Electronic Supplementary Material

Towards Efficient and Stable Organic Solar Cells: Fixing the Morphology Problem in Block Copolymer Active Layer with Synergistic Strategies Supported by Interpretable Machine Learning

Yu Cui, ^a Qunping Fan, ^a Hao Feng, ^b Tao Li, ^b Dmitry Yu. Paraschuk, ^c Wei Ma, ^a and Han Yan *^a

^a State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China. E-mail: mseyanhan@xjtu.edu.cn.

^b Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.

^c Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1/62, Moscow 119991, Russia.

1. Experimental section

1.1 Materials. PM6 and Y6 were purchased from Solarmer Materials Inc. N-DMBI and chloroform (CF) were purchased from Sigma-Aldrich. All chemicals were used as received without further purification.

1.2 BHJ device fabrication. N-DMBI were dissolved in chloroform solvent with different concentrations (0.1mg/mL, 0.01mg/mL, 0.001mg/mL) and stirred on a hot plate at room temperature. PM6:PYIT (16 mg/mL, D/A = 1:0.87), Y6 (15 mg/mL), and PM6-b-PYIT (15 mg/mL) were dissolved in CF and stirred on a hot plate at 50 °C for 2 hours. All the organic solar cells were fabricated in a conventional device structure of ITO/PEDOT:PSS/active layer/PDINO/Al. Blended solutions were spin-coated on the substrates to form 100 nm films. Then a thin PDINO layer (2 mg/mL in methanol, 3300 rpm for 30 s) was spin-coated on the active layer. Finally, 100 nm Ag was deposited at a vacuum level of $< 4 \times 10^{-5}$ Pa. The typical device area (0.04 cm²) was defined by a metal mask with aligned aperture.

1.3 GIWAXS characterization. GIWAXS measurements were performed at beamline 7.3.3 at the Advanced Light Source.¹ Samples were prepared on Si substrates using identical blend solutions as those used in devices. The 10 keV X-ray beam was incident at a grazing angle of 0.11°-0.15°, selected to maximize the scattering intensity from the samples. The scattered x-rays were detected using a Dectris Pilatus 2M photon counting detector. Crystal coherence lengths (CCLs) values of the materials were calculated using Scherrer equation:

$$\text{CCLs} = \frac{2\pi K}{\Delta q}$$

K (shape factor) = 0.9 and Δq =full width half maximum (FWHM) of the scattering.

1.4 DFT and TD-DFT calculation. We apply density functional theory (DFT) and time-dependent density functional theory (TD-DFT) to study the interaction among PM6-b-PYIT, the PM6-block, the PYIT-block, Y6 and N-DMBI. All DFT calculations

in this work were performed using the ORCA 5.0.0 package.^{2, 3} The gas-phase ground state geometry of the molecules was determined using the B3LYP/G D3 def2-TZVP method. We then used the M062X functional and base set with the polarizable continuum model (PCM) to perform all the remaining DFT calculations. The quantitative molecular surface analysis, non-covalent interaction (NCI) analysis and Mulliken charge population analysis were performed with the use of Multiwfn.⁴

1.5 Molecular polarity index (MPI). The electrostatic potential is directly determined by the charge distribution within a system; an uneven distribution of charge within a molecule manifests itself as a distinctive pattern of electrostatic potential across the molecular surface. Consequently, characterizing the features of the electrostatic potential distribution over a molecule's surface allows for quantification of the molecule's polarity. The molecular polarity index (MPI) is defined as follow:

$$MPI = (1 / A) \iint_{S} |V(\mathbf{r})| \, dS$$

Here, V represents the molecular electrostatic potential, and integration is performed over the molecular surface S, with A denoting the molecular surface area. A larger MPI signifies a greater overall polarity of the molecule. This is because the unevenness of the charge distribution serves as a manifestation of molecular polarity; the more pronounced the heterogeneity of the charge distribution, the more likely it is to produce highly positive or highly negative regions on the molecular surface, thereby resulting in a higher MPI value. The MPIs were calculated by Multiwfn.⁴

1.6 Calculating the SCLC mobility. The SCLC mobility (μ) was measured with the hole-only device structure of ITO/PEDOT:PSS/active layer/MoO₃/Al and electron-only device structure of ITO/ZnO/active layer/PFN-Br/Al. The thickness of all the active layers is maintained at approximately 100 nm. The values of SCLC mobility were obtained by fitting the current density-voltage curves according to

$$J = \frac{9\varepsilon_0\varepsilon_r\mu V^2}{8d^3}$$

where ε_0 is the permittivity of vacuum, ε_r is the relative permittivity of the active layer and it is assumed to be 3.5 here.

1.7 Kelvin Probe Force Microscopy: KPFM images were obtained by a commercial SPM system (MFP3D, Oxford Instruments, USA). The surface potential was defined as $(\Phi_{tip} - \Phi_{sample})/e$. The conductive probe tip used in the measurements was Pt coated.

1.8 Other measurements. TM-AFM images were scanned by Bruker INNOVA. The J-V curves were performed in the N₂-filled glovebox under AM 1.5G (100 mW cm⁻²) using an AAA solar simulator (SS-F5-3A, Enli Technology Co., Ltd.) calibrated with a standard photovoltaic cell equipped with KG5 filter. The EQE curves were measured by Solar Cell Spectral Response Measurement System QE-R3018 (Enli Technology Co., Ltd.) with calibrated light intensity by a standard Si photovoltaic cell. ESR spectra were tested on Bruker Biospin A300-9.5/12. ESR spectra were tested on Bruker Biospin A300-9.5/12. PL spectra were recorded by FLS980 spectrometer (Edinburgh Instruments, EI). The thickness of all thWWe PL samples maintained at approximately 100 nm.

1.9 Machine Learning. XGBoost ML algorithm was chosen because it uses parallelized processing, which can steadily improve the accuracy of the model. To avoid overfitting, grid search with 5-fold cross-validation (CV) was used to optimize the hyperparameters (Table S13). The dataset was split into a training dataset (70%) and a test dataset (30%). Root mean squared error (RMSE) and coefficient of determination (r^2) were used to check the performance of ML model:

$$MSE = \sum_{i=1}^{m} \frac{1}{m} (x_i - y_i)^2$$
$$RMSE = \sqrt{MSE}$$
$$r^2 = 1 - \frac{MSE}{Var(y)}$$

 x_i is the predicted value of the model, y_i is the target variable and Var(y) is the variance of the sample data. The coefficient of determination (r^2) indicates the prediction ability of the model. Its value ranges between 0 and 1, and a value close to one indicates more prediction accuracy.

2. Supplementary figures

Fig. S1. XPS spectra: F 1s and N 1s spectrum of PM6-b-PYIT.

Fig. S2. Chemical structures and DFT calculated optimal geometries of (a)(b) PM6 (poly((4,8-bis(5-(2-ethylhexyl)-4-fluoro-2-thienyl)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)-2,5-thiophenediyl(5,7-bis(2-ethylhexyl)-4,8-dioxo-4H,8H-benzo[1,2-c:4,5-c']dithiophene-1,3-diyl)-2,5-thiophenediyl)), (c)(d) PYIT (poly[2,2'-((2Z,2'Z)-((12,13-bis(2-octyldodecyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2",3":4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile-co-2,5-thiophene]) and (e)(f) Y6 (2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2",3":4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile)

Fig. S3. The contact angle images of (a) PM6, (b) PYIT and (c) Y6.

Fig. S4. DFT calculated optimal geometries of (a) PM6- PYIT unit/Y6, (b) PM6-PYIT unit/Y6/N-DMBI and (c) PM6- PYIT unit/Y6/N-DMBI* complexes.

Fig. S5. (a) NCI calculated by reduced density gradient analysis of Y6⁻/N-DMBI⁺ complex and the respective non-covalent energy (E_n). The NCI interaction scatter plots of (b) Y6⁻/N-DMBI⁺, (c) PYIT block/Y6, (d) PM6 block/Y6 and (e) PM6-PYIT unit/Y6⁻/N-DMBI⁺ complex.

Fig. S6. Chemical fomula and optimized molecular geometries of the neutral (a) N-DMBI, (b) radical N-DMBI^{*}, and (c) cation N-DMBI⁺. Pictorial representation and energies of (d) the HOMO of N-DMBI and (f) the SOMO of N-DMBI^{*}. Electrostatic potential (ESP) of (e) N-DMBI and (g) N-DMBI⁺. (h) The calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of PM6-PYIT unit.

Fig. S7. PL spectra of the pristine Y6, Y6 doped by N-DMBI, and PM6-b-PYIT films. The PL intensities are normalized to the corresponding absorption of the films at the excitation wavelength of 650 nm.

Fig. S8. AFM height image for (a) PM6-b-PYIT+1%Y6 and (b) PM6-b-PYIT+5%Y6 film. Phase images for (c) pristine PM6-b-PYIT, (d) PM6-b-PYIT+1%Y6, (e) PM6-b-PYIT+3%Y6 and (f) PM6-b-PYIT+5%Y6 films.

Fig. S9. AFM height and phase images for (a) and (d) PM6-b-PYIT+0.01%wt N-DMBI; (b) and (e) PM6-b-PYIT+0.05%wt N-DMBI; (c) and (f) PM6-b-PYIT+0.1%wt N-DMBI films.

Fig. S10. AFM height and phase images for (a, b) PM6-b-PYIT+1%Y6 doped, (c, d) PM6-b-PYIT+5%Y6 doped films.

Fig. S11. (a) Schematic diagram of KPFM test. Height and KPFM image of (b, f) PM6b-PYIT, (c, g) PM6-b-PYIT doped, (d, h) PM6-b-PYIT+3%Y6 and (e, i) PM6-b-PYIT+3%Y6 doped films, respectively.

Fig. S12. 2D GIWAXS patterns for the films studied.

Fig. S13. Out-of-plane and in-plane 1D scattering profiles for the data from Fig. S13.

Fig. S14. (a) 1D scattering profiles of out-of-plane (OOP) and in-plane (IP) for PM6b-PYIT+0.01%wt N-DMBI, PM6-b-PYIT+0.05%wt N-DMBI, and PM6-b-PYIT+0.1%wt N-DMBI films. (b-d) 2D GIWAXS patterns for their corresponding films.

Fig. S15. (a) Hole-only and (b) electron-only charge transport curves of the pristine PM6-b-PYIT, PM6-b-PYIT+3%Y6, PM6-b-PYIT doped, and PM6-b-PYIT+3%Y6 doped devices.

Fig. S16. V_{OC} and J_{SC} as a function of the light intensity.

Fig. S17. Chemical structures and full names of (a) BTP-eC9 and (b) L8-BO.

Fig. S18. (a) Predicted PCE by machine learning versus the experimental PCE. (b) Illustration of features contributing to photovoltaic performances by SHAP values. The relative contributions of morphology and charge transport/recombination parameters for PCE.

Fig. S19. Schematic of the unoptimized BCP morphology.

3. Supplementary tables

	Element	Mass Fraction (%)	Atomic Fraction (%)
	N	71.34	77.31
РМ6-b-РҮП	F	28.66	22.69

Table S1. The elemental analysis data of the block copolymer PM6-b-PYIT.

Table S2. The photovoltaic performance parameters of OSCs based on PM6:PYIT (D:A = 1:0.87) and PM6-b-PYIT under the illumination of AM 1.5G, 100 mW cm⁻².^a

Photoactive Layer	V _{OC} (V)	J _{SC} (mA/cm ²)	FF (%)	PCE (%)
PM6:PYIT (D:A = 1:0.87)	0.965 (0.961±0.002)	24.1 (23.9±0.2)	63.3 (61.0±0.7)	14.6 (14.2±0.2)
PM6-b-PYIT	0.943 (0.942±0.001)	23.1 (23.0±0.1)	60.7 (60.3±0.1)	13.2 (12.9±0.2)

^a The parameters are obtained from 10 independent devices.

Table S3. Contact angle, surface energy and molecular polarity index of the used materials.

Materials	Θ _{water} (°)	Θ_{DIM} (°)	Surface energy (mN/m)	Molecular polarity index (MPI) (kcal/mol)
PM6 block	105.9	53.8	31.74	7.32
PYIT block	95.5	40.8	36.84	10.76
Y6	94.8	41.6	37.87	11.51

Table S4. Enthalpy changes for the hydrogen atom removal reaction.

Enthalpy Change	kcal/mol	
$\Delta H_{H^*}(PM6-PYIT unit/N-DMBI)$	33.8	
ΔH_{H^*} (PM6-PYIT unit/Y6/N-DMBI)	20.3	

Table S5. Summary of the related energy quantities for the hydrogen atom removal reaction.

Enthalpy	kcal/mol
$\Delta E_{\rm H^*}$ (N-DMBI)	83.4
IP(N-DMBI [*])	57.3
E _n (PM6-PYIT unit/N-DMBI)	-16.3
E _n (PM6-PYIT unit ⁻ /N-DMBI ⁺)	-32.3
E _n (PM6-PYIT unit+Y6/N-DMBI)	-27.5
E _n (PM6-PYIT unit+Y6 ⁻ /N-DMBI ⁺)	-44.0

Mulliken charge population analysis			
	Charge Transfer (e)		
PM6-b-PYIT/Y6/N-DMBI	0.17		
PM6-b-PYIT/Y6/N-DMBI*	0.98		

Table S6. Charge transfer amounts (CT) from the dopants to semiconductors.

Table S7. Calculated crystal coherence lengths (CCLs) from GIWAXS patterns.

	(010	(010) (Å)		(11-1) (Å)		(100) (Å)	
Conditions	FWH M	CCLs	FWHM	CCLs	FWHM	CCLs	
PM6-b-PYIT	0.306	18.46	0.064	88.71	0.131	50.33	
PM6-b-PYIT+1%Y6	0.284	19.89	0.052	108.99	0.056	100.18	
PM6-b-PYIT+1%Y6+0.05%wt N-DMBI	0.243	23.29	0.047	120.18	0.050	112.47	
PM6-b-PYIT+3%Y6	0.282	20.02	0.051	111.76	0.049	114.11	
PM6-b-PYIT+3%Y6+0.05%wt N-DMBI	0.265	21.36	0.052	109.09	0.048	116.88	
PM6-b-PYIT+5%Y6	0.269	21.06	0.056	101.12	0.056	101.40	
PM6-b-PYIT+5%Y6+0.05%wt N-DMBI	0.269	19.08	0.052	107.94	0.053	105.72	
PM6-b-PYIT+0.01%wt N-DMBI	0.308	18.35	0.065	86.95	0.111	50.92	
PM6-b-PYIT+0.05%wt N-DMBI	0.308	18.35	0.064	88.31	0.113	50.02	
PM6-b-PYIT+0.1%wt N-DMBI	0.310	18.23	0.066	85.64	0.113	50.02	

Table S8. Photovoltaic performance of PM6-b-PYIT based OSCs fabricated by different amount of CN additives under the illumination of AM 1.5G, 100 mW cm⁻². ^a

Condition	$V_{OC}(V)$	J _{SC} (mA/cm ²)	FF (%)	PCE (%)
PM6-b-PYIT	0.940 (0.939±0.001)	22.7 (22.4±0.2)	59.0 (58.6±0.3)	12.6 (12.4±0.1)
PM6-b-PYIT +0.5% CN	0.945 (0.943±0.001)	23.2 (23.0±0.2)	59.5 (58.3±1.3)	13.0 (12.5±0.3)
PM6-b-PYIT +1% CN	0.943 (0.942±0.001)	23.1 (23.0±0.1)	60.7 (60.3±0.1)	13.2 (12.9±0.2)
PM6-b-PYIT +2% CN	0.944 (0.941±0.002)	23.2 (23.1±0.1)	58.5 (58.3±1.1)	12.8 (12.4±0.3)

^a The parameters are obtained from 10 independent devices.

Table S9. Photovoltaic performance of OSCs fabricated by direct doping of PM6-b-PYIT with N-DMBI under the illumination of AM 1.5G, 100 mW cm⁻².^a

V _{OC} (V)	J _{SC} (mA/cm ²)	FF (%)	PCE (%)
0.944 (0.942±0.002)	22.8 (22.4±0.2)	59.3 (57.9±0.9)	12.8 (12.5±0.1)
0.945 (0.943±0.001)	22.9 (22.3±0.5)	59.5 (57.3±1.3)	12.9 (12.5±0.3)
0.944 (0.941±0.002)	22.5 (22.2±0.2)	60.0 (58.0±1.1)	12.8 (12.4±0.3)
	V _{OC} (V) 0.944 (0.942±0.002) 0.945 (0.943±0.001) 0.944 (0.941±0.002)	V_{OC} (V) J_{SC} (mA/cm²)0.944 (0.942±0.002)22.8 (22.4±0.2)0.945 (0.943±0.001)22.9 (22.3±0.5)0.944 (0.941±0.002)22.5 (22.2±0.2)	V_{OC} (V) J_{SC} (mA/cm²)FF (%)0.944 (0.942±0.002)22.8 (22.4±0.2)59.3 (57.9±0.9)0.945 (0.943±0.001)22.9 (22.3±0.5)59.5 (57.3±1.3)0.944 (0.941±0.002)22.5 (22.2±0.2)60.0 (58.0±1.1)

^a The parameters are obtained from 10 independent devices.

Condition	V _{OC} (V)	J _{SC} (mA/cm ²)	FF (%)	PCE (%)
PM6-b-PYIT +1%Y6	0.931 (0.928±0.001)	23.6 (23.3±0.2)	66.0 (64.6±1.0)	14.5 (14.2±0.2)
PM6-b-PYIT +1%Y6+0.01%wt N-DMBI	0.931 (0.930±0.001)	23.4 (23.2±0.2)	66.6 (64.9±0.9)	14.6 (14.3±0.2)
PM6-b-PYIT +1%Y6+0.05%wt N-DMBI	0.931 (0.929±0.002)	24.0 (23.8±0.1)	65.4 (64.7±0.4)	14.6 (15.3±0.2)
PM6-b-PYIT +1%Y6+0.1%wt N- DMBI	0.931 (0.930±0.001)	24.4 (24.2±0.2)	66.0 (65.0±0.5)	15.0 (14.8±0.2)
PM6-b-PYIT +3%Y6	0.931 (0.928±0.002)	23.8 (23.7±0.1)	66.4 (65.6±0.4)	14.7 (14.5±0.1)
PM6-b-PYIT +3%Y6+0.01%wt N-DMBI	0.936 (0.933±0.002)	23.7 (23.53±0.1)	67.6 (67.1±0.3)	15.0 (14.8±0.10)
PM6-b-PYIT +3%Y6+0.05%wt N-DMBI	0.944 (0.943±0.001)	24.6 (24.2±0.3)	68.5 (68.2±0.2)	15.9 (15.5±0.3)
PM6-b-PYIT +3%Y6+0.1%wt N- DMBI	0.938 (0.936±0.002)	23.9 (23.8±0.2)	67.5 (66.6±0.6)	15.1 (14.8±0.3)
PM6-b-PYIT +5%Y6	0.931 (0.930±0.001)	23.3 (23.1±0.2)	63.3 (63.2±0.8)	13.7 (13.6±0.1)
PM6-b-PYIT +5%Y6+0.01%wt N-DMBI	0.931 (0.930±0.001)	23.9 (23.6±0.2)	63.0 (62.5±0.4)	14.0 (13.8±0.2)

Table S10. Device performance of PM6-b-PYIT devices incorporating different Y6 amounts and N-DMBI dopants under the illumination of AM 1.5G, 100 mW cm⁻².^a

^a The parameters are obtained from 10 independent devices.

Table S11. The <i>n</i> values obtained from fitting the V_{OC} -P _{light} c	urves
--	-------

	PM6-b-PYIT	PM6-b-PYIT doped	PM6-b-PYIT+Y6	PM6-b-PYIT+Y6 +N-DMBI
α value	0.982 ± 0.002	$0.983{\pm}0.002$	$0.989{\pm}0.001$	0.993±0.003
<i>n</i> values	1.52±0.03 <i>k</i> T/q	1.51±0.04 <i>k</i> T/q	1.44±0.02 <i>k</i> T/q	1.25±0.03 <i>k</i> T/q

Table S12. Performances of devices based on blends of PM6-b-PYIT with BTP-eC9 or L8-BO and doped by N-DMBI under the illumination of AM 1.5G, 100 mW cm⁻². ^a

1 7			/	
Active layer	V _{OC} (V)	J _{SC} (mA/cm ²)	FF (%)	PCE (%)
PM6-b-PYIT +3%BTP-eC9	0.931 (0.930±0.001)	23.5 (23.2±0.3)	67.3 (67.1±0.2)	14.7 (14.6±0.1)
PM6-b-PYIT +5%BTP-eC9+0.05%wt N-DMBI	0.939 (0.938±0.001)	23.5 (23.3±0.1)	69.1 (68.6±0.4)	15.2 (15.1±0.1)
PM6-b-PYIT +3%L8-BO	0.933 (0.932±0.001)	24.2 (23.8±0.3)	65.7 (64.9±0.5)	14.8 (14.5±0.2)
PM6-b-PYIT +5%L8-BO+0.05%wt N- DMBI	0.938 (0.937±0.001)	24.0 (23.8±0.1)	69.0 (68.3±0.5)	15.5 (15.4±0.1)

^a The parameters were obtained over 10 independent devices.

	· · ·		_
Hyperparameter	Purpose of the Hyperparameter	Value	
n_estimators	Number of decision trees	100	
max_depth	Depth of the tree	3	
learning_rate	Learning rate	0.05	
subsample	Sample Sampling Ratio	0.5	

 Table S13. Optimized XGBoost model hyperparameters.

Table S14. Normalized photovoltaic parameters of PM6-b-PYIT OSCs in nitrogen atmosphere for up to 1000 h storage under 85°C continuous annealing under dark condition. ^a

Time (h)	V _{OC} (V)	Er±	J _{SC} (mA cm ⁻²)	Er±	FF (%)	Er±	PCE (%)	Er±
0	1.000	0.005	1.000	0.026	1.000	0.020	1.000	0.036
6	0.998	0.002	0.999	0.018	0.961	0.010	0.877	0.011
18	0.989	0.002	0.989	0.017	0.938	0.017	0.829	0.030
40	0.986	0.003	0.975	0.013	0.925	0.020	0.812	0.026
52	0.987	0.001	0.951	0.009	0.915	0.011	0.813	0.014
64	0.983	0.003	0.937	0.023	0.902	0.017	0.807	0.031
88	0.975	0.001	0.929	0.015	0.901	0.013	0.763	0.024
112	0.976	0.009	0.903	0.017	0.886	0.022	0.739	0.017
144	0.974	0.007	0.896	0.023	0.893	0.007	0.735	0.021
176	0.974	0.012	0.859	0.033	0.886	0.013	0.706	0.027
240	0.976	0.013	0.876	0.025	0.885	0.013	0.718	0.022
312	0.974	0.017	0.856	0.028	0.876	0.013	0.708	0.032
420	0.976	0.003	0.843	0.015	0.863	0.022	0.725	0.021
600	0.974	0.001	0.841	0.017	0.854	0.013	0.706	0.027
800	0.972	0.009	0.835	0.023	0.850	0.022	0.718	0.022
1000	0.970	0.007	0.833	0.033	0.846	0.007	0.708	0.032

^a The parameters are obtained from 5 independent devices.

Time (h)	V _{OC} (V)	Er±	J _{SC} (mA cm ⁻²)	Er±	FF (%)	Er±	PCE (%)	Er±
0	1.000	0.003	1.000	0.008	1.000	0.012	1.000	0.020
6	0.995	0.002	0.985	0.006	0.970	0.008	0.923	0.012
18	0.991	0.002	0.979	0.014	0.953	0.009	0.889	0.012
40	0.989	0.004	0.951	0.029	0.944	0.002	0.872	0.027
52	0.980	0.002	0.933	0.017	0.934	0.004	0.850	0.014
64	0.981	0.004	0.933	0.023	0.923	0.005	0.807	0.019
88	0.977	0.002	0.933	0.021	0.902	0.006	0.820	0.015
112	0.978	0.010	0.926	0.026	0.913	0.006	0.796	0.026
144	0.973	0.008	0.897	0.022	0.903	0.011	0.788	0.026
176	0.975	0.009	0.905	0.020	0.896	0.008	0.781	0.025
240	0.973	0.010	0.914	0.015	0.901	0.027	0.776	0.028
312	0.974	0.018	0.893	0.017	0.895	0.024	0.755	0.026
420	0.973	0.002	0.887	0.014	0.890	0.011	0.768	0.026
600	0.975	0.010	0.885	0.029	0.886	0.008	0.761	0.025
800	0.973	0.008	0.871	0.017	0.874	0.027	0.756	0.028
1000	0.970	0.009	0.869	0.023	0.873	0.024	0.745	0.026

Table S15. Normalized photovoltaic parameters of PM6-b-PYIT+3%Y6 OSCs in nitrogen atmosphere for up to 1000 h storage under 85°C continuous annealing under dark condition. ^a

^a The parameters are obtained from 5 independent devices.

Table S16. Normalized photovoltaic parameters of PM6-b-PYIT+3%Y6 doped OSCs in nitrogen atmosphere for up to 1000 h storage under 85°C continuous annealing under dark condition. ^a

Time (h)	V _{OC} (V)	Er±	J _{SC} (mA cm ⁻²)	Er±	FF (%)	Er±	PCE (%)	Er±
0	1.000	0.003	1.000	0.017	1.000	0.020	1.000	0.033
6	0.998	0.003	0.992	0.010	0.965	0.016	0.940	0.023
18	0.994	0.003	0.989	0.014	0.960	0.024	0.900	0.036
40	0.991	0.003	0.978	0.014	0.945	0.017	0.885	0.026
52	0.990	0.004	0.985	0.018	0.941	0.012	0.878	0.026
64	0.985	0.003	0.980	0.022	0.937	0.005	0.882	0.025
88	0.981	0.004	0.973	0.019	0.935	0.012	0.873	0.026
112	0.979	0.001	0.981	0.006	0.937	0.007	0.886	0.011
144	0.979	0.002	0.961	0.017	0.942	0.013	0.859	0.006
176	0.977	0.004	0.962	0.019	0.935	0.007	0.855	0.019
240	0.974	0.007	0.963	0.017	0.936	0.010	0.851	0.023
312	0.972	0.008	0.954	0.019	0.929	0.036	0.843	0.023
420	0.981	0.004	0.931	0.019	0.916	0.013	0.849	0.026
600	0.979	0.003	0.935	0.006	0.913	0.007	0.845	0.026
800	0.979	0.004	0.923	0.017	0.906	0.010	0.840	0.025
1000	0.977	0.001	0.921	0.019	0.903	0.036	0.833	0.026

^a The parameters are obtained from 5 independent devices.

4. Supplemental Reference

- A. Hexemer, W. Bras, J. Glossinger, E. Schaible, E. Gann, R. Kirian, A. MacDowell, M. Church, B. Rude and H. Padmore, *J. Phys.: Conference Series*, 2010, 247, 012007.
- 2. F. Neese, WIREs Comput. Molecular Sci., 2022, 12, 1606.
- 3. F. Neese, F. Wennmohs, U. Becker and C. Riplinger, J. Chem. Phys., 2020, 152, 224108.
- 4. T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580-592.