Supplementary Material

Trimming defective perovskite layer surface for high-

performance solar cells

Chanhyeok Kim¹, Kihoon Kim¹, Youngmin Kim¹, Nikolai Tsvetkov¹, Nam Joong Jeon², Bong Joo Kang^{2,*}, Hanul Min^{1,3,4,*}

¹KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea

²Division of Advanced Materials, Korea Research Institute of Chemical Technology, Daejeon, South Korea

³Department of Integrative Energy Engineering, Korea University, Seoul, South Korea

⁴Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, South Korea

*To whom correspondence should be addressed. E-mail: bjkang@krict.re.kr; hmin92@korea.ac.kr

Fig. S1. Cross-sectional SEM images of the control, TS (05:95), TS (10:90), and TS (20:80) devices.

Fig. S2. (a) Absorption coefficient of the perovskite layer and **(b)** transmitted light intensity for different wavelengths.

Fig. S3. Atomic force microscopy images of the control, TS (05:95), TS (10:90), and TS (20:80) perovskite thin films.

Fig. S4. Williamson-Hall plots of the control, TS (05:95), TS (10:90), and TS (20:80) perovskite thin films.

Fig. S5. Cross-sectional SEM images of the perovskite film for different perovskite precursor concentrations.

Fig. S6. XRD patterns and individual Williamson-Hall plot of the perovskite thin films prepared with 1.40 M, 1.12 M, 1.05 M, 0.92 M, and 0.70 M of FAPbI₃.

Fig. S7. GIXRD patterns of the control, TS (05:95), TS (10:90), and TS (20:80) perovskite thin films at different incidence angles.

Fig. S8. Magnified GIXRD peaks corresponding to the (100) plane of the control, TS (05:95), TS (10:90), and TS (20:80) perovskite films at varying incidence angles.

Fig. S9. X-ray penetration depth Λ into the FAPbI₃ layer at different incidence angles,

$$\Lambda = \frac{\lambda}{\sqrt{2}\pi} \times \frac{1}{\sqrt{\sqrt{\left(\alpha_i^2 - \alpha_c^2\right)^2 + 4\beta^2} - \left(\alpha_i^2 - \alpha_c^2\right)}}$$

calculated as:

where α_i is the incidence angle, α_c is the critical angle of the sample, λ is the X-ray wavelength, and β is the imaginary part of the refraction index, defined as $n = 1 - \delta + i\beta$. The δ and β parameters for FAPbI₃ at 8.04 keV ($\lambda = 1.54$ Å) were 1.08329 × 10⁻⁵ and 1.22906 × 10⁻⁶, respectively, as determined using the online toolbox available at *https://henke.lbl.gov/optical_constants/getdb2.html*.

Table S1. Microstrains calculated from the GIXRD patterns of the control, TS (05:95), TS (10:90), and TS (20:80) thin films at different incidence angles.

Incidence angle	0.25° (ε x 10 ⁴)	0.5° (ε x 10 ⁴)	0.75° (ε x 10 ⁴)	1° (ε x 10 ⁴)	1.5° (ε x 10 ⁴)
Control	4.3223	3.8565	1.9579	0.3856	0.2551
TS (05:95)	3.9907	2.9453	1.7198	0.3545	0.2537
TS (10:90)	3.2813	2.8302	1.4861	0.3249	0.2586
TS (20:80)	2.7364	2.1199	1.2695	0.3105	0.2547

Fig. S10. (a) Perovskite film peeled-off from the substrate. **(b-c)** Magnified GIXRD diffraction peaks corresponding to the (100) plane of the buried interface. **(d-g)** WH plots of the buried interface of the control and TS (05:95).

Table S2. Microstrains calculated from the GIXRD patterns of the buried interface of the control and TS (05:95) thin films at different incidence angles.

Incidence angle	0.1° (ε x 10 ⁴)	0.2° (ε x 10 ⁴)	
Control	0.9285	1.3343	
TS (05:95)	0.9099	1.3802	

Fig. S11. Statistics of key performance parameters of the control, TS (05:95), TS (10:90), and TS (20:80) devices.

KIER-QP-22-02-B(Rev.12)

7770-6882-2093-6806

Fig. S12. Independent PCE certification issued by the Korea Institute of Energy Research.

Fig. S13. Stabilized power output and current density at the maximum power point for the control and TS (05:95) devices.

Fig. S14. UV-vis absorption spectra and bandgaps of the control, TS (05:95), TS (10:90), and TS (20:80) perovskite thin films.

Fig. S15. Semilog EQE vs photon energy for the control and TS (05:95) devices.