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Fig. S1. XRD patterns of BTO-LZ with different weights of BTO.
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Fig. S2. Raman spectra of BTO, LZ and BTO-LZ.
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Fig. S3. FT-IR spectra of BTO, LZ and BTO-LZ.
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Fig. S4. Cross-sectional SEM images and EDS-mapping of BTO-LZ pellets (samples were prepared by 

breaking the sintered SSE disc). 
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Fig. S5. XPS spectra of (a) La 3d and (b) Zr 3d of LZ and BTO-LZ.
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Fig. S6. (a) Optical photos, (b) XRD patterns and (c) Raman spectra of BTO powder and BTO-Li.

Note: To better observe the phenomena of this reaction, BTO ceramics were first ground to a powder and 

then allowed to react with molten lithium for 20 minutes.
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Fig. S7. Polarization-electric field hysteresis loop of the commercial BTO ceramics. 
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Fig. S8. Schematic representation of the PFM measurement setup.

Note: Fig. S8 shows the piezoresponse force microscopy (PFM) setup used in the ferroelectric response 

test. PFM enables the assessment of ferroelectric properties by inducing and detecting nanoscale 

polarization changes. Utilizing a conductive tip to apply an external electric field induces a ferroelectric 

response, providing high sensitivity and spatial resolution for the direct observation and analysis of 

ferroelectric materials. 
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Fig. S9. The PFM phase of the (a) BTO, (b) BTO-LZ and (c) LZ at +4 V and -4 V bias voltage.
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Fig. S10. Hysteresis loop obtained from piezoelectric force microscopy analysis of the BTO.
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Fig. S11. (a) Ionic conductivities of the LZ and BTO-LZ pellets at 25 oC and (b) Arrhenius curves of the 

LZ and BTO-LZ pellets.
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Fig. S12. Ionic conductivities of the (a) Li2BaTi6O14, (b) Li3Ba2Ti9.25O22 and (c) BTO-Li2CO3 pellets at 

25 oC.

Note: We prepared Li+-doped BTO samples (Li2BaTi6O14, Li3Ba2Ti9.25O22 and BTO-Li2CO3) using a 

conventional solid-state reaction method and tested their ionic conductivities. Specifically, Li2BaTi6O14 

or Li3Ba2Ti9.25O22 samples were prepared by weighing and ball-milling Li2CO3, BaO, and TiO2 for 12 h. 

The resulting mixture was pressed into pellets and calcined at 1050 oC for 10 h in a muffle furnace. 

Additionally, BTO and Li2CO3 (7 wt%) were ball-milled for 12 h, pressed into pellets, and calcined at 

1170 oC for 6 h.
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Fig. S13. XRD patterns of LZ-UHS, 2 wt%-UHS, 5 wt%-UHS, 10 wt%-UHS and BTO-UHS.
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Fig. S14. Cross-sectional SEM images and EDS-mapping of (a) 2 wt%-UHS pellets and (b) 5 wt%-

UHS.
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Fig. S15. (a) Normalized EIS curves and (b) ionic conductivities of LZ-UHS, 2 wt%-UHS, 5 wt%-UHS, 

10 wt%-UHS.

Note: We also fitted the samples synthesized by the UHS, such as LZ-UHS, 2 wt%-UHS, 5 wt%-UHS 

and 10 wt%-UHS, to further understand the influence of the content of BTO. Notably, 2 wt%-UHS also 

shows a higher ionic conductivity of 0.39 mS cm-1 than the LZ-UHS of 0.18 mS cm-1. In addition, with 

the increase of the BTO in the SSEs to 5 wt% and 10 wt%, the ionic conductivities are remarkably 

reduced.
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Fig. S16. Current-time curves of (a) the Au/BTO-LZ/Au cell and (b) the Au/LZ/Au cell under DC 

polarization at 0.5 V.
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Fig. S17 Current-time curves of the Au/BTO/Au cell under DC polarization at 3 V.



19

 
Fig. S18. Schematic of the cell stacked in a 2032-type coin cell.

Note: As shown in Fig. S18, the coin cell consists of the typical positive case, negative case, spacer 

(thickness: 1 mm) and spring (thickness: 1.1 mm). The pressure of the hydraulic crimping machine for 

assembling the coin cell was 500 PSI.
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Fig. S19. (a) Optical photos of the wetting behaviors of molten Li on bare LZ and BTO-LZ. SEM images 

of (b) the LZ/Li interface and (c) the BTO-LZ/Li interface.
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Fig. S20. ASR of Li/LZ/Li and Li/BTO-LZ/Li at (a) 25 oC and (b) 65 oC.
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Fig. S21. CCD measurements of Li/BTO-LZ/Li with different capacities.
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Fig. S22. EIS measurements of Li/BTO-LZ/Li with different weights of BTO.
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Fig. S23. CCD measurements of symmetric Li cells with (a) 0.5 wt%-BTO-LZ, (b) 1 wt%-BTO-LZ, (c) 

1.5 wt%-BTO-LZ and (d) 3 wt%-BTO-LZ at 65 oC.
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Fig. S24. CCD measurements of symmetric Li cells with 5 wt%-BTO-LZ at 65 oC and corresponding 

optical photos before and after contacting the molten Li.
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Fig. S25. (a) EIS measurements and (b) CCD measurements of 2 wt%-UHS and 5 wt%-UHS.
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Fig. S26. CCD measurements of (a) Na/BTO-NZSP/Na and (b) Na/NZSP/Na at 65 oC.
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Fig. S27 Cycling performance of Li/PPA-BTO-LZ/Li at 65 oC at 1 mA cm-2 and 1 mAh cm-2.

Note: PPA polymer was dissolved in DMSO solution by ultrasonic treatment. Then, BTO-LZ pellets were 

immersed into the PPA-DMSO solution (0.25% PAA in DMSO) for 2 h, followed by vacuum drying for 

12 h at 110 oC.
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Fig. S28. Cross-section SEM images of a Li/BTO-LZ/Li cell after 100 hours at 1 mA cm-2.
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Fig. S29. EDS mappings of the BTO-LZ pellets after 100 h at 1 mA cm-2.
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Fig. S30. Geometric model of the BTO-LZ in the COMSOL FEM analysis.
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Fig. S31. (a) CCD measurements of Li/2 wt%-LiF-LZ/Li at 65 oC. (b) Current-time curves of the Au/2 

wt%-LiF-LZ/Au cell under DC polarization at 0.5 V.
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Fig. S32. (a) CCD measurements of Li/2 mol%-TiO2-LZ/Li at 65 oC. (b) Current-time curves of the Au/2 

mol%-TiO2-LZ/Au cell under DC polarization at 0.5 V.
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Fig. S33. (a) CCD measurements of Li/STO-LZ/Li at 65 oC. (b) Current-time curves of the Au/STO-

LZ/Au cell under DC polarization at 0.5 V.
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Fig. S34. XRD patterns of Li3BO3-Li2CO3.
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Fig. S35. XRD patterns of LCO, Li3BO3-Li2CO3-LCO, LCO-BTO-LZ and Li3BO3-Li2CO3-LCO-BTO-

LZ. 
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Fig. S36. Raman spectra of LCO, LZ, LCO-LZ and Li3BO3-Li2CO3-LCO-BTO-LZ.
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Fig. S37. Cycling performance and Coulombic efficiency of the LCO/BTO-LZ/Li ASSLBs at 65 oC.
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Fig. S38. EIS profiles of the LCO/BTO-LZ/Li full cells at 65 oC.
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Table S1. The SSEs thickness and diameter, fitted resistance values, calculated ionic conductivity.

SSEs Rb (ohm) RGB (ohm) S/L (cm) σbLi+ (mS cm-1) σGBLi+ (mS cm-1) σtotalLi+ (mS cm-1)

LZ 115.8 451.5 5.49 1.57 0.40 0.32

BTO-LZ 85.66 178.2 5.81 2.01 0.97 0.65

LZ-UHS 212.5 297.7 10.89 0.43 0.31 0.18

2 wt%-UHS 127.7 161.1 8.98 0.87 0.69 0.39

5 wt%-UHS 144.3 492.3 14.02 0.49 0.14 0.11

10 wt%-UHS 608 2444 12.44 0.13 0.39 0.026
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Table S2. CCD values comparison with previous literature for LLZO being above 1 mA cm-2 over 60 oC.

Modified 

method
Function

CCD (mA 

cm-2)
Ref

Al2O3 metallic interlayers 1.7
ACS Appl. Mater. Interfaces 2020, 12, 

56118−56125.1 

SnS2 mixed-conducting interlayers (MCI) 1.2
ACS Appl. Energy Mater. 2021, 4, 2873-

2880.2

Li-Naph MCI 1.7 Adv. Sci. 2022, 9, 2105924.3

Glass-ceramic 

LZ
structural design 1.15

ACS Appl. Mater. Interfaces 2023,15, 

28692−287.4

bilayer LZ structural design 1.7 Cell Rep. Phys. Sci. 2023, 4, 101473.5

Ag-LZ metallic interlayers 1.5 Sci. Adv.2022, 8, eabq0153.6

PPA
polymer-based Li+ conducting 

interlayers
1.5 ACS Energy Lett. 2023, 8, 537−544.7

Ag-LiF-LZ MCI 3.1 Sci. Adv.2022, 8, eabq0153.6

a-TPA-LZ
polymer-based Li+ conducting 

interlayers
1.3 Adv. Funct. Mater.2023, 33, 2208013.8 

CFx- LZ
polymer-based Li+ conducting 

interlayers
3.2 Adv. Funct. Mater.2022, 32, 2208682.9 

Li-Ga metallic interlayers 1.7 Nat. Commun. 2020, 11, 3716.10 

LiCoO2-LZ MCI 1.3 J. Energy Chem. 2023, 84, 181–188.11 

Li2S/LixSn-LZ MCI 1.2 Nano Energy 2022, 91, 106643.12 

Li-Na-LZ metallic interlayers 2.1 ACS Energy Lett. 2020, 5, 1167−1176.13 

Li3N/Fe MCI 3 Adv. Funct. Mater. 2021, 31, 2101556.14

LZO-LZ Li+ conducting interlayers 2 Chem. Eng. J. 2021, 411, 128508.15, 16 

3D-ZnO-LZ MCI 1.4 ACS Energy Lett. 2020, 5, 2156−2164.17 

MoS2 MCI 2.2 Energy Environ. Sci. 2019, 12, 1404-1412.18 

NaH2PO2-LZ MCI 2.6 Mater. Today 2022, 61, 65.19 

BTO-LZ
Self-Polarized Ferroelectric 

Interphase, MCI
6.1 in this work
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Table S3. Electrochemical performance of LLZO-based all-solid-state batteries. 

Cathode

Composition

Loading

(mg cm–1)
T (oC) Rate

Capacity

(mAh g−1)

No. of

Cycle(s)
Ref.

LCO + Li3BO3 1.7 25 °C, 0.05 C 85 5 20

LCO + porous

LLZO scaffold
0.73 80 °C 0.05 C 118 14 21

LCO +Li3BO3+

In2O5Sn
1.2 RT 0.025 101 1 22

LCO@Li2CO3+

Li2.3C0.7B0.3O3 +

LLZO@Li2CO3

1 100 °C 0.05 C 106 40 23

LCO + Li3BO3 / 0.01 C 78 1 24

LCO (PLD) + Li-Nb-O + LLZO /
/

1 μA cm−2 82 25 25

LCO +

LLBZNO-LCO

(UHS)

1 80 °C,
50 mA g−1

(0.3 C)
85 200 11

Li2.985B0.005OCl-LCO 1.85 90 °C 0.05 C 60 50 26

LCO-LBO-Li2CO3 1 65 oC 143 mA g-1 (1 C) 83 200 This work
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