Supporting Information

Synergistic Enhancement of Charge Extraction and Heat Dissipation in Inverted Perovskite Solar Cells via n-Doped Top Interlayers

Sangmi Park, †^a Sang Young Jeong, †^b Jaehoon Kim, †^c Heunjeong Lee, ^d Hye Seung Kim, ^a Young Wook Noh, ^a Ye In Kim, ^a Shinuk Cho, ^d Joon Sang Kang, *^c Han Young Woo *^b and Myoung Hoon Song *^a

^a S. Park, H. S. Kim, Y. W. Noh, Y. I. Kim, Prof. M. H. Song Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea. *E-mail: <u>mhsong@unist.ac.kr</u>

^b S. Y. Jeong, Prof. H. Y. Woo Department of Chemistry, Korea University, Seoul 02841, Republic of Korea. *E-mail: <u>hywoo@korea.ac.kr</u>

^c J. Kim, Prof. J. S. Kang Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34120, Republic of Korea.
*E-mail: jskang1@kaist.ac.kr

^d H. Lee, Prof. S. Cho Department of Physics and EHSRC, University of Ulsan, Ulsan 44610, Republic of Korea.

Keywords: perovskite solar cells, interlayer, n-doping, stability, heat dissipation

Experimental Section

Materials

All chemicals utilized in the synthesis and device fabrication were purchased from Sigma-Aldrich, Tokyo Chemical Industry, and Alfa Aesar, and used without additional purification unless otherwise specified. [4-(3,6-Dimethoxy-9H-carbazol-9-yl)ethyl]phosphonic acid (MeO-4PACz, TCI), formamidinium iodide (FAI, Greatcell Solar), lead iodide (PbI₂, TCI), cesium iodide (CsI, ultra-dry, 99.999% (metal basis), Alfa Aesar), fullerene (C₆₀, 99.99%, OSM), and silver (Ag, 1-4 mm shot, 99.9999%, iTASCO).

Synthesis

[6,6]-Phenyl-C₆₁-butyric acid 2-[2-(2-methoxyethoxy)ethoxy]ethyl ester ($PC_{61}B$ -TEG) was synthesized by following the previously reported procedures.¹⁻²

¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.94-7.82 (m, 2H), 7.56-7.53 (m, 2H), 7.49-7.46 (m, 1H), 4.25-4.23 (m, 2H), 3.70-3.63 (m, 8H), 3.56-3.54 (m, 2H), 3.38 (s, 3H), 2.93-2.89 (m, 2H), 2.55 (t, 2H, *J* = 7.50 Hz), 2.22-2.19 (m, 2H).

Instruments and Characterization

The ¹H NMR spectra were acquired using a Bruker Avance III HD 500 spectrometer. SEM images were captured using SU8220 Cold FE-SEM and SU7000 FE-SEM. AFM images were obtained using Dimension ICON (Bruker Nano Surface). XRD patterns were obtained using an X-ray diffractometer (D/MAX2500C/PC, Rigaku) with a Cu-rotating anode X-ray. The *J-V* characteristics of the PeSCs were measured using an Ivium-n-Stat source meter under AM 1.5 G (100 mW cm⁻²) conditions. The EQE spectra were obtained using a QE measurement system (HS Technologies) by employing monochromatic light from a Xe lamp under ambient conditions. TPV and TPC measurements were carried out with a McScience T4000 (organic semiconductor parameter test system) at $V_{\rm OC}$ under illumination. XPS spectra were obtained by an Escalab 250Xi instrument (Thermo Fisher Co.), utilizing an Al K α monochromatic X-ray

source. Casa XPS software was employed for data analysis. UPS spectra were acquired through a UPS system (AXIS nova, Kratos Analytical), equipped with a helium ultraviolet source of 21.22 eV. The absorbance spectra were measured with a UV-Vis spectrophotometer (Ultrospec 2100 pro, Biochrom). EPR spectra were acquired using an electron spin resonance spectrometer (JEOL, JES-X320). *I-V* curves were measured by incrementally raising the DC voltage by 10 mV steps from -2V to +2V, measuring the corresponding currents. PLQY was obtained using a UV-NIR absolute PL quantum yield spectrometer (Hamamatsu, C13534) with a high-power Xe lamp. IR camera images were obtained using PI640 microscope optics.

Device Fabrication

Supplementary note 1

Thermal conductivity measurement

Thermal conductivity (κ) measurements were conducted using а time-domain thermoreflectance (TDTR) technique. A detailed description of the measurement principle and experimental setup can be found elsewhere.³⁻⁴ A femtosecond pulsed laser, generated by a Ti:Sapphire oscillator with an 80 MHz repetition rate, was split into pump and probe beams using a half-wave plate and a polarized beam splitter (PBS). The pump beam passed through an electro-optic modulator (EOM) with sinusoidal modulation, followed by frequency doubling through a bismuth borate (BIBO) crystal. The probe beam, delayed by a mechanical stage ranging from 0 to 5000 ps, was coaxially excited with the pump beam at the sample surface. Reflectance changes induced by the pump beam were measured using the probe beam. A thin layer of aluminum film (80 nm) deposited on the top layer of the sample served as an optothermal transducer. The thermal conductivity (κ) of the sample was determined by fitting experimental data to thermal modeling.

Schematics of TDTR measurement and sample structure.

Heat capacity measurement

The volumetric heat capacity (C_v) of the PC₆₁B-TEG samples was estimated by multiplying the specific heat capacity (C_p) by the density of PC₆₁B-TEG (ρ). The C_p value was obtained from differential scanning calorimetry (DSC) using Q200 (TA Instrument) (see Fig. S5, ESI†), while ρ was approximated to the density of [6,6]-phenyl C₆₁ butyric acid methyl ester (PCBM) at 1.5 g/cm³. The C_p was measured using a step scan isothermal method from 20 to 30 °C with a scan rate of 0.1 °C/minute and a 10-minute hold at every interval.

Fig. S1 ¹H-NMR spectrum of PC₆₁B-TEG in CDCl₃.

Fig. S2 Pb 4f XPS spectra of perovskite films with and without $PC_{61}B$ -TEG and n-doped $PC_{61}B$ -TEG.

Fig. S3 EPR signal of $PC_{61}B$ -TEG doped with N-DMBI as dopant.

Fig. S4 Electrical conductivity of $PC_{61}B$ -TEG films depending on doping concentration.

Fig. S5 DSC thermogram of PC₆₁B-TEG.

Fig. S6 Thermal conductivity statistics of undoped $PC_{61}B$ -TEG and $PC_{61}B$ -TEG doped with N-DMBI (60 and 100 mol%).

Fig. S7 (a) Temperature increment under 1-sun illumination condition of AM 1.5 G (100 mW cm⁻²) (b) Temperature profiles of perovskite/PC₆₁B-TEG film with and without n-doping under 53 °C continuous heat. Insets are IR camera images of perovskite/PC₆₁B-TEG films of i) without and ii) with n-doping heated continuously for 5 minutes at 53 °C.

Fig. S8 SEM images of the bottom side perovskite films (a) without (control) and (b) with $PC_{61}B$ -TEG, and (C) n-doped $PC_{61}B$ -TEG. The "after annealing" samples were heated at 120 °C for 72 hours in N₂.

Fig. S9 J-V curve of PeSCs with a PC₆₁B-TEG top interlayer with variation of its concentration.

Fig. S10 Thickness confimation of $PC_{61}B$ -TEG (a) SEM images of cross-sections $PC_{61}B$ -TEG depend on various concentration. $PC_{61}B$ -TEG films are fabricated by spin coating $PC_{61}B$ -TEG solutions (dissolved in chloroform) in 5000 rpm for 30 sec on ITO substrates. (b) Correlation between the concentration of $PC_{61}B$ -TEG solution and thickness of $PC_{61}B$ -TEG film.

Fig. S11 *J-V* curve of PeSCs with n-doped $PC_{61}B$ -TEG interlayer by varying doping concentration.

Fig. S12 Statistics og photovoltaic parameters of PeSCs (a) J_{SC} , (b) V_{OC} (c) FF and (d) PCE of control, PC₆₁B-TEG and n-doped PC₆₁B-TEG.

Fig. S13 SCLC curves of electron-only devices with an architecture of $ITO/SnO_2/(n-doped)$ PC₆₁B-TEG/LiF/Ag.

Fig. S14 *J-V* curves of Control, $PC_{61}B$ -TEG and n-doped $PC_{61}B$ -TEG treated PeSCs under forward and backward scans.

Fig. S15 Illustrations of QFLS in PeSCs with undoped $PC_{61}B$ -TEG and n-doped $PC_{61}B$ -TEG interlayers.

Fig. S16 UPS measurement of $PC_{61}B$ -TEG and n-doped $PC_{61}B$ -TEG in optimized doping concentration.

Doping concentration	Resistance [Ω]	Conductivity [S cm ⁻¹]
PC ₆₁ B-TEG	14.27	4.41×10^{-4}
40 mol%	7.54	1.19×10^{-3}
60 mol%	4.13	2.17×10^{-3}
80 mol%	5.24	1.17×10^{-3}
100 mol%	10.87	8.24×10^{-4}

Table S1 Resistance and electrical conductivity of $PC_{61}B$ -TEG and n-doped $PC_{61}B$ -TEG films (40, 60, 80, 100 mol%).

Table S2 XRD peak area ratios of $PbI_2/(100)$ for control, $PC_{61}B$ -TEG, and n-doped $PC_{61}B$ -TEG treated cells before and after thermal treatment at 120 °C for 72 hours.

	PbI ₂ /(100)	PbI ₂ /(100)
	before treatment	after treatment
Control	0.186	3.128
PC ₆₁ B-TEG	0.166	1.492
n-doped PC ₆₁ B-TEG	0.101	0.197

Table S3 Photovoltaic parameters of PeSCs with undoped $PC_{61}B$ -TEG interlayer.

Concentration of	$J_{ m SC}$	V _{OC}	FF	PCE
PC ₆₁ B-TEG	$[mA \ cm^{-2}]$	[V]	[%]	[%]
Control	23.43	1.07	76.93	19.47
2 mg mL ⁻¹	23.04	1.09	77.53	19.47
4 mg mL ⁻¹	23.67	1.1	81.45	21.11
6 mg mL ⁻¹	22.81	1.08	77.44	19.08

Table S4 Photovoltaic parameters of PeSCs with undoped $PC_{61}B$ -TEG interlayer.

Doping	$J_{ m SC}$	V _{OC}	FF	PCE
concentration	$[mA \ cm^{-2}]$	[V]	[%]	[%]
40 mol%	25.05	1.09	79.24	21.64
60 mol%	25.13	1.11	81.82	22.83
80 mol%	22.71	1.12	71.58	18.21
100 mol%	23.02	1.13	68.53	17.83

Device	Scan direction	V _{OC}	$J_{ m SC}$	FF	PCE	HI ^{a)}
		[V]	$[mA cm^{-2}]$	[%]	[%]	[%]
Control	Backward	1.08	24.05	77.78	20.21	8.21
	Forward	1.05	23.51	75.10	18.55	
PC ₆₁ B-TEG	Backward	1.11	23.88	78.79	20.89	1 15
	Forward	1.09	23.84	79.48	20.65	1.13
n-doped PC ₆₁ B-TEG	Backward	1.16	25.60	80.36	23.85	0.00
	Forward	1.16	25.05	80.99	23.64	0.88
-) II						

Table S5 Photovoltaic parameters of control and (n-doped) $PC_{61}B$ -TEG treated PeSCs under backward and forward scans.

a) Hysteresis index.

References

- 1. K. Kim, Z. Wu, J. Han, Y. Ma, S. Lee, S.-K. Jung, J.-W. Lee, H. Y. Woo and I. Jeon, *Adv. Energy Mater.*, 2022, **12**, 2200877
- 2. M. P. Hughes, K. D. Rosenthal, R. R. Dasari, B. R. Luginbuhl, B. Yurash, S. R. Marder and T.-Q. Nguyen, *Adv. Func. Mater.*, 2019, **29**, 1901269.
- 3. D. G. Cahill, Rev. Sci. Instrum., 2004, 75, 5119.
- 4. A. J. Schmidt, X. Chen and G. Chen, Rev. Sci. Instrum., 2008, 79, 114902.