Supplementary Information

Long-life sodium-sulfur batteries enabled by super-sodiophilic seeds

Jiarui He, Amruth Bhargav, and Arumugam Manthiram*

Corresponding author: manth@austin.utexas.edu.

Methods

Preparation of Na@CNT-BiF₃ composite: First, BiF₃ particles were uniformly dispersed on the surface of the CNT material by simply mixing with ethanol, and then the selfsupported CNT-BiF₃ electrode was obtained by a simple filtration. Then, Na disks were heated to 150 °C in a stainless-steel container. After melting, a pair of stainless-steel tweezers was used to remove the impurities until the molten sodium exhibited a shiny metallic luster. Finally, the self-supported CNT-BiF₃ electrode was soaked in molten sodium to obtain the Na@CNT-BiF₃ composite. The whole process was carried out inside an Ar-filled glove box with O₂ and H₂O contents of < 0.1 ppm.

Preparation of Na@Cu-BiF₃ composite: First, different contents of BiF₃ and PVDF were added to N-methyl-2-pyrrolidone (NMP) to form a slurry. The slurry was then coated onto a copper foil and dried in a vacuum oven at 60 °C. Then, the Cu-BiF₃ electrode was soaked in molten sodium to obtain the Na@Cu-BiF₃ composite. The whole process was carried out inside an Ar-filled glove box with O₂ and H₂O content of < 0.1 ppm.

Preparation of sulfur cathode. The sulfur cathode was prepared by a conventional meltdiffusion method. Specifically, Ketjen Black carbon and sublimed sulfur in a weight ratio of 1 : 9 were evenly mixed and heated at 155 °C in a sealed vial under an Ar atmosphere for 12 h to achieve a homogeneous sulfur distribution. Then, the as-obtained composite was heated at 200 °C for 30 min to eliminate the excess sulfur from the surface. The sulfur weight in the composite was close to ~ 87 wt%, which was confirmed by comparing the weight of the composites before and after the melt-diffusion process. Furthermore, the 80 wt.% C/S composite, 10 wt.% sodium carboxymethyl cellulose (CMC) binder, 5 wt.% multi-walled carbon nanotubes, and 5 wt.% Super-P were mixed in NMP to form a slurry. The slurry was coated onto a carbon-coated aluminum foil and dried in a vacuum oven at 60 °C. Finally, the dried foil was punched into 10 mm disk electrodes with an areal mass loading of 3 mg cm⁻².

Preparation of the electrolyte. Sodium bis(fluorosulfonyl)imide (NaFSI) was dried in a vacuum oven for 24 h at 60 °C. 1,2-dimethoxyethane (DME) was dried with molecule sieves for 72 h. The electrolyte was prepared inside an Ar-filled glove box. Particularly, DME was mixed with NaFSI at a molar ratio of 1 : 1.2 and stirred over 3 h to obtain a transparent solution. Then, 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether (TTE) was added to the above solution with the same molar amount as NaFSI.

Characterizations. The morphology characterization was carried out with a scanning electron microscope (FEI Quanta 650 SEM running at 20 kV) equipped with an energy dispersive X-ray (EDX) spectrometer to study the elemental distribution. Monochromatic AI K α (1,486.6 eV) radiation was used for XPS examination with a Kratos Analytical spectrometer.

Synchrotron X-ray diffraction (XRD). Synchrotron *in-operando* XRD tests were carried out at the 11-ID-C beamline with the Advanced Photon Source (APS) at Argonne National Laboratory. The beam spot size was 0.5 mm x 0.5 mm with the X-ray energy at 105.7 keV. The 2D diffraction images were captured with a Perkin Elmer area detector. The sample-to-detector distance was calibrated with a CeO₂ standard and the images were combined into 1D diffraction patterns with the use of the GSAS-II tool. XRD data were continually acquired by rastering back and forth between cells for a duration of 2 min per pattern.

Throughout this time, the cells were cycled at a rate of 0.1C rate from 0.8 to 2.8 V for a complete cycle of charge and discharge. CR2032-style window coin cells were put together inside a glovebox with < 1 ppm of O₂ and H₂O. To enable X-ray penetration, a 3 mm window was punched through both the top and bottom casings. The windows were sealed with Cu foil (9 μ m thick) and Al foil (12 μ m thick), respectively, on the anode side and the cathode side. An epoxy composed of Catalyst 15 and Eccobond 45 with a volume ratio of 1: 1 was applied to the foils as a reliable sealing. To ensure optimal mechanical contact between the CNT/CNT-BiF₃ electrode and the ion source, two Na metal discs were employed as a spacer. These house-built cells were assembled in our laboratory and shipped to APS for characterization.

Fig. S1. Illustration of the synthetic route and mechanism during the cycling of Na@Cu-BiF₃.

Fig. S2 Enlarged Voltage profiles of the Na@CNT-BiF₃ || Na@CNT-BiF₃ cells measured at 2 mA cm⁻² for 1,800 - 1,900 h.

Fig. S3. Schematic diagram of *in-situ* XRD test.

Fig. S4 Voltage profiles of Na@Cu-BiF $_3$ at various cycles.

Table S1. Electrochemical performance comparison with some reported representative

Material	S loading	Cycling performance	Cycling performance	pouch cell	Refs.	
	(mg cm ⁻²)) (mA h g ⁻¹) (mA h g ⁻¹)		(mA h g ⁻¹)		
Na@CNT-BiF ₃		862@0.1 C/200 cycles	674@1C/700 cycles		This	
C/S	3	862@0.17 A g ⁻¹ /200	674@1.17 A g ⁻¹ /700	/	work	
273		cycles	cycles		WOIR	
Na@Cu-BiF ₃		/		661@0.1C	This	
C/S	L	1	1	/50 cycles	work	
Na PZM@LE S	~0.5	/	~300@0.5C/800 cycles	/	S1	
S@MHCS-3	5	701@0.1 C/100 cycles	~300@1C/1000 cycles	⊉1C/1000 cycles /		
Zn-N ₂ /CF/S	1	838.5@0.1 A g ⁻¹ /100	r ¹ /100 672.7@1.0 A g ⁻¹ /1100 / cycles		 S3	
		cycles				
S/MoS ₂ /NCS	1.5	711.6@0.5 A g ⁻¹ /100	360.7@1.0 A g ⁻¹ /2800	/	 S4	
0,002,00		cycles	cycles			
S@Co1-CoS2/NC	1.6	642@0.2 A g ⁻¹ /150	542@0.2 A g ⁻¹ /150 357@5.0 A g ⁻¹ /5000 / cycles cycles		S5	
C12,	-	cycles				

Na-S batteries work

Na//S/TiN-	1 09	640.4@0.1 A g ⁻¹ /100	490.5@1.0 A g ⁻¹ /500	/	دد
TiO ₂ @MCCFs	1.08	cycles	cycles	1	30
S/Mo ₅ N ₆	1.2	180@0.2C/3000 cycles	290@1C/1000 cycles	/	S7
S@MoS ₂ -	0.96	/	505 @1.0 A g ⁻¹ /1000		 ۶۶
Mo ₁ /SGF	0.50	,	cycles	1	50
Cu SA/NOC/S-2		776@0.1 A g ⁻¹ /100	~600@1.0 A g ⁻¹ /1000	/	59
	·	cycles	cycles	7	
SCC	0.5-0.8	422@0.2C/200 cycles	/	/	S10

Table S2. Comparison of the electrochemical performances of the Na@CNT-BiF $_3$

	symmetric cells in this work with previously reported works
--	---

		Current/Capacity	Lifespan	Overpotential	
Anode	Electrolyte	(mA cm ⁻² /mAh cm ⁻²)	(h)	(mV)	Refs.
	LHCE	2/2 2000	2000	13.5	This
	LINCE		2000		work
Naln	1 M NaPF_6 in DME	2/2	790	11	S1
Na/SnSe	1 M NaClO₄ in EC/PC with 5% FEC	1/1	900	/	S2
NaBrP/Na	$1M \text{ NaPF}_6$ in EC/DEC with 5% FEC	2/2	240	/	S3
IOHL-Na	1 M NaClO₄ in EC/DEC with 5% FEC	1/1	770	65	S4
NaF/Co/Na	1 M NaClO₄ in EC/DEC with 5% FEC	1/1	1000	<100	S5

Na@Na₂Se/V	1 M NaClO₄ in EC/DEC with 5% FEC	0.5/1	1800	40	S6
Na/NST	1 M NaPF ₆ in EC/DEC with 5% FEC	1/1	1390	/	S7
Na/In/C	1 M NaClO₄ in EC/PC with 5% FEC	2/1	710	/	S8
MXene@gC ₃ N ₄ @Na	1 M NaPF ₆ in DIG	1/1	700	11	S9
Sb@HPCNF-Na	1 M NaPF ₆ in DIG	2/2	1000	13	S10
VP-Na	1 M NaClO₄ in EC/DEC with 5% FEC	1/1	1200	~100	\$11
NPCC-Ag-Na	1 M NaClO₄ in EC/PC with 5% FEC	1/1	800	70	\$12
Na₃P@Na	1 M NaTFSI in FEC/EMC	1/1	780	80	\$13
Protected Na	1 M NaPF ₆ in TEG/DME	2/1	380	~50	S14

References

- H. Xu, Y. Xiang, X. Xu, Y. Liang, Y. Li, Y. Qi and M. Xu, *Adv. Funct. Mater.*, 2024, 2403663.
- J. Luo, K. Wang, Y. Qian, P. Wang, H. Yuan, O. Sheng, B. Li, H. Wang, Y. Wang and Y. Liu, *Nano Energy*, 2023, 118, 108958.
- G. Yao, Z. Li, Y. Zhang, Y. Xiao, L. Wei, H. Niu, Q. Chen, Y. Yang and F. Zheng, *Adv. Funct. Mater.*, 2024, 34, 2214353.
- Y. Wang, Y. Lai, J. Chu, Z. Yan, Y. X. Wang, S. L. Chou, H. K. Liu, S. X. Dou, X. Ai and H. Yang, *Adv. Mater.*, 2021, **33**, 2100229.
- Y. Lei, C. Wu, X. Lu, W. Hua, S. Li, Y. Liang, H. Liu, W. H. Lai, Q. Gu and X. Cai, Angew. Chem. Int. Ed., 2022, 134, e202200384.
- 6. X. Ye, J. Ruan, Y. Pang, J. Yang, Y. Liu, Y. Huang and S. Zheng, ACS Nano, 2021,

15, 5639-5648.

- C. Ye, H. Jin, J. Shan, Y. Jiao, H. Li, Q. Gu, K. Davey, H. Wang and S.-Z. Qiao, *Nat. Commun.*, 2021, **12**, 7195.
- B. W. Zhang, L. Cao, C. Tang, C. Tan, N. Cheng, W. H. Lai, Y. X. Wang, Z. X. Cheng, J. Dong and Y. Kong, *Adv. Mater.*, 2023, 35, 2206828.
- D. Li, B. Gong, X. Cheng, F. Ling, L. Zhao, Y. Yao, M. Ma, Y. Jiang, Y. Shao and X. Rui, ACS Nano, 2021, 15, 20607-20618.
- C. Y. J. Lim, A. Y. S. Eng, A. D. Handoko, R. Horia and Z. W. Seh, *Nano Lett.*, 2021, 21, 10538-10546.
- M. Moorthy, B. Moorthy, B. K. Ganesan, A. Saha, S. Yu, D. H. Kim, S. Hong, S. Park, K. Kang and R. Thangavel, *Adv. Funct. Mater.*, 2023, 33, 2300135.
- L. Cao, J. Guo, Y. Feng, Y. Li, Y. Qiu, W. Zhu, Y. Tan, C. Sun, X. Rui and H. Geng, *Adv. Funct. Mater.*, 2024, 34, 2313962.
- Z. Luo, S. Tao, Y. Tian, L. Xu, Y. Wang, X. Cao, Y. Wang, W. Deng, G. Zou and H. Liu, *Nano Energy*, 2022, 97, 107203.
- X. Lv, F. Tang, S. Xu, Y. Yao, Z. Yuan, L. Liu, S. He, Y. Yang, W. Sun and H. Pan, Small, 2023, 19, 2300215.
- X. Zhou, F. Liu, Y. Wang, Y. Yao, Y. Shao, X. Rui, F. Wu and Y. Yu, *Adv. Energy Mater.*, 2022, **12**, 2202323.
- X. Xia, S. Xu, F. Tang, Y. Yao, L. Wang, L. Liu, S. He, Y. Yang, W. Sun and C. Xu, *Adv. Mater.*, 2023, 35, 2209511.
- X. Xia, K. Chen, S. Xu, Y. Yao, L. Liu, C. Xu, X. Rui and Y. Yu, *Small Sci.*, 2023, 3, 2300038.
- H. Wang, Y. Wu, Y. Wang, T. Xu, D. Kong, Y. Jiang, D. Wu, Y. Tang, X. Li and C.-S. Lee, *Nano-Micro Lett.*, 2022, 14, 1-15.
- C. Bao, J. Wang, B. Wang, J. Sun, L. He, Z. Pan, Y. Jiang, D. Wang, X. Liu and S. X. Dou, *ACS Nano*, 2022, 16, 17197-17209.
- Z. Li, H. Qin, W. Tian, L. Miao, K. Cao, Y. Si, H. Li, Q. Wang and L. Jiao, *Adv. Funct. Mater.*, 2024, 34, 2301554.
- 21. X. Xia, Y. Yang, K. Chen, S. Xu, F. Tang, L. Liu, C. Xu and X. Rui, Small, 2023, 19,

2300907.

- K. Lin, J. Chen, C. Lin, L. Liu, G. Zhang, S. Sun and Z. Shi, *Chem. Eng. J.*, 2023, 452, 138904.
- P. Shi, S. Zhang, G. Lu, L. Wang, Y. Jiang, F. Liu, Y. Yao, H. Yang, M. Ma and S. Ye, *Adv. Energy Mater.*, 2021, **11**, 2003381.
- Q. Lu, A. Omar, L. Ding, S. Oswald, M. Hantusch, L. Giebeler, K. Nielsch and D. Mikhailova, J. Mater. Chem. A, 2021, 9, 9038-9047.