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S1 Vacuum quenching with in situ imaging 
 

 Figure S1: (a) An in-house-built imaging setup is utilized to monitor drying and crystallization during 

the vacuum-assisted quenching of blade-coated perovskite thin films. Blue LED bars illuminate the 

sample through the transparent lid of the vacuum chamber. Through synchronization of the filter 

wheel’s rotation with the camera, four spectrally selective channels are acquired (one diffuse reflection 

(Rdiff) channel, and three photoluminescence (PL) channels). For more information, see Refs.1–3 (b) 

Photograph of the experimental setup consisting of the vacuum chamber with atransparent lid and the 

imaging setup placed on top of it. (c) The input features are derived through dimensionality reduction 

from the time-resolved in situ imaging data. For each solar cell in the dataset, the images are cropped 

to only show the solar cell’s active area for all time steps. Afterward, for each channel, the cropped 

frames are aggregated via their spatial mean value. Accordingly, the input features consist of four 

transients showing the temporal information of the spatially aggregated intensities of the four channels. 
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S2 Crystalization steps 

Figure S2: The formation of perovskite thin films from solution consists of different, entangled phases 

which make process control and understanding complex: (I) drying, (II) nucleation, (III) crystallization, 

and eventually (IV) formation of the final surface morphology. To monitor the complex perovskite thin 

film formation, we employ the photoluminescence (PL) (filtered by a longpass (LP) 725nm, LP 780nm, 

or shortpass (SP) 775nm) and diffuse reflection (Rdiff) imaging setup. By spatially aggregating the 

imaging data, the transients are obtained during vacuum quenching. When the chamber pressure drops 

below the vapor pressure of the solvents, the solvents start to evaporate (phase I) and soon after, nuclei 

start to form (phase II) and an increase in PL intensity is detected. During crystallization, the perovskite 

grains grow and the PL signals decrease. Upon venting, the pressure in the chamber increases, and, 

depending on the sample, the signals increase or stay consistent. 
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S3 Dataset distribution 

 

Figure S3: The entire dataset can be split into two major parts. Part I contains in situ imaging data of 

perovskite thin films which have been completed into functional solar cells. This data is used for 

performing the regression task of predicting the power conversion efficiencies (PCEs) of the solar cells. 

Part II contains in situ imaging data of perovskite thin films which have not been further processed. 

This data is used to classify samples regarding precursor molarity and molar ratio. (a) Part I of the 

dataset consists of 2,215 single solar cell devices and the histogram shows the distribution of the 

samples regarding vacuum quenching duration. (b) Part II consists of 4,448 thin films the size of the 

active area of a single solar cell, and the histograms show the distribution regarding molar ratio as well 

as molarity. The molar ratio subset entails 288, 256, 256, 352, 256, 256, and 256 training samples for 

the different classes, respectively, and 96 test samples for each class. The molarity subset consists of 

288 training samples and 96 test samples for each class. 64 samples are part of the molar ratio subset 

and of the molarity subset, leading to a total of 4,448 unique thin films. (c) For training the models, the 

data is split into training and test datasets where the training data is again split into five subsets to 

perform five-fold cross-validation. All splits were generated by splitting with substrate stratification. 

The histograms show the PCE distribution of all data subsets.  
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S4 Input features - Molar ratio 

 

Figure S4: Visual representation of the data in the training set, showing the different classes of molar 

ratios. For each class of molar ratio, the transients of all corresponding training set samples are 

displayed, showing the temporal signals detected in the different acquisition channels. Deep neural 

networks are trained to differentiate between changes in this monitoring data which are caused by 

different material compositions. It is hardly possible for a human researcher to notice subtle unwanted 

changes in molar ratio by visually inspecting the perovskite thin film formation. Even given this data, 

human analysis might be capable of distinguishing between strong differences in molar ratio (e.g., 0.9 

and 1.1), but differentiating between neighboring classes (e.g., 0.9 and 0.95, or 1.05 and 1.1) is hardly 

possible. While there are some noticeable differences when investigating this visualization of the entire 

training set classes, single observations of different classes can be very similar and thereby difficult to 

classify (for both human and machine learning models).  
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S5 Input features - Molarity 

 

Figure S5: Visual representation of the data in the training set, showing the different classes of molarity. 

For each molarity, the transients of all corresponding training set observations are displayed, showing 

the temporal signals detected in the different acquisition channels. Deep neural networks are trained to 

differentiate between changes in this monitoring data. It is hardly possible for a human researcher to 

notice subtle unwanted changes in molarity during the experiment by visually inspecting the perovskite 

thin film formation. Even given the depicted data, human analysis might be capable of distinguishing 

between strong differences in molarity (e.g., 0.56 M and 0.84 M), but differentiating between 

neighboring classes (e.g., 0.56 M and 0.61 M, or 0.75 M and 0.84 M) is difficult. While there are some 

noticeable differences when investigating this visualization of the entire training set classes, single 

observations of different classes can be very similar and thereby difficult to classify (for both human 

and machine learning models). 
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S6 Comparing DL classification with classical ML methods 
 

Figure S6: Comparison of classification performance on the held-out test set using different machine 

learning methods. The classification performance of neural networks presented in the manuscript is 

similar (depending on the use case and the metric, slightly better or worse) when compared to classical 

machine learning classifiers. The histogram-based gradient boosting (HGB) classification tree performs 

best followed by the neural networks (NN) and random forest classifiers (RF) (and the ensemble 

comprising all classical ML methods). For molarity prediction, HGB and RF achieve better accuracy 

(NN: 0.83) of 0.8625 and 0.8375, respectively, and top-2 scores (NN: 0.96) of 0.98 and 0.99, 

respectively. When classifying regarding molar ratio, RF performs substantially worse (accuracy: 0.53, 

top-2 score: 0.8) than the NN (accuracy: 0.61, top-2 score: 0.86). HGB achieves a slightly higher 

accuracy (0.64), but a worse top-2 score (0.82) when compared to the neural network. All models 

substantially outperform human predictive capabilities which is represented by the baseline.The other 

classifiers were trained using scikit-learn (1.3.0) with the same random state variable and the following 

hyperparameters (no further hyperparameter optimization was performed; using scikit-learn, exact 

results are implementation dependent). 

machine learning method hyperparameters 

DummyClassifier (=baseline) strategy='uniform' 

LogisticRegression solver= "liblinear", max_iter=1000 

RandomForestClassifier n_estimators=100 

GaussianNB - 

KNeighborsClassifier n_neighbors=10 

SVC kernel='rbf', probability=True 

DecisionTreeClassifier max_depth=4 

GradientBoostingClassifier n_estimators=100, learning_rate=1.0, max_depth=1 

HistGradientBoostingClassifier max_iter=100 

AdaBoostClassifier n_estimators=100 

VotingClassifier estimators=[all the classifiers mentioned above], 

voting='soft' 
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S7 Random forest classification - Hyperparameter optimization 

 

Figure S7: Even when optimizing hyperparameters, the performance of the random forest could not be 

improved substantially. (a) For molarity classification, the number of ensemble members in the forest 

(parameter n_estimators) was optimized on the training set using 5-fold cross-validation and 

determined to be 130. The model’s average accuracy during cross-validation was 79.5% (F1-

Score=0.778, 2-top-score=0.958) and the dummy regressor, which predicts each class with equal 

probability, reached 20.2% accuracy (F1-Score=0.198, 2-top-score=0.4). After hyperparameter 

optimization on the training set, the random forest’s accuracy on the test set was determined to be 82.9% 

(F1-Score=0.831, 2-top-score=0.977) and the dummy regressor reached 20.0% accuracy (F1-

Score=0.2, 2-top-score=0.4).  (b) For molar ratio classification, the parameter n_estimators was 

optimized on the training set using 5-fold cross-validation and determined to be 120. The model’s 

average accuracy during cross-validation was 75.9% (F1-Score=0.721, 2-top-score=0.926) and the 

dummy regressor reached 14.9% accuracy (F1-Score=0.142, 2-top-score=0.267). After hyperparameter 

optimization on the training set, the random forest’s accuracy on the test set was determined to be 50.9% 

(F1-Score=0.519, 2-top-score=0.802) and the dummy regressor reached 13.7% accuracy (F1-

Score=0.136, 2-top-score=0.286).   

 

  

 

 

 

 



 
 

9 
 

S8 Variation of training set size 

Figure S8: To investigate the influence of the amount of data used for training, we compare the 

performance of the DL model to the two very best ML models (see Figures S6 and S12) on smaller 

subsets of the training data, varying from 10% to 100% of the training dataset. The performance of the 

models is evaluated on the entire test set. For the ML models, the optimized hyperparameters were used 

(see Figures S7, S12b and S12c). In general, the performance of all models increases with increasing 

amount of training data. Further increases in dataset size are linearly extrapolated and are shown as 

shaded areas for 100% to 125% of training data (slopes calculated between the 100% datapoint and 

each single, previous datapoint). (a) When trained on a small dataset, the neural network (NN) performs 

worse than random forest (RF) and histogram-based gradient boosting (HGB) for molarity 

classification. However, with an increasing amount of data, the performance of the NN improves more 

strongly and has almost caught up with the other methods for 100% of training data. The NN shows a 

steeper slope of performance increase per 100 samples when investigating the entire interval (10-100%) 

and improves even stronger for the last interval (90-100%) (see Table in e)) (b) When predicting the 

molar ratio with small training sets, all models perform similarly badly. The performance of RF and 
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HGB increases steadily with training dataset size and HGB’s performance outperforms NN. With 

increasing training data amount, the NN’s performance first increases strongly, plateaus for medium 

training dataset size, before starting to increase again reaching only slightly lower accuracy than HGB 

on 100% training data. (c) For PCE regression, a similar trend can be seen as RF and HGB improve 

steadily with available training data amount. NN performs badly on few training samples, plateaus 

between 30% and 70%, and begins to strongly improve given more than 70% of the training data. 

Depending on the error metric, the NN slightly outperforms HGB or is slightly worse given 100% of 

the training data. The extrapolation of the trend can lead to the assumption that the NNs could improve 

stronger given even more training data (see slopes in the table in e). (d) For the three investigated 

models, the improvement in prediction quality is showcased for the three target variables. RF and HGB 

show a steady improvement in prediction accuracy with growing training dataset size for all three target 

variables. The NNs perform badly for really small datasets and their performance plateaus for medium-

sized training datasets. Given larger amounts of data, performance starts to improve again and the 

improvement is more rapid compared to the other methods. When given more data, this trend can be 

extrapolated when dataset size is scaled up in industrial settings. (e) The improvements in model 

performance upon upscaling of the dataset are quantified by computed as the rate/slope of improvement 

per 100 additional samples/solar cells for different data intervals using the 3 models on all target 

variables. The colors code the rate of improvement where the fully-saturated color corresponds to the 

highest improvement and the non-saturated (i.e. white) color corresponds to the lowest improvement. 

For all use cases, the NN improves the most upon scaling for 10 to 100% of training data. When 

including the range where the neural networks are plateauing (50-100% and 70-100%), the highest 

improvement rates/slopes are more heterogeneous, but the increase in performance for the RF upon 

scaling is the lowest for most cases. Comparing HGB and NN the increase in performance shows 

advantages for both of these, depending on the target variable. For example, HGB improves strongly 

for molar ratio prediction, but NN outperforms substantially when predicting PCE (measured in R2). 

However, for the last increase in dataset size from 90 to 100%, the performance increase of the NN is 

the strongest in all three cases, like for the investigation of the entire 10-100% interval. Extrapolating 

this trend suggests that performance can improve further when scaling the dataset for all models, 

especially strong for the NNs.  
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S9 Input features - Regression 

Figure S9: Visualization of the transients of all training set observations for the different quenching 

durations, showing the temporal signals detected in the different acquisition channels (color-coded 

power conversion efficiency (PCE)). Neural networks are trained to learn the mapping between the 

monitoring data and the final devices’s PCEs. It is hardly possible for a human researcher to predict the 

device performance by visually inspecting the perovskite thin film formation. Even given this data, 

human analysis might potentially be capable of qualitatively distinguishing between good and bad PCE 

samples, but quantitatively predicting PCE is hardly possible.   
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S10 Model architecture - Regression 

 

Figure S10: Model architecture used for the regression use case: a feedforward neural network with 

five hidden layers. Fully connected/linear layers are used in conjunction with ReLU (rectified linear 

unit) activation functions. The input layer consists of 7,916 neurons which equals concatenating the 

four zero-padded tensors of length 1,979 of the four channel transients. For regression, the output layer 

consists of one neuron used for predicting the power conversion efficiency. For classification, the same 

architecture was used but the output layer consists of five and seven output neurons instead of one as 

shown for the regression model (five classes for molarity classification and seven classes for molar ratio 

classification). 
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S11 Deep learning regression model - Test set evaluation 

Figure S11: Parity plots showing the predicted power conversion efficiency (PCE) versus the ground 

truth PCE for different vacuum quenching durations in the held-out test set. It highlights, that the single 

model has learned to successfully predict PCE values for all vacuum quenching durations. It is not only 

capable of predicting samples accurately that have been quenched for 180s, but it can also predict 

samples that have been quenched for 20s or 600s with only small prediction errors.  
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S12 Comparing DL regression with classical ML methods  

Figure S12: Comparison  of regression performance on the held-out test set using different machine 

learning methods. (a) Like in the classification use cases, the neural network (NN), the histogram-based 

gradient boosting (HGB) and the random forest (RF) regressors outperform other methods. The R2 

values of the NN (0.62) and HGB (0.63) and the RF (0.60) are similar, but regarding MAE, the neural 

network (1.44%) performs slightly better than HGB (1.49%)  and RF (1.58%).  

When optimizing hyperparameters, the performance of the RF and HGB could not be improved 

substantially. (b)  The number of ensemble members in the random forest (parameter n_estimators) 

was optimized on the training set using 5-fold cross-validation and determined to be 90 for the PCE 

regression case. (c) For HGB, the learning_rate was optimized on the training set using 5-fold 

cross-validation and identified as 0.05.The other regressors were trained using scikit-learn (1.3.0) with 

the same random state variable and the following hyperparameters (no further hyperparameter 

optimization was performed; using scikit-learn, exact results are implementation dependent). 

 

machine learning method hyperparameters 

DummyRegressor (=baseline) strategy=’mean' 

RandomForestRegressor n_estimators=100 

KNeighborsRegressor n_neighbors=10 

SVR kernel='rbf' 

DecisionTreeRegressor max_depth=4 
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GradientBoostingRegressor n_estimators=100, learning_rate=1.0, max_depth=1 

HistGradientBoostingRegressor max_iter=100 

AdaBoostRegressor n_estimators=100 

VotingClassifier estimators=[all the classifiers mentioned above] 
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S13 Random forest forecasting I 

Figure S13: Random forest models forecast the signal trajectory for the four channels, here shown (a) 

diffuse reflection and (b) photoluminescence (725nm longpass filtered). For ten exemplary (test set) 

samples, the data acquired up to this point (blue lines) is used as model input to forecast different signal 

trajectories (red lines) which are expected when quenching is performed for different certain total 

duration (20s, 30s, 60s, …). When the experiment progresses, more data is accumulated (blue), and the 

forecasts (red) are updated based on the newly acquired data.   
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S14 Random forest forecasting II 

 

Figure S14: A total of 112 random forest models are trained to forecast the monitoring signal of all 

four channels covering all 28 scenarios (different combinations of time of the forecast and total 

forecasted quenching duration). To optimize forecasting accuracy, all random forest models are trained 

on the training dataset to find the best-performing hyperparameters. Due to smaller subsets of data for 

each scenario, only three folds were used for cross-validation. Using scikit-learn’s GridSearchCV, the 

random forest hyperparameters were optimized. The number of ensemble members in the forest 

(n_estimators) was changed between 20 and 200, and max_features between “sqrt”, “log2”, 

and “None”. For the max_depth parameter, “2”,”4”, and “None” was tried, for  

min_samples_split “2” and “5”, for  min_samples_leaf, “1” and “2”, and bootstrap was 

changed between “True” and “False”. Here shown is the forecasted signal (“pred”) in comparison with 

the ground truth signal (“gt”) for the diffuse reflection channel, predicted after 20s of quenching for the 

scenario, that the vacuum quenching was terminated at that point (i.e., after 20s of total quenching). 
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S15 Cascade of forecasting and regression 

 

Figure S15: To validate the forecasting and prediction accuracy, the monitoring signal for each (test 

set) solar cell is forecasted to the actual quenching time, and the power conversion efficiency (PCE) is 

then predicted based on the forecasted signals. By comparing the predicted PCE value(s) with the 

ground truth PCE of the respective solar cell, the performance of the cascade of the two models is 

validated. (a) The parity plots show good agreement between the PCE predictions of the model cascade 

and the ground truth PCEs. Each scenario is labeled with the time range used for forecasting and 

prediction. For example, “forecasted from 20s to 30s (total: 90s)” indicates that PCE predictions are 

based on the experimentally captured signals up to 20s, the forecasted signals for the remaining 

quenching phase up to 30s, and forecasted signals for the subsequent venting phase (constant 60s), 

resulting in a total process time of 90s. (b) For all quenching times, the mean absolute error (MAE) 

decreases when predictions are made later during the process, meaning that prediction accuracy 

increases for predictions made based on more accumulated input data. For most scenarios (23 out of 

28), the MAE is smaller than 2% PCE (absolute) which is considerably better than the baseline 

predictions.  For many scenarios (16 out of the remaining 21) when predicting after 30s of quenching 

or later,  the MAE even drops below 1.8% (absolute). The "ex situ prediction" refers to the prediction 
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made using only actual experimentally acquired signals from the entire process without reliance on 

forecasted signals. This corresponds to the DL model performance described in Section 2.3, yielding a 

PCE prediction MAE of 1.44% (absolute). Comparison of the in situ (forecasted) and ex situ (actual) 

predictions demonstrates the trade-off between real-time applicability needed for in situ control and 

optimal accuracy. 
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S16 Gaussian process I 

 

Figure S16: To mitigate the fact, that the neural network can only make meaningful predictions for the 

discrete set of quenching times on which it has been trained, a model for inferring a continuous function 

from the set of discrete data points can be added to the pipeline. Next to simple linear interpolation, the 

function approximation can be done using Gaussian processes to predict a potential underlying function 

based on known data points. For demonstration purposes, GaussianProcessRegressor from scikit-learn 

is used to showcase the working principle of function approximation with Gaussian processes. The used 

kernels contained combinations of DotProduct, RationalQuadratic, WhiteKernel, and were not 

optimized further since it is out of the work’s scope. (a) The discrete set of power conversion 

efficiencies and maximum diffuse reflection was predicted and (b) function approximation was 

performed using five different combinations of kernels. The resulting mean plus/minus 1.96 standard 

deviations is plotted for each kernel’s function approximation. 
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S17 Gaussian process II 

 

Figure S17: (a) The discrete set of power conversion efficiencies and maximum diffuse reflection 

predicted using random forest and neural network and (b) the subsequently approximated functions 

using five different combinations of kernels. When compared to Figure S16, the power conversion 

efficiency function does not have its maximum at the beginning, but it is increasing having an 

approximated maximum after 200s. Also, the approximated maximum diffuse reflection function 

decreases slower when compared to the sample displayed in Figure S16. 
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S18 Relationship between diffuse reflection and roughness 

 

Figure S18: Given the experimental setup of the imaging method, the metrology takes advantage of 

the influence of the thin film’s surface roughness on the reflection intensity. A smooth layer surface 

leads to a low diffuse reflection intensity (but high specular reflection) and a rough layer surface leads 

to a high diffuse reflection intensity. Accordingly, the imaging system captures diffuse reflection which 

is a correlate for thin film surface roughness. 
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S19 Diffuse reflection images after varying quenching durations 

 

Figure S19: Post-quenching diffuse reflection images of blade-coated perovskite thin films that have 

been vacuum quenched for different durations. The signal intensity of the diffuse reflection images 

decreases when thin films are quenched longer. Due to the relation between diffuse reflection and thin 

film surface roughness (see Figure S18), the signal intensity is a correlate for the surface roughness of 

the perovskite thin film.1  
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