Supplementary Information for

A wiping-type semiconductor-liquid generator utilizing water-

bearing solid materials and hydrated biological tissues

Zhaoqi Liu^{a,b}, Shiquan Lin^c, Peng Yang^{a,b}, Siyao Qin^{a,b}, Jun Hu^{a,b}, Xiangyu Chen^{a,b*}

^aBeijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China.

^bSchool of Nanoscience and Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China.

°School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China

* X. C. (chenxiangyu@binn.cas.cn).

This file includes Table S1-S4, Figure S1-S8

Table S1: Selection of water bearing materials for friction.

Fabric type	Number of cycles before damage	Number of cycles before drying	softness
absorbent cloth (eyeglass cloths)	Over 100	Over 100	\checkmark
toilet tissue	5-10	Not dried before damage	\checkmark
regular silk	Over 100	40-50	\checkmark
printing paper	20-30	Not dried before damage	×
foam plastic	Over 100	70-80	×

Fig. S1 XPS spectra of Si before and after cleaning with HF.

Table S2: The electrical resistivity of the liquid used as a connecting.

Liquid	Conductivity $(S \cdot m^{-1})$
C ₂ H ₅ OH	10-7
DI water	5.5×10 ⁻⁶
NaCl (1M, aq)	126.4
Na2Cl (1M, aq)	156.1

Mode	Charge density (mC·m ⁻²)	Reference
Solid-solid TENG	0.13	[40]
Solid-solid TENG	0.43	[46]
Solid-solid TENG	1.2	[42]
TENG in humid environment	2.38	[36]
Solid-solid TENG	3.53	[37]
Solid-solid TENG	Over 4	[44]
Solid-solid TENG	8.8	[45]
Solid-solid TVNG	23	[41]
Solid-solid TVNG	31	[47]
Solid-solid TVNG	79.31	[43]
Solid-solid TVNG	98	[39]
Solid-solid TVNG	136.3	[38]

Table S3: Surface charge density of Solid-solid TENG & TVNG in previous studies.

Mode	Charge density (mC·m ⁻²)	Reference
Solid-liquid TENG	0.103	[17]
DEG	0.185	[19]
Solid-solid TENG	0.391	[15]
Solid-liquid TENG	0.4	[16]
Solid-liquid TENG	0.5	[20]
Solid-liquid TENG	1.8	[48]
Solid-liquid TENG	1.92	[18]

Table S4: Surface charge density of Solid-liquid generator in previous studies.

Fig. S2: The detailed data of voltage of wiping generator using different upper metal electrode.

Fig. S3 Band diagram variations of Zn-Si, Ag-Si and Ni-Si Schottky under water excitation.

Fig. S4 Flexibility display of 100 µm Si wafer.

Fig. S5 SEM image of silicon wafer edge embedded in PDMS.

Fig. S6 Energy Dispersive Spectrometer spectra of the PDMS substrate and Ag wire on smart contact lenses.

Fig. S7 The demonstration of sensor based on wiping generator, used for expression indication in paralyzed patients. The mask with four independent patch sensors on the inner surface, enabling paralyzed individuals to communicate basic directions using tongue movements.

Fig. S8: The smart contact lens with capacitors to store electrical energy.