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1. Materials and synthesis

Polymer donor PM6 and the precursor BTP-HD were purchased from Solarmer Energy
Inc. Other chemical reagents and solvents were purchased from commercial suppliers
and used without further purification. All reactions were performed under a nitrogen

atmosphere.

Synthesis of the central units 6/7/8C-2F

Scheme S1 shows the synthetic routes of 6C-2F, 7C-2F and 8C-2F. The detailed
synthesis processes of the central units and the target molecules are described in the

following. Figure S1-9 were the characters based on 'H NMR and MALDI-TOF.
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Scheme S1. Synthetic routes of 6C-2F, 7C-2F and 8C-2F.
Compound 6C-CHO!

To a 100 mL flask, compound BTP-HD (200 mg, 0.167 mmol) and tetrahydrofuran
(THF, 20 mL) were mixed under room temperature. Then powdery lithium aluminum
hydride (127 mg, 20 eq.) was added to the mixture and the reactant was stirred at 80 °C
overnight. After this, the mixture was poured into icy dilute hydrochloric acid solution

and extracted three times with ethyl acetate (EA). The organic layer was washed with
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brine and dried over anhydrous Na,SO,. After the solvent was evaporated, a blown oily
liquid (diamine) was obtained. Without further purification, the crude product was
dissolved in chloroform (CHCl;, 20 mL), then 2,3-dichloro-5,6-dicyano-1,4-
benzoquinone (DDQ, 34 mg, 0.15 mmol, 0.9 eq.) and 2,3-diaminonaphthalene (41 mg,
0.26 mmol, 1.5 eq.) were added to the solution in turn. The reaction was stirred at RT
for 24 h, and the solvent was removed under vacuum. Finally, the residue was purified
by column chromatography to give compound 6C-core as a green solid (136 mg, 63%).
Under the protection of argon, phosphorus oxychloride (POCl;, 0.2 mL) was added to
a solution of compound 6C-core (136 mg, 0.105 mmol) and N, N-dimethylformamide
(DMF, 0.4 mL) in 1,2-dichloroethane (DCE, 20 mL). The reaction mixture was stirred
and heated to reflux overnight and then cooled to RT. The resulting mixture was slowly
quenched by the saturated solution of sodium acetate (40 mL). After being stirred at RT
for 2 h. The mixture was extracted with DCM three times and the organic layer was
dried over anhydrous Na,SO,. Finally, the target product was purified by column
chromatography on silica gel with PE/DCM (v/v = 2:1) as eluent to afford compound
6C-CHO as a green solid (124 mg, 88%). 'H NMR (400 MHz, CDCl;) ¢ 10.16 (s, 2H),
9.05 (s, 2H), 8.22 (dd, J= 6.5, 3.3 Hz, 2H), 7.59 (dd, J= 6.5, 3.1 Hz, 2H), 4.67 (d, J =
7.9 Hz, 4H), 3.25 (t, J = 7.7 Hz, 4H), 2.14 (m, 2H), 1.98 (m, 4H), 1.53 (m, 4H), 1.48—
1.38 (m, 6H), 1.37 — 0.76 (m, 76H), 0.76 (t, /= 7.2 Hz, 6H), 0.66 (t, J = 6.9 Hz, 6H).
MS (MALDI-TOF) m/z: [M + H]" calculated for Cg4H;50N40,S4, 1346.1500, found:
1346.1496.

Compound 6C-2F

Under the protection of argon, pyridine (0.2 mL) was added to the solution of
compound 6C-CHO (65 mg, 0.048 mmol, 1.0 eq.) and 2-(5,6-difluoro-3-oxo0-2,3-
dihydro-1H-inden-1-ylidene) malononitrile (45 mg, 0.19 mmol, 4.0 eq.) in CHClI; (30
mL). The resulting mixture was stirred and heated to reflux for 12 h. After being cooled
to RT, the solvent was removed under vacuum. The crude product was then purified by
column chromatography on silica gel with PE/CHCI; (v/v = 1:1.5) as eluent to afford
6C-2F as a green solid (75 mg, 81 %). 'H NMR (400 MHz, CDCl;) 6 9.12 (s, 2H), 8.99
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(s,2H), 8.53 (dd,J=9.9, 6.4 Hz, 2H), 8.18 (d, J="7.1 Hz, 2H), 7.69 (t,J=7.5 Hz, 2H),
7.63 —7.55 (m, 2H), 4.81 (d, J= 7.8 Hz, 4H), 3.23 (s, 4H), 2.25 (s, 2H), 1.89 (d, /= 8.8
Hz, 4H), 1.40 (s, 4H), 1.35 — 1.20 (m, 34H), 1.14 — 0.96 (m, 37H), 0.85 (t, /= 6.5 Hz,
7H), 0.73 (t, J= 7.1 Hz, 7TH), 0.68 (t, J = 6.5 Hz, 6H). *C NMR (101 MHz, CDCI3) &
186.23, 158.34, 154.02, 146.68, 139.71, 138.64, 137.74, 136.22, 134.95, 134.23,
133.67, 133.32, 132.34, 128.36, 127.35, 126.63, 119.47, 119.39, 114.96, 114.63,
112.36, 68.00, 56.00, 39.71, 32.05, 32.03, 31.86, 31.56, 30.78, 30.14, 30.01, 29.87,
29.81, 29.78, 29.71, 29.64, 29.50, 29.41, 27.07, 26.03, 25.99, 22.81, 22.75, 22.71,
14.22, 14.20, 14.18. MS (MALDI-TOF) m/z: [M + H]" calculated for
CiosH125F4NgO,S4, 1770.8773, found: 1770.9961.

Compound 7C-CHO

To a 100 mL flask, compound BTP-HD (200 mg, 0.167 mmol) and THF (20ml) were
mixed under RT. Then powdery lithium aluminum hydride (127 mg, 20 eq.) was added
to the mixture and the reactant was stirred at 80 °C overnight. After this, the mixture
was poured into icy dilute hydrochloric acid solution and extracted three times with
EA. The organic layer was washed with brine and dried over anhydrous Na,SO,. After
the solvent was evaporated, the intermediate diamine was obtained without further
purification. The crude product was dissolved in CHCI; (20 mL), then DDQ (34 mg,
0.15 mmol, 0.9 eq.) and 1,8-diaminonaphthalene (80 mg, 0.26 mmol, 3.0 eq.) were
added in turn. The reaction was stirred at RT for 72 h, and the solvent was removed
under vacuum. Finally, the residue was purified by column chromatography to give
compound 7C-core as a red solid. (153 mg, 71%) The same method was adopted to
synthesize 7C-CHO. The crude product was purified by column chromatography on
silica gel with PE/EA (v/v = 20:1) as eluent to afford 7C-CHO as a red solid (138 mg,
85%)."H NMR (400 MHz, CDCls) 6 10.19 (s, 2H), 10.17 (s, 2H), 9.39 (s, 1H), 9.31 (d,
J=7.2Hz, 1H), 8.26 (d,/=9.2 Hz, 1H), 8.11 (d, /=9.2 Hz, 1H), 7.92 - 7.71 (m, 2H),
4.74 (t,J=8.8 Hz, 4H), 3.27 (q,J = 14.8, 7.2 Hz, 4H), 2.13 (m, 2H), 1.98 (dq, J = 14.8,
8.8, 7.2 Hz, 4H), 1.52 (m, 4H), 1.42 — 1.38 (m, 4H), 1.36 — 0.81 (m, 74H), 0.76 — 0.72
(t,7.2 Hz, 8H), 0.68 — 0.62 (t, 7.2 Hz, 6H). MS (MALDI-TOF) m/z: [M + H]" calculated
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for C84H120N4OQS4, 13461500, found: 1346.1460.

Compound 7C-2F

Under the protection of argon, dry pyridine (0.2 mL) was added to a solution of
compound 7C-CHO (100 mg, 0.074 mmol, 1.0 eq.) and 2-(5,6-difluoro-3-oxo0-2,3-
dihydro-1H-inden-1-ylidene) malononitrile (68 mg, 0.2 mmol, 4.0 eq.) in CHCl; (45
mL). The resulting mixture was stirred and heated to reflux for 12 h. After being cooled
to room temperature, the solvent was removed under vacuum. The crude product was
then purified by column chromatography on silica gel with PE/CHCl; (v/v = 1:1) as
eluent to afford 7C-2F as a blue solid (116 mg, 88 %).'"H NMR (400 MHz, CDCl;) &
9.37-9.24 (m, 2H), 9.16 (d, J=8.9 Hz, 2H), 8.55 (dd, /=9.7, 6.5 Hz, 2H), 8.22 - 8.06
(m, 2H), 7.80 (t, J = 8.9 Hz, 2H), 7.71 (t, J = 7.5 Hz, 2H), 4.88 (dd, J = 15.7, 7.8 Hz,
4H), 3.32 — 3.22 (m, 4H), 2.32 — 2.14 (m, 2H), 1.91 (dd, J = 16.8, 8.0 Hz, 4H), 1.46 —
0.75 (m, 98H), 0.69 (dt, J=19.5, 6.9 Hz, 14H). 13C NMR (151 MHz, CDCl;) & 186.04,
185.90, 160.42, 158.13, 155.09, 153.64, 153.44, 153.33, 146.32, 144.08, 142.25,
141.28, 138.77, 138.35, 137.73, 136.40, 136.04, 135.92, 135.67, 134.73, 134.34,
134.24, 133.35, 133.21, 133.09, 132.98, 131.00, 129.78, 128.75, 127.15, 124.46,
120.11, 119.88, 119.61, 119.51, 118.08, 116.53, 114.84, 114.64, 114.36, 114.13,
112.45, 112.32, 68.77, 68.34, 56.00, 55.92, 39.48, 39.41, 31.89, 31.88, 31.86, 31.71,
31.65, 31.46, 31.37, 30.84, 30.78, 30.57, 30.02, 29.95, 29.92, 29.90, 29.84, 29.70,
29.64, 29.61, 29.58, 29.55, 29.50, 29.43, 29.34, 29.26, 25.90, 25.73, 25.63, 22.65,
22.63,22.59, 22.54, 14.07, 14.06, 14.04, 14.02, 14.00. MS (MALDI-TOF) m/z: [M +
H]* calculated for CogH;>5F4NgO,S4, 1770.8773, found: 1770.9161.

Compound 8C-CHO?

To a 100 mL flask, compound BTP-HD (200 mg, 0.167 mmol) and THF (20ml) were
mixed under room temperature. Then powdery lithium aluminum hydride (127 mg, 20
eq.) was added to the mixture and the reactant was stirred at 80 °C overnight. After this,
the mixture was poured into icy dilute hydrochloric acid solution and extracted three

times with EA. The organic layer was washed with brine and dried over anhydrous
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Na,SO,. After the solvent was evaporated, the intermediate diamine was obtained
without further purification. The crude product was dissolved in acetic acid (CH;CO,H,
20 mL) and naphthalene-2,3-dicarbaldehyde (64 mg, 0.34 mmol, 2.0 eq.) were added
to the solution in turn. The reaction was stirred at room temperature for 12 h, and the
solvent was removed under vacuum. Finally, the residue was purified by column
chromatography to give compound 8C-core as a yellow oil (187 mg, 85%). Under the
protection of argon, POCl; (0.5 mL) was added to a solution of compound 8C-core (187
mg, 0.142 mmol) and DMF (1.0 mL) in DCE (20 mL). The resulting mixture was stirred
and heated to reflux for 12 h, then was cooled to room temperature. The resulting
mixture was slowly added into a saturated solution of sodium acetate (40 mL), then was
stirred at room temperature for 2 h. The resulting mixture was extracted with DCM and
the organic layer was dried over anhydrous Na,SO,. After removal of solvent, the crude
product was purified by column chromatography on silica gel with PE/DCM (v/v =2:1)
as eluent to afford compound 8C-CHO as a yellow solid (181 mg, 93%). '"H NMR (400
MHz, CDCl3) 6 10.14 (s, 2H), 8.63 (s, 1H), 8.03 (s, 2H), 7.89 (d, /= 6.3 Hz, 1H), 7.61
—7.46 (m, 2H), 5.80 — 5.60 (m, 2H), 4.62 (dd, J=13.9, 7.6 Hz, 4H), 3.22 (t, /= 7.8 Hz,
4H), 1.96 (p, J = 7.6 Hz, 6H), 1.58 — 1.19 (m, 33H), 1.14 (q, J = 7.2 Hz, 5H), 1.08 —
0.81 (m, 42H), 0.81 — 0.61 (m, 20H). MS (MALDI-TOF) m/z: [M + H]" calculated for
CggH120N40,S,, 1372.1880, found: 1372.3555.

Compound 8C-2F

Under the protection of argon, dry pyridine (0.2 mL) was added to a solution of
compound 8C-CHO (90 mg, 0.066 mmol, 1.0 eq.) and 2-(5,6-difluoro-3-oxo0-2,3-
dihydro-1H-inden-1-ylidene) malononitrile (61 mg, 0.265 mmol, 4.0 eq.) in CHCl; (30
mL). The resulting mixture was stirred and heated to reflux for 12 h. After being cooled
to room temperature, the solvent was removed under vacuum. The crude product was
then purified by column chromatography on silica gel with PE/CHCI; (v/v = 1:1.5) as
eluent to afford 8C-2F as a blue solid (109 mg, 92 %).'"H NMR (400 MHz, CDCl;) &
9.12 (d, J=5.3 Hz, 2H), 8.55 (dt, J=9.9, 6.9 Hz, 3H), 8.05 (d, J=22.6 Hz, 2H), 7.92
(dd, J=6.1, 3.5 Hz, 1H), 7.69 (td, J= 7.5, 4.6 Hz, 2H), 7.60 (dt, J = 6.3, 3.4 Hz, 2H),
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5.71 (s, 2H), 4.75 (dd, J=18.2, 7.6 Hz, 4H), 3.21 (t,J=9.7 Hz, 4H), 2.07 (s, 2H), 1.88
(q, J = 8.4, 8.0 Hz, 4H), 1.66 — 1.46 (m, 9H), 1.46 — 0.90 (m, 73H), 0.90 — 0.61 (m,
28H). BC NMR (151 MHz, CDCl;) 6 186.05, 158.79, 158.71, 155.09, 154.22, 153.35,
145.80, 143.35, 139.04, 138.93, 138.71, 136.98, 136.80, 136.59, 135.14, 134.88,
134.42, 133.51, 133.33, 131.72, 131.31, 129.88, 128.99, 128.08, 126.94, 122.84,
119.59, 119.13, 115.09, 115.03, 114.80, 114.67, 112.43, 112.30, 112.18, 68.20, 67.77,
55.37, 39.00, 38.92, 31.93, 31.92, 31.90, 31.71, 31.41, 31.38, 30.62, 30.57, 30.55,
29.96, 29.89, 29.84, 29.75, 29.72, 29.68, 29.65, 29.60, 29.58, 29.55, 29.53, 29.49,
29.45, 29.39, 29.37, 29.31, 29.25, 25.65, 25.57, 25.53, 22.70, 22.69, 22.64, 22.62,
22.58,22.53, 14.13, 14.10, 14.08, 14.07. MS (MALDI-TOF) m/z: [M - H]* calculated
for Cy10H25F4NgO,S4, 1793.8744, found: 1793.9273.

2. Measurements and Characterizations

The 'H and '*C NMR spectra were taken on a Bruker AV400 Spectrometer. Matrix
assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry
were performed on a Bruker Auto flex III instrument. Varian 7.0T FTMS was used to
achieve the HRMS data. UV-vis spectra were obtained with a UV-VIS-NIR
spectrophotometer (SHIMADZU, UV-3600). Cyclic voltammogram (CV) was
performed with a LK2010 Microcomputer based Electrochemical Analyzer at a scan
rate of 100 mV/s. Thermogravimetric analyses (TGA) were carried out on a NETZSCH
STA 449 F5 Jupiter instrument under a purified nitrogen gas. The heating rate is a 10
°C/ min heating rate. The current density-voltage (J-V) curves of photovoltaic devices
were obtained by a Keithley 2400 source-measure unit. The photocurrent was measured
under simulated illumination of 100 mW ¢m~2 with AM 1.5 G irradiation using a xenon-
lamp-based solar simulator [Oriel 96000] in an argon-filled glove box. EQEs of the
encapsulated devices were obtained with a halogen-tungsten lamp, monochromator,
optical chopper, and lock-in amplifier in air and the photon flux was determined by a
calibrated silicon photodiode. Atomic force microscopy (AFM) images were performed
using in tapping mode on a Bruker Multi Mode 8 atomic force microscope.
Transmission electron microscopy (TEM) was performed on a Philips Technical G2
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F20 at 200 kV. The GIWAXS (grazing incidence wide angle X-ray scattering) samples
were prepared on ZnO-coated Si substrates using the same preparation conditions as
for devices and All samples were deposited on the silicon and were irradiated at a fixed
X-ray incident angle of 0.200° with an exposure time of 16 s. The hole and electron
mobility were measured using the space charge limited current (SCLC) method,
employing a diode configuration of ITO/PEDOT:PSS/active layer/MoO,/Ag for hole
and glass/ITO/ZnO/active layer/PDINN/AI for electron by taking the dark current
density in the range of 0—10 V and fitting the results to a space charge limited form,
where SCLC is described by:3
e, Vv
J=—"

8L

where J is the current density, L is the film thickness of the active layer, u is the hole
or electron mobility, &, is the relative dielectric constant of transport medium, & is the
permittivity of free space (8.85 x 10712 F m™"), V' (= Vyyp1 -V4i) is the internal voltage in
the device, where V1 is the applied voltage to the device and V4, 1s the built-in voltage
due to the relative work function difference of the two electrodes. The hole and electron
mobility of the solar cell blend are deduced from the intercept value of 9¢yeu/(8L%) by
linearly plotting In(J) vs. In(V) (the slope of In(J) vs. In(V) is = 2).

The current density-voltage (J-V) characteristics of photovoltaic devices were obtained
using a Keithley 2400 source-measure unit. The photocurrent was measured under
illumination simulated 100 mW c¢m=2 AM1.5G irradiation using SAN-EI XES-70S1
solar simulator, calibrated with a standard Si solar cell. The EQE spectrum was
measured using a QE-R Solar Cell Spectral Response Measurement System (Enli
Technology Co., Ltd., Taiwan).

For the transient photocurrent (TPC) and transient photovoltage (TPV) measurements,
the device was mounted on a conductive clip and under steady-state illumination from
focused Quartz Tungsten-Halogen Lamp light source. The measurements were
performed with background response similar to open-circuit voltage. An optical
perturbation is applied to the device with a 1 kHz femtosecond pulse laser under 450
nm excitation. The TPV signal was acquired by a digital oscilloscope at open-circuit
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condition. TPC signal was measured under approximately short-circuit condition by

applying a 50 Q resistor. The photovoltage decay kinetics of all devices follow a mono-

exponential decay: 0/ = Aexp( - #/7) where ! is the time and T is the charge carrier

lifetime. EQEg; measurements were done from 0.01 V to 2.5 V using a home built setup
using a Keithley 2400 to inject current to the solar cells. Emission photon-flux from the
solar cells was recorded using a Si detector (Hamamatsu s1337-1010BQ) and a
Keithley 6482 picoammeter. FTPS-EQE measurements were done from 500 nm to
1300 nm using a halogen lamp light source, chopped at a frequency of 173 Hz, a
monochromator (Newport CS260), a Stanford SR830 lock-in amplifier, a Stanford
SR570 current amplifier, and a set of long pass filters. Lamp intensity was calibrated

using a Si detector (Hamamatsu s1337-1010BQ).

3. DFT calculation

The molecular geometries were optimized by Gaussian 09 with a functional of B3LYP
and a basis set of 6-31G(D). The dipole moment calculation type was carried out in

FOPT.

4. Fabrication and characterization of OSCs

The structure of all OSCs adopt the conventional device structure, namely
ITO/PEDOT:PSS/active layer/PDINN/Ag structure. The pre-patterned ITO glass
substrates are sonicated with deionized water twice (with detergent and without
detergent), acetone and isopropanol sequentially in an ultrasonic bath. Before use, these
glasses are dried in a vacuum oven and treated by UV-ozone for 30 mins to improve its
work function and clearance. Immediately, the PEDOT:PSS aqueous solution (Baytron
P 4083, from HCStarck) is filtered by a 0.45 mm filter and pre-coated onto these pre-
cleaned ITO glasses at 5000 rpm for 30 seconds. Then heat the ITO to dry it at 150 °C
for 20 mins in air. The PEDOT:PSS coated ITO substrates were transferred to a Nj-

filled glove box for further processing. The optimized recipes for device fabrication
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were D:A weight ratio of 1:1.2, solution concentration of 13.2 mg/ml in CHCl; with
0.5% 1-chloronaphthalene as additive. Then the solution was stirred for 2 hours for
intensive mixing. The blend solutions were spin-coated on the PEDOT:PSS transport
layer at 3000 rpm for 30 seconds, then annealed at 80 °C for 10 minutes. After cooling
to room temperature, the PDINN methanol solution with a concentration of 1.0 mg
mL-! was deposited on these active layers at 5000 rpm for 30 seconds. Then, an Ag
layer (~100 nm) was deposited in thermal evaporator under vacuum of 5x10~> Pa
through a shadow mask. The active area of the OSCs was 4.5 mm?, which was defined

by Optical microscope (Olympus BX51).
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5. Supplementary Figures
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Fig. S19 Thermal gravimetric analysis curve of acceptors 6C-2F, 7C-2F and 8C-2F.
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Fig. S20 (a) 2D GIWAXS diffraction images of pristine films. (b) The IP and OOP extracted line-
cut profiles of pristine films.
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Fig. S21 Cyclic voltammograms of acceptors 6C-2F, 7C-2F and 8C-2F in thin films.
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Fig. S23 Transient photocurrent measurements of the optimized devices.

S-22



1.0 4
= = PM6:6C-2F £ = 0.77 s
= —+— PM6:7C-2F 7 = 1.08 ps
Py —a PM6:8C-2F 7 = 0.48 ps
o
(1]
= 051
o
>
]
3]
o
o
0.0+ T . T
0 1 2 3

Time (ps)

Fig. S24 Transient photovoltage measurements of the optimized devices.
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films measured by SCLC method.
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Fig. S27 The calculated energy gaps of OSCs based on PM6:6/7/8C-2F from their EQE spectra.
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Fig. S29 DSC heating curves for three NFAs 6/7/8C-2F with the speed of 10 °C/min.

6. Supplementary Tables

Table S1 Summary of the GIWAXS parameters for neat and blend films

Film ¢ (010, A") dyx (010, A) CCL (010, A) ¢ (100, A”") d;; (100, A) CCL (010, A)

6C-2F --- - -- 0.365 17.3 380.1
7C-2F 1.81 3.47 70.3 0.376 16.7 206.3
8C-2F 1.68 3.74 67.4 0.437 14.4 66.4
PM6:6C-2F 1.78 3.53 107.0 0.293 21.4 149.1
PM6:7C-2F 1.73 3.63 28.7 0.291 21.6 107.1
PM6:8C-2F 1.71 3.67 34.9 0.288 21.8 97.0

Table S2 Detailed data of the hole mobility and electron mobility.

Active layers M (cm?vlsT) He (cm?v-1sT) Ratio
PM6:6C-2F 6.3x10° 2.7x10° 2.3
PM6:7C-2F 4.2x104 3.7x104 1.1
PM6:8C-2F 4.6x107 1.9x10° 2.4
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Table S3 Contact angles and surface energy parameters of pristine films. ¢

Film  Oupo[°]  Oe[?] ' [mNm'] pP[mNm'] *[mNm'] yPA°
PM6 1013 783 19.04 1.55 20.59 -

6C-2F  98.0 71.7 22.83 1.60 24.43 0.164
7C-2F  96.9 73.1 20.56 2.31 22.87 0.060
8C-2F  100.6 742 24.15 0.90 25.04 0.218

“The y9 and y? represent the surface free energies generated from the dispersion force and polar

force, respectively.*

Table S4 Statistical sheet of binary devices based on PM6:Y -series active layers.

Acceptor Yoc [V] se [mA em2] FF [%] PCE [%] Ref.
Y6 0.83 25.3 74.8 15.7 5
CH-BBQ 0.881 26.15 78.9 18.19 6
Ch-iBQ 0.879 26.04 78.5 17.97 6
CH-BQ 0.84 23.61 64.8 12.85 6
ZCCF3 0.88 12.40 64.2 6.99 7
AQx-1 0.893 22.18 67.14 13.31 8
AQx-2 0.86 25.38 76.25 16.64 9
Y18 0.84 25.71 76.5 16.52 10
Y6-Se 0.82 25.47 75 15.82 11
Y6-2Se 0.83 2432 70 14.62 11
CH17 0.883 26.19 772 17.84 1
CH20 0.881 25.44 74.92 16.79 12
CH21 0.873 26.57 78.13 18.12 12
CH22 0.884 26.74 80.62 19.06 12
YB2T 0.918 24.48 75.85 17.05 13
YB2B 0.953 19.30 59.46 10.94 13
NQF 0.921 25.79 73.96 17.57 14
CH45 0.910 25.57 78.0 18.15 15
CH4 0.908 24.67 66.4 14.87 15
Qx-1 0.911 26.1 75.5 17.9 16
Qx-2 0.934 26.5 73.7 182 16
CB16 0.92 25.98 76.89 18.32 17
BQx 0.892 26.11 728 17.0 18
BQx-CN 0.880 26.77 79.7 18.8 18
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BQx-2CN 0.863 25.90 77.2 17.3 18
BZ-C4 0.882 25.69 74.63 16.89 19
BZ-E22 0.873 26.39 75.84 17.46 19
BZ-E31 0.875 27.31 76.72 18.33 19
BZ-E62 0.879 25.98 75.17 17.15 19
6C-2F 0.914 19.15 61.90 10.83 This work
8C-2F 0.840 18.57 52.16 8.13 This work
7C-2F 0.900 26.71 78.33 18.83 This work

Table S5. Photovoltaic parameters of the optimized devices based on PM6:6/7/8C-2F with D:A

ratio of 1:1.2 and liquid additive CN but different electron transport layer (ETL).

ETL Active layers Voe [V] Jso[MA FF [%] PCE [%]
cm?]

PM6:6C-2F 0.912 17.50 61.52 9.83
F3N PM6:7C-2F 0911 25.76 76.75 18.00
PM6:8C-2F 0.825 17.94 51.67 7.64
PM6:6C-2F 0.910 18.73 60.45 10.31
PDINN PM6:7C-2F 0.907 26.54 75.48 18.18
PM6:8C-2F 0.831 18.19 51.35 7.77

Table S6. Photovoltaic parameters of the optimized devices based on PM6:6/7/8C-2F with D:A

ratio of 1:1.25 and PDINN as the ETL but different ratios of additive 1-chloro-4-iodobenzene (CIB).

Active layer CIB ratios Voc[V] Js[mA cm™2] FF [%] PCE [%]
PM6:6C-2F 0.914 19.34 60.26 10.61
PM6:7C-2F 50% 0.898 26.49 76.80 18.28
PM6:8C-2F 0.833 18.19 52.84 8.01
PM6:6C-2F 0.914 19.15 61.90 10.83
PM6:7C-2F 75% 0.900 26.71 78.33 18.83
PM6:8C-2F 0.840 18.57 52.16 8.13
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PM6:6C-2F 0914 18.83 61.72 10.63

PM6:7C-2F 100% 0.898 26.69 77.08 18.48
PM6:6C-2F 0.837 18.66 51.59 8.06
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