Supplementary Information

Ambient scalable fabrication of high-performance flexible perovskite solar cells

Pengchi Liu^{†1}, Hui Wang^{†2,4}, Tianqi Niu^{†1}, Lei Yin¹, Yachao Du¹, Lei Lang¹, Zheng Zhang¹, Yongchao Tu¹, Xiujie Liu¹, Xin Chen¹, Shuang Wang¹, Nan Wu¹, Ru Qin¹, Likun Wang², Shaoan Yang², Chunfu Zhang⁴, Xu Pan⁵, Shengzhong (Frank) Liu^{1,2,3}, Kui Zhao^{1,*}

¹Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices. Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.

²Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China;

³Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.

⁴Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi'an 710071, China.

⁵Key Laboratory of Photovoltaic and Energy Conservation Material, Institute of Solid-State Physics 8 (ISSP), Hefei Institutes of Physical Science (HIPS), Chinese Academy of Sciences, Hefei 230031, China.

[†] These authors contributed equally.

* Email: zhaok@snnu.edu.cn

Experimental Section

Materials: Formamidine iodide (FAI, ≥99.9%), cesium bromide (CsBr, 98%), methylammonium chloride (MACl, \geq 99.9%), Pb (II) iodide (PbI₂, \geq 99.99%) and 2,2',7,7'-tetrakis(N,N'-di-p-methoxyphenylamine)-9,9'-spirobifluorene (Spiro-OMeTAD) were purchased from Advanced Election Technology Co., Ltd. Ionic liquid 1-butyl-3-methylimidazolium thiocyanate (BPySCN) was brought from Xi'an Polymer Light Technology Cory Co., Ltd. N, N-dimethylformamide (DMF, 99.8%) and N-Methylpyrrolidone (NMP, ≥99.9%) were obtained from Alfa Aesar. 4-tert-butylpyridine (t-BP, 99%) and lithiumbis(trifluoromethylsulfonyl)imide salt (LiTFSI) were purchased from Sigma-Aldrich. Chlorobenzene (CB, 99.5%) and isopropanol (IPA, 99.5%) were purchased from China National Pharmaceutical Group Corporation. $SnO₂$ colloid precursor (tin (iv) oxide, 15% in H2O colloidal dispersion) was obtained from Alfa Aesar. All chemicals were applied as received without further purification.

Precursor solution preparation. SnO₂ colloidal precursor was diluted with deionized water with a ratio of 1:6. The $FA_{0.95}C_{80.05}PbI₃$ perovskite solution was prepared by dissolving 163.4 mg FAI, 462 mg PbI $_2$, 10.7 mg CsBr, 23.6 mg MACl and BPySCN under different concentrations in 100 μL NMP and 1mL DMF. The Spiro-OMeTAD solution was prepared by dissolving 90 mg Spiro-OMeTAD in 1 mL CB with 22 μL Li-TFSI solution (520 mg in 1 mL ACN), 20 μL Co-TFSI solution (375 mg Co-TFSI in 1 mL ACN) and 36 μL 4-tert-butylpyridine.

Device fabrication

Fabrication of small-area devices. Fluorine-doped tin oxide (FTO) glass substrates and indium tin oxide (ITO)-coated flexible PET substrates (ca. 50 μm thick) were cleaned by sequential sonication in a detergent, deionized water, and ethanol, then dried in ovens and treated with ozone plasma before blade-coating. The electron transport layer (ETL), perovskite layer, and hole transport layer (HTL) were all fabricated by bladecoating in ambient conditions. The $SnO₂ ETL$ was fabricated by blade-coating the diluted solution on the pre-heated substrate at 40 °C at a speed of 20 mm/s and then annealed at 100 °C for 30 min. For the perovskite deposition process, the precursor solution was dropped onto a 40 °C pre-heated substrate and blade-coated at a speed of 20 mm/s. An airflow was applied to the as-casted films for several seconds to accelerate the evaporation of the solvent. Then, perovskite films were transferred to the hotplate and annealed at 100 °C for 15 min. After depositing the absorber layer, the 2 phenylethanamine hydroiodide (PEAI) layer was fabricated by printing the PEAI solution (5.0 mg/ml in IPA) on the 40 °C pre-heated perovskite layer at a speed of 25 mm/s. The HTL was deposited on the top of perovskite films by blade coating the Spiro-OMeTAD solution at a speed of 20 mm/s. Finally, the 80 nm gold electrode was thermally evaporated under vacuum. A non-refractive mask was employed to determine the active device area of 0.09 cm^2 .

Fabrication of flexible solar modules. The flexible solar module with 30 sub-cells was constructed by P1, P2, and P3 scribing lines with a wavelength of 1064 nm. The etched PET/ITO substrate was pre-patterned for P1 (ca. 200 μm width) and then cleaned with acetone and isopropanol to eliminate the adhesive residue. The subsequent processes for the preparation of SnO₂, perovskite, PEAI, and Spiro-OMeTAD layers are the same as the small-area device procedures. P2 and P3 scribing lines were patterned using a 355 nm picosecond laser scribing system (OpTek System, Inc., USA). The P2 lines (ca. 100 μm wide) were implemented with an average laser power of 12 W and a pulse repetition frequency of 65 kHz. After deposition of the gold electrode, the P3 lines (ca. 80 μm width) were patterned with an average laser power of 0.78 W and a pulse repetition frequency of 80 kHz. The distance interval between P1, P2, and P3 lines is ca. 30 μm. The active area of 117.7 cm² was determined by calculating the difference between the shadow mask and the dead zone.

Material characterization. The morphology of perovskite films was evaluated by field emission scanning electron microscopy (SEM, Hitachi, SU-8020) and atomic force microscopy (AFM, Bruker Dimension Icon instrument). X-ray photoelectron spectroscopy (XPS) was analyzed by ESCALAB 250, Al Kα, Thermo Fisher Scientific. Fourier transform infrared (FTIR) spectroscopy was obtained using a Bruker Vertex 70 infrared spectrophotometer (FTIR, Bruker VERTEX 70). Dynamic light scattering (DLS) was conducted on NanoBrook 90 Plusplas. ToF-SIMS measurement was performed on a PHI nanoTOF II instrument. Steady-state photoluminescence (PL) and time-resolved photoluminescence (TRPL) were measured using a PicoQuant FT-300 spectrometer, with a 510 nm laser. Micro-PL mapping was measured by a laser scanning confocal microscope (Enlitech, SPCM-1000) with a 470 nm pulse laser, in which the signal of area $625 \mu m^2$ was collected. UV-visible absorption was performed with a UVvisible spectrometer (PerkinElmer UV-Lambda 950). Ultraviolet photoelectron spectroscopy (UPS) was carried out on a monochromatic He I light source (21.22 eV) and a VG Scienta R4000 analyzer. X-ray diffraction (XRD) measurements were conducted using a DX-2700BH diffractometer. The grazing incidence X-ray diffraction (GIXRD) tests were realized by using a high-resolution X-ray Diffractometer (Smartlab (9), Japan). Grazing incidence wide-angle scattering (GIWAXS) at an incidence angle of 0.4° was performed at BL17B1 beamline of Shanghai Synchrotron Radiation Facility (SSRF) using the X-ray energy of 10 KeV. The measurement conditions of *in-situ* UVvis absorption and *in-situ* PL spectroscopies were described previously as reference¹⁶.

Device characterization.

The current density-voltage (*J–V*) characteristics of the devices were obtained by solar simulator equipment (Enlitech, SS-F5), and the illumination intensity (100 mW·cm⁻², AM 1.5G) was calibrated via a reference silicon cell with a KG5 filter. The scan range was from 1.5 V to 0 V with a 0.02 V bias step and 20 ms delay time. The external quantum efficiency (EQE) was characterized by a QE-R system (Enli Technology Co., Ltd.) using a 300-WXe lamp as the light source. The impedance spectroscopic measurements (EIS) and capacitance-voltage (C–V) measurements were measured using the electrochemical workstation (IM6ex, Zahner, Germany) in dark conditions. Transient photocurrent (TPC) measurement was carried out with a Paios 4.0 instrument (FLUXiM AG, Switzerland).

Statistical Analysis

All statistical analyses were performed with Origin 2023. The data obtained from J-V, , XPS, FTIR, ¹H NMR, in situ PL, in situ UV-Vis, SEM, PL, PL mapping, UPS, C-V, MS and TPC were the original data. The other data were obtained by transferring the corresponding original data according to the calculation formula.Supporting information data including J-V, EQE, stabilized power output, UV-vis absorption, AFM, GIWAXs, GIXRD, UPS, dark I-V, XRD measurements, and certified reports for flexible module, and theoretical structures for DFT calculation.

DFT calculation

The Vienna Ab Initio Simulation Package (VASP) was utilized to conduct density functional theory (DFT) computations under the generalized gradient approximation (GGA) employing the Perdew-BurkeErnzerhof (PBE) formulation.¹ The ionic cores were described using projected augmented wave (PAW) potentials, while valence electrons were incorporated using a plane wave basis set with a kinetic energy cutoff of 400 eV.² The FAPbI₃ (100) surface models containing $3\times3\times2$ supercells were constructed in the slab structure with a vacuum layer thickness of 15 Å to isolate the surface slab from its periodic duplicates. The equilibrium lattice constant of the cubic FAPbI₃ unit cell was optimized to be a=6.404 Å. During structural optimizations, the Γ point grid was employed for Brillouin zone integration. Self-consistency of electronic energy was attained when the energy change fell below 10^{-5} eV. Convergence of geometry optimization was achieved when the force change dropped below 0.02 eV/A on each atom. The bottom stoichiometric layer was fixed to allow the top region to fully relax the FAPbI₃ crystal structure, including lattice parameters and internal atomic positions Grimme's DFT-D3 methodology was employed to account for dispersion interactions.³ The adsorption energy (Eads) of additive was defined as $E_{ads} = E_{additive + surf}$ Esurf-Eadditve, where Eadditive+surf, Esurf, and Eadditve are the energy of additive adsorbed on the surface.

Figure S1. *J–V* curves of the champion rigid PSCs based on BPySCN under different injection concentrations.

Figure S2. Statistical distribution of photovoltaic parameters of 30 individual devices in each case.

Figure S3. EQE curves and the corresponding integrated current density of champion rigid PSCs.

Figure S4. Stabilized power output of BPySCN-based champion rigid device measured at a fixed maximum power point (MPP) voltage as a function of time.

Figure S5. Certified reports for the 117.0 cm² flexible perovskite solar module by Chinese photovoltaic and Wind Power Systems Quality Test Center (PWQTC, China).

 $-$ End of Report $-$

Page 3 of 3 $|z|^2$

Figure S6. (a) Photograph of flexible perovskite solar module. (b) Self-tested weighting results of flexible solar module.

Figure S7. (a-b) Theoretical structures of BPy⁺ (a) and SCN⁻ (b) adsorbed on the PbI₂terminated perovskite (100) plane with Pb_I antisite defects. (c-d) Theoretical structure of BPy^+ (c) and SCN⁻ (d) adsorbed on the PbI₂-terminated perovskite (100) plane with V^I defects.

Figure S8. Evolution of the absorption spectra of perovskite films with the increased BPySCN concentrations from (a) 0 to (b) 0.75 and (c) 1.50 mol%.

Figure S9. Linear fitting for the $ln(-ln(1-Y(t)))$ versus $ln(t)$ plot of perovskite films with the increased BPySCN concentrations from (a) 0 to (b) 0.75 and (c) 1.50 mol%. to determine the dimensionality (*n)* and rate constant (*K*)*.*

Figure S10: AFM topography images of the control (a) and target (b) films, showing the root-mean-square roughness (RMS).

Figure S11. (a) 2D-GIWAXS patterns of control and target films and (b) corresponding line-cut profiles extracted from GIWAXS patterns.

Figure S12. (a) XRD patterns and (b) FWHM values for different perovskite films.

Figure S13. (a-b) Dark *I-V* behaviors of electron-only devices (ITO/SnO2/perovskite/PCBM/Ag) showing different regimes as function of voltage bias. (c) The *J 1/2* versus *V* plots extracted from the child region in dark *I-V* curves.

Figure S14. Line cuts of the GIXRD patterns of the control (a) and target (b) perovskite films.

Figure S15. UV-vis absorption spectra of perovskite films with the corresponding Tauc plots shown inset.

Figure S16. UPS spectra of control and target perovskite films, showing the (a) E_{Cutoff} level and (b) the value of E_{Fermi edge}.

Figure S17. Dark *I–V* curves for the control and target devices.

Figure S18. Photographs (a) and XRD patterns (b) of the control and target perovskite films as function of aging time under ambient conditions at 85±5% relative humidity.

Figure S19. (a) Comparison of environmental stability of the unencapsulated flexible PSCs exposed to the ambient environment with ca. 40% humidity at room temperature. (b) Comparison of thermal stability of unencapsulated flexible PSCs under continuous

Figure S20. Comparison of mechanical stability of the unencapsulated F-PSCs under multiple-cycle bending test with a curvature radius (R) of 4 mm in air condition (ca. 40% humidity and room temperature).

$\rm V_{oc}$	J_{sc}	FF	PCE
(V)	$(mA cm-2)$	(%)	(%)
1.16	25.05	73.3	21.27
1.17	25.11	78.8	23.12
1.18	25.14	80.1	23.70
1.17	25.22	75.4	22.34
1.14	25.19	74.1	21.25

Table S1. Summary of the photovoltaic parameters of rigid PSCs under different BPySCN incorporation concentrations.

Table S2. Photovoltaic parameters and hysteresis index for the rigid PSCs.

	Scanning	V_{oc}	$J_{\rm sc}$	FF	PCE	Hysteresis
	mode	W)	$(mA cm-2)$	$\left(\frac{0}{0}\right)$	(%)	Index $(\%)$
Control	Reverse	1.14	25.08	73.8	21.26	3.3
	Forward	1.12	25.05	72.5	20.57	
Target	Reverse	1.18	25.14	80.1	23.70	1.3
	Forward	1.16	25.21	79.8	23.40	

Table S3. Photovoltaic parameters for the control and target F-PSCs.

F-PSC _s	$V_{\rm oc}$	J_{SC}	FF	PCE
	(V)	$(mA cm-2)$	$(\%)$	$(\%)$
Control	1.13	24.53	75.7	20.98
Target	. . 16	24.85	79.9	23.01

Table S4. Photovoltaic parameters for the flexible perovskite solar module.

Photovolatic technology	Specific power $(W g^{-1})$	Active area cm^2)	Reference
F-PSC _s	1.96	0.1	4
F-PSC _s	4.16	0.09	5
F-PSC _s	23.26	0.06	6
F-PSC _s	26.9	0.1	7
F-PSC _s	29.4	0.17	8
F-PSC _s	23		9
F-PSC _s	35		10
Flexible silicon solar module	1.9	274.4	11
Flexible perovskite solar module	1.97	117.7	This work

Table S5. Summary of the specific power and corresponding active area of flexible solar cells technologies.

Table S6. Fitting parameters for TRPL spectra of different perovskite films.

	A1	τ_1 (ns)	A2	τ_2 (ns)	$\tau_{\rm ave}$ (ns)
Control	83.3%	382.8	16.7%	90.1	333.8
Target	56.0%	860.0	44.0%	242.2	588.0

Table S7. Summaries of series resistance (R_s) , transport resistance (R_{tr}) and recombination resistance (Rrec) obtained from electrical impedance spectroscopy (EIS) for different devices.

Reference:

- 1. G. Kresse, J. Furthmüller, *Computational Materials Science* 1996, *6*, 15.
- 2. G. Kresse, D. Joubert, *Phys. Rev. B* 1999, 59, 1758.
- 3. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, *The Journal of Chemical Physics* 2010, 132, 154104.
- 4. Y. Li, L. Meng, Y. Yang, G. Xu, Z. Hong, Q. Chen, J. You, G. Li, Y. Yang, Y. Li, *Nat Commun.* 2016, 7, 10214.
- 5. M. Xie, J. Wang, J. Kang, L. Zhang, X. Sun, K. Han, Q. Luo, J. Lin, L. Shi, C.-Q. Ma, *Flex. Print. Electron.* 2019, 4, 034002.
- 6. H. Zhang, J. Cheng, D. Li, F. Lin, J. Mao, C. Liang, A. K.-Y. Jen, M. Grätzel, W. C. H. Choy, *Adv. Mater.* 2017, 29, 1604695.
- 7. Q. Wang, C.-C. Chueh, T. Zhao, J. Cheng, M. Eslamian, W. C. H. Choy, A. K.-Y. Jen, *ChemSusChem* 2017, 10, 3794.
- 8. S. Kang, J. Jeong, S. Cho, Y. J. Yoon, S. Park, S. Lim, J. Y. Kim, H. Ko, *J. Mater. Chem. A* 2019, 7, 1107.
- 9. B. Hailegnaw, S. Demchyshyn, C. Putz, L. E. Lehner, F. Mayr, D. Schiller, R. Pruckner, M. Cobet, D. Ziss, T. M. Krieger, A. Rastelli, N. S. Sariciftci, M. C. Scharber, M. Kaltenbrunner, *Nat Energy* 2024, 18, 379-387.
- 10. M. Kaltenbrunner, G. Adam, E. D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D. H. Apaydin, H. Groiss, M. C. Scharber, M. S. White, N. S. Sariciftci, S. Bauer, *Nature Mater* 2015, 14, 1032.
- 11. Y. Li, X. Ru, M. Yang, Y. Zheng, S. Yin, C. Hong, F. Peng, M. Qu, C. Xue, J. Lu, L. Fang, C. Su, D. Chen, J. Xu, C. Yan, Z. Li, X. Xu, Z. Shao, *Nature* 2024, 626, 105.