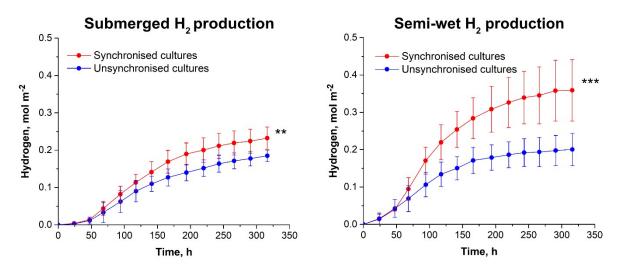
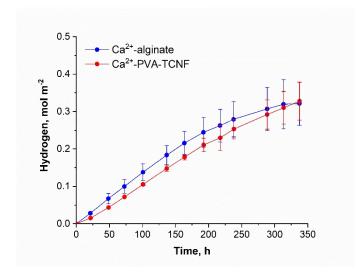
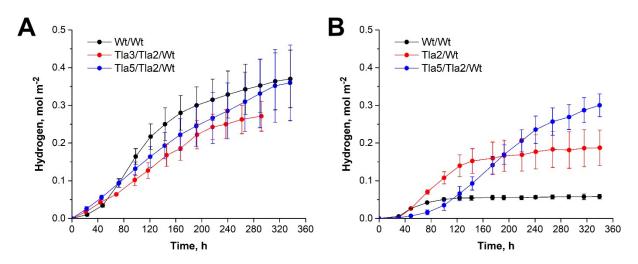
Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels This journal is © The Royal Society of Chemistry 2022


Engineered biocatalytic architecture for enhanced light utilisation in algal H₂ production

Sergey Kosourov, *a Tekla Tammelin ^b and Yagut Allahverdiyeva *a


^a Molecular Plant Biology, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland;

^b VTT Technical Research Centre of Finland Ltd, VTT, PO Box 1000, FI-02044 Espoo, Finland.


The data supporting this article are available in the file: Data.xlsx

Suppl. Fig. 1 Effect of production conditions and cell cycle synchronisation on long-term H₂ photoproduction by S-deprived *C. reinhardtii* cells entrapped within single-layer Ca²⁺-alginate films. Differences are significant at **, P < 0.01 and ***, P < 0.001.

Suppl. Fig. 2 Comparison of H_2 photoproduction yields by single-layer Ca²⁺-alginate and Ca²⁺-PVA-TCNF films under semi-wet production conditions.

Suppl. Fig. 3 Hydrogen photoproduction by Ca²⁺-PVA-TCNF films with double- and triple-layer architecture exposed to 25 (A) and 200 (B) μ mol photons m⁻² s⁻¹ light under semi-wet production conditions. The double-layer films consist of two 120 μ m-thick layers, while triple-layer films consist of three 80 μ m-thick layers.