Ruscher, L. Bai, N. Guijarro, H. Yin, Y. Peng, J. Li, Z. Liu, W. Wang, B. R. Cuenya and J. Luo, *Angew. Chem. Int. Ed.*, 2022, **61**, e202202556.
- 25. Z. Fang, Z. Jin, S. Tang, P. Li, P. Wu and G. Yu, *ACS Nano*, 2022, **16**, 1072-1081.
- 26. Y. Yu, C. Wang, Y. Yu, Y. Wang and B. Zhang, *Sci. Chi. Chem*, 2020, **63**, 1469-1476.
- 27. Y. Han, X. Zhang, W. Cai, H. Zhao, Y. Zhang, Y. Sun, Z. Hu, S. Li, J. Lai and L. Wang, *J. Colloid Interface Sci.*, 2021, **600**, 620-628.
- 28. F. Lei, W. Xu, J. Yu, K. Li, J. Xie, P. Hao, G. Cui and B. Tang, *Chem. Eng. J.*, 2021, **426**, 131317.
- 29. R. Jia, Y. Wang, C. Wang, Y. Ling, Y. Yu and B. Zhang, *ACS Catal.*, 2020, **10**, 3533-3540.
- 30. N. Zhang, J. Shang, X. Deng, L. Cai, R. Long, Y. Xiong and Y. Chai, *ACS Nano*, 2022, **16**, 4795-4804.
- 31. L. Li, C. Tang, X. Cui, Y. Zheng, X. Wang, H. Xu, S. Zhang, T. Shao, K. Davey and S. Z. Qiao, *Angew. Chem. Int. Ed.*, 2021, **60**, 14131-14137.
- 32. Y. Huang, J. Long, Y. Wang, N. Meng, Y. Yu, S. Lu, J. Xiao and B. Zhang, *ACS Appl. Mater. Interfaces*, 2021, **13**, 54967-54973.
- 33. L. Zhou, X. Chen, S. Zhu, K. You, Z. J. Wang, R. Fan, J. Li, Y. Yuan, X. Wang, J. Wang, Y. Chen, H. Jin, S. Wang and J. J. Lv, *Angew. Chem. Int. Ed.*, 2024, **63**, e202401924.
- 34. Y. Zhou, L. Zhang, M. Wang, Z. Zhu, N. Li, T. Qian, C. Yan and J. Lu, *ACS Catal.*, 2024, **14**, 7907-7916.
- 35. R. Zhang, Y. Zhang, B. Xiao, S. Zhang, Y. Wang, H. Cui, C. Li, Y. Hou, Y. Guo, T. Yang, J. Fan and C. Zhi, *Angew. Chem. Int. Ed.*, 2024, e202407589.
- 36. J. Ni, J. Yan, F. Li, H. Qi, Q. Xu, C. Su, L. Sun, H. Sun, J. Ding and B. Liu, *Adv. Energy Mater.*, 2024, 2400065.
- 37. Y. Zhou, L. Zhang, Z. Zhu, M. Wang, N. Li, T. Qian, C. Yan and J. Lu, *Angew. Chem. Int. Ed.*, 2024, **63**, e202319029.
- 38. S. Liang, X. Teng, H. Xu, L. Chen and J. Shi, *Angew. Chem. Int. Ed.*, 2024, **63**, e202400206.
- 39. W. Zhong, Q. L. Hong, X. Ai, C. Zhang, F. M. Li, X. F. Li and Y. Chen, *Adv. Mater.*, 2024, **36**, e2314351.
- 40. W. Liao, J. Wang, G. Ni, K. Liu, C. Liu, S. Chen, Q. Wang, Y. Chen, T. Luo, X. Wang, Y. Wang, W. Li, T. S. Chan, C. Ma, H. Li, Y. Liang, W. Liu, J. Fu, B. Xi and M. Liu, *Nat. Commun.*, 2024, **15**, 1264.
- 41. X. Zhu, C. Ma, Y.-C. Wang, K. Qu, L. Song, J. Wang, Y. Gong, X. Liu, J. Zhang, Q. Lu and A.-L. Wang, *Energy Environ. Sci.*, 2024, **17**, 2908-2920.
- 42. Y. Liu, W. Qiu, P. Wang, R. Li, K. Liu, K. M. Omer, Z. Jin and P. Li, *Appl. Catal. B-Environ.*, 2024, **340**, 123228.