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Table S1. Gear set parameters for different transmission ratios

1:1 2:1 3:1 4:1 6:1 8:1 10:1
A M1.5738 M1.5 738 M1.5738 M1.5 738 M1.5Z38 M1.5Z38 M1.5Z38
B M1.5Z30 MI1.5Z30 M1.5 Z30 M1.5Z30 M1.5Z30 M1.5Z30 M1.5Z30
C M1.5Z30 M1.5Z30 M1 Z46 M1 Z46 M1 746 M1 Z46 M1 746
D / / M1 Z19 M1 Z19 M1Z19 M1 Z16 M1 Z16
E / / M1 Z19 M1 725 M1 237 M1 Z35 M1 z44
F M1.5Z38 MI1.5Z19 M1 Z19 M1 Z19 M1Z19 M1 Z16 M1 Z16
G / / M1 Z14 / / / /
H / / M1 Z14 / / / /

Note: Gear D and gear E are not needed in 1:1 and 2:1, because gear C and gear F are directly engaged.

Where M is the module of the gear, and Z is the number of teeth of the gear.



Table S2. Comparison of the volume average charge density for different cylindrical TENGs

Average Volume average Device Device External excitation—  External excitation—
Reference
power (mW)  charge density (W/m®) ~ mass (kg)  volume (m’) frequency (Hz) wave height (cm)
(1) WLM-TENG 0.113 0.032 / 0.0026 0.25 /
(2) WS-TENG 0.34 1.578 / 0.0033 15 6.8
(3) SC-TENG 0.42 1.69 / 0.0012 1 8
(4) SR-TENG 1.95 2.64 / 0.0011 1.8 /
(5) MS-TENG 6.5 3.56 / 0.0035 0.8 7
(6) MC-TENG 8.19 5.79 / 0.0042 0.8 5
(7) CS-TENG 1.95 8.48 / 0.0063 0.67 /
ER-TENG
5.54 15.67 3.15 0.0059 ~0.8 6
(This work)
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Table S3. Detailed cost breakdown of device parts

Component Quantity Unit Unit Price (CNY) Total Price (CNY)
Drift Barrel 1 Piece ¥16 ¥16
Pendulum 1 Piece ¥25 ¥25
One-way bearing 4 Piece ¥4 ¥16
Ordinary bearing 28 Piece ¥1 ¥28
Acrylic plate 14 300 mm*400 mm ¥2 ¥28
Aluminum plate 4 100 mm*100 mm ¥4 ¥16
Magnet 32 Piece ¥1 ¥32
Coil spring 1 Roll ¥3 ¥3
Electrode plate 8 Piece ¥2 ¥16
PTFE 32 50 mm*60 mm ¥0.03 ¥0.96
PA 32 50 mm*60 mm ¥0.27 ¥8.64
PE 32 10 mm*52.5 mm ¥0.01 ¥0.32
Total ¥189.92

Note: If it is mass-produced, the cost will be lower.



Note S1. Calculation of energy storage capacity of coil spring.
Coil spring model is represented in the diagram below. The blue curve depicts the coil spring, where
the outer end remains fixed during the energy storage phase, while the inner end receives energy from

the pendulum through the shatft.

XV

Fixed end A
\

The torsional stiffness K of the coil spring with length L, width b, and thickness h is given by:

EI Ebh®
= = #(S1)
L 12L

where E is the elastic modulus of the material used for the coil spring, and ! is the moment of inertia
of the cross-section of the coil spring. Based on the integration property, the energy stored in the coil

spring, when rotated by angle @, is:

K@* Ebh3p?
E= L e #(52)
2 241

Due to the randomness of water waves, it is impossible to precisely measure the total energy stored in
the coil spring over one cycle. However, based on simulated experimental tests, we can estimate an
approximate value. E is 200 GPa, D is 14 mm, " is 0.14 mm, @ is approximately 4500°, L is 3250 mm.

Therefore, the energy storage capacity of coil spring per cycle is about 1994.68 mJ.



Note S2. Influence of centrifugal speed limiter on the transmission efficiency of the device.
To install the speed limiter, additional Gear H and G are introduced to the gear set. Assuming the

transmission efficiency equals 1 without the limiter, the transmission efficiency 7 is determined by the

gear meshing efficiency Mg, bearing friction loss efficiency b, and loss efficiencies caused by the

centrifugal speed limiter Mo,
n="nyMy1M,#(53)
Since gear H and gear G are both straight, Mg can be calculated by

26pu (1 1
— + —|#(54)
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ng=1-

where H is the inter-tooth sliding friction factor, which equals 0.05 due to low tooth roughness. B is
the angle of inclination of the teeth on the base circle, which is 20°. 2 is 19 and 2 is 14. Thus, g can
be calculated as 0.9917. For the bearing friction loss efficiency M ts empirical value is 0-995. The

loss efficiency o caused by the centrifugal speed limiter can be calculated analogously to the non-

liquid friction centripetal plain bearing friction loss efficiency. This theoretical calculation is very
cumbersome, but it generally ranges from 0.92 to 0.96. We choose 0.94 because the three elastic flaps
are not completely in contact with the stopper ring. Up to this point, the transmission efficiency 1 is
0.9229. Therefore, the addition of the centrifugal speed limiter reduces the energy transmission
efficiency to 92% of that without the limiter. These are theoretical calculations, but from a qualitative
and empirical perspective, the centrifugal speed limiter stops rotating under a tiny external force,
indicating its low load-carrying capacity. In contrast, the magnet startup plate can drive the stacked
TENGs to work. Consequently, most of the energy input to Gear A is still supplied to the startup plate,

and the centrifugal speed limiter has a minimal effect on the device’s overall efficiency.



Note S3. Durability analysis of the ER-TENG's mechanical structure.

To begin, let's discuss the bearing lifespan. Since each bearing is connected to a different gear, their
lifespans vary. Therefore, we only need to calculate the lifespan of the bearing with the shortest life
expectancy. In Fig. 2c, it is clear that the bearing corresponding to gear A experiences the largest
equivalent dynamic load (P) due to the progressive transmission losses and torque levels. Given that
bearing lifespan is a discrete variable, it should be calculated in relation to a specific reliability level.

The relationship between bearing reliability and lifespan can be expressed by the following formula:

In09

L
InR ( 100—R)p#(55)

Lyo
where R represents the reliability of the bearing, L1oo-r is the lifespan of the bearing when the

reliability is R and L1 with a value of 10°, is the basic rated life of the bearing, measured in

revolutions. The exponent P is the life dispersion factor of the bearing, and for this experiment, P is
10/9. To ensure higher reliability of the mechanical device, we choose a bearing with an extremely
high reliability of R=99%. Therefore, when calculating the bearing lifespan, the reliability-adjusted

L

life factor Liom replaces L10, and Lyom is calculated as 10m=0.189xl‘10. The relationship between

bearing load and lifespan for rolling bearings is given by:

P?L,, = constant#(S6)

where € is the life exponent, which is set to 3 for our bearings. The basic rated load that the bearing

can withstand for a lifespan of 106 revolutions is referred to as the basic dynamic load rating € (with a

value of 496 N for this bearing). By introducing the temperature factor fe (set to 1 at normal

temperature) and the load factor f p (set to 1.2), substituting into equation (S6) gives:

C
L, =10° fL #(S7)

10 f P
p

The spur gears, which do not bear axial forces, are used. So the equivalent dynamic load on the bearing

— 11
P equals the radial force F R, measuring 1.942 N. Ultimately, we figure out that Ly=22+10

revolutions, which fully meets the operational requirements.

Next, let's discuss the durability of the gears. The primary failure modes for gears are surface fatigue



pitting and root bending fatigue fracture. Therefore, we need to calculate the contact fatigue strength

of the gear surface and the bending fatigue strength of the gear root. Taking gear B as an example, the

surface contact fatigue strength 9H is calculated based on Hertz contact stress theory and can be

expressed by the following formula:

727 Lot Ly (ss)
oy = R E—
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Zp= | (1-u7 1- uz S L #(59)
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where K is the load factor, set to 1.2, F is the tangential force on the gear, calculated to be 1.82 N, b
is the working width of the gear tooth, set to 3 mm, dy is the pitch diameter of the gear, set to 57 mm,

U is the gear ratio between gear B and gear A, set to 0.79, the Poisson's ratios 11 and #2 are both 0.3,

E E

the elastic moduli ©1 and ~2 are both 69 GPa, the pressure angle @ is 20° and the contact ratio €a is

calculated to be 1.69. Substituting these values into equation (S8) gives 9H=40.905 MPa. The

allowable contact stress o] for the material we are using, 6061 aluminum alloy, is approximately 93
MPa, which meets the experimental requirements.
For the bending fatigue strength of the gear root, we consider the stress concentration effects at the

root fillet and the impact of other stresses besides bending stress on the root stress. The verification

formula is:
KF,
o= me ra¥sa¥e < [05]#(510)

0.75
Y, =0.25+—=#(S11)
£

a
where °F represents the calculated bending stress. The gear modulus ™ is 1.5, the tooth form factor
Y

Fa is 2.45, and the stress correction factor Ysa is 1.65, both obtained from charts. The contact ratio

factor Ye is calculated to be 0.694. Substituting these values into Equation 6 gives 9F=1.362 MPa. The



allowable bending stress [oF] for the aluminum alloy we are using is approximately 120 MPa, which

also meets the experimental requirements.
In conclusion, the mechanical components of the device exhibit excellent durability, fully capable of

meeting the long-term operational demands of power generation.
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Fig. S1. Components of ER-TENG, which are symmetrically positioned around a central pendulum.



Fig. S2. Photograph of the outer end of the spring embedded in the container shell (The shell is made
of acrylic just for easy viewing).
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Fig. S3. (a) Photograph of a one-way bearing, including the overall appearance, interior structure, and
all parts of the bearing. (b-c) Working process of the one-way bearing.



Fig. S4. Energy conversion process from wave to the pendulum.
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Fig. S5. Working principle of the energy return proof bearing.
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Fig. S6. Peak linear fitting graphs of two output curves.
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Fig. S7. Schematic diagram of each layer for the test device.
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Fig. S8. Charge dissipation curve of PA film.
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Fig. S9. Measured interaction force between medium materials and the rotor. (a-b) Digital photo of
the initial and final state, indicating the height of the force sensor at this moment. (c-d) Measured
results of different medium materials.
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Fig. S10. Transferred charge curves of TENG from 40 to 140 rpm.
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Fig. S11. Short-circuit current curves of TENG from 40 to 140 rpm.
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Fig. S12. Open-circuit voltage curves of TENG from 40 to 140 rpm.
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Fig. S13. Digital photos of magnets embedded in the acrylic plate. (a-b) Digital photos of the even
surface before and after attaching the PTFE. (c-d) Digital photos of the uneven surface before and after
attaching the PTFE.
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Fig. S14. Schematic diagram of the distribution of surface A and surface B, and the force analysis

between the three rotor layers.
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Fig. S15. Photograph of the ER-TENG floating on the water.
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Fig. S16. Voltage curve of the thermohygrometer driven by ER-TENG with PMC. Inset is the work

state.
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Fig. S17. (a) Top and (b) side view of the stator fixing medium materials. (c) Top view of electrode
plate, the gap is clearly visible. (d) Side view of the PE passing through the gap of the electrode plate.



Fig. S18. A photograph of the rotor, where the yellow area represents the 25 um PA film and the milky
white area represents the 10 um PTFE film.



Fig. S19. Top and side view of the stacked TENG. Scale bar is 2 cm.



Fig. S20. Photograph of the mass (kg) of ER-TENG.



