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Methods

Materials

FAI, MABr, BAI, OAI, PEAI, PEABr, PEASCN, BDAI2, CF3PMAI, CF3PAI EDAI2 and 

PDAI2 were bought from Greatcell Solar Materials. PbI2, PbBr2, CsI were purchased from 

Sigma-Aldrich. FPEAI, Tris(pentafluorophenyl)borane (BCF), HDAI2, ODAI2, DMe-PDAI2 

and DMe-EDAI2 were purchased from TCI. PCBM was purchased from Nano-C. Poly[2,2''''-

bis[[(2-butyloctyl)oxy]carbonyl]-[2,2':5',2'':5'',2'''-quaterthiophene]-5,5'''-diyl] (PDCBT) was 

purchased form 1-Material. PTAA, GuaI, CyMAI, Br-PMAI, ThEAI, CyDMAI2 and PhDMAI2 

was purchased from Xi'an Yuri Solar. The SnO2 nanoparticle solution was purchased from Alfa 

Aesar. All the solvents mentioned were purchased from Sigma-Aldrich.

Device fabrication

Perovskite solar cells were prepared according to previous work with some adjustment.1  ITO 

substrates were cleaned with oxygen plasma for 5 min. SnO2 solution was diluted with water 

(1:5), then spin-coated on the ITO substrates at 3000 rpm 25 s and annealed at 150 °C for 30 

min. Before being transfer into N2 glovebox, SnO2 substrates were treated with oxygen plasma 

for 3 min. PCBM solution (10 mg/mL in CB/DCB 9:1) was spin-coated on substrates and 

annealed at 150 °C for 10 min. 

1.5 M stoichiometric perovskite precursors of Cs0.05MA0.1FA0.85PbI2.75Br0.25 (CsMAFA) or 

Cs0.15FA0.85PbI2.75Br0.25 (CsFA) were obtained by dissolving salts into DMF:DMSO=4:1 

(CsMAFA) or DMF:DMSO:NMP=4:0.5:0.5 solution (CsFA). Precursor was spin-coated at 

5000 rpm for 50 s, and the 300 μL anisole was dropped at 25 s. The wet film was annealed at 

150 °C 10 min. 



Different passivators were dissolved in IPA to achieve desired concentration (such as 10 mM) 

and dynamically spin-coated onto perovskite and annealed at 100°C for 5 min. For example, 

once the substrate reached the target spin speed (4000 rpm), 50 μL of the passivation solution 

was quickly dropped in the middle of the substrate, and then maintained at the target spin speed 

for 20 seconds. In the case of BDAI2 passivation, due to its low solubility in IPA/toluene (3-5 

mM), after the substrate reached 4000 rpm, first droplet of saturated solution was dropped onto 

the substrate, wait for 2 s until the solvent evaporated and the substrate was dry again, then the 

second droplet of saturated solution was dropped, and keep at 4000 rpm for 20 seconds (e.g., 

2-3 times of saturated solution corresponding to 10 mM passivation). In case of target-2D-di 

bottom sample, BDAI2 solution (10 mg/mL, in DMF) was spin-coated on ETL and annealed at 

100 °C 10 min, before the deposition of perovskite layer.

PDCBT (6 mg/mL in chloroform) and PTAA (15 mg/mL in chlorobenzene with 10 wt% BCF 

as dopant) were dynamically deposited on perovskite films at 2000 rpm and 4000 rpm for 25 

s, respectively. After annealing at 90 °C for 10 min, films were transfer into thermal evaporator 

and a 40 nm Au layer was evaporated. The active area of 0.06 cm2 is defined by the overlap 

between the mask and the ITO. 

2D films deposition

Solution of mono-ammonium spacers and PbI2 (mol ratio: 2:1), and di-ammonium spacers and 

PbI2 (mol ratio: 1:1) were dissolved into DMSO with the concentration of 0.4M at room 

temperature. After cleaning the glass substrate with ozone-plasma cleaning, 50 μL of solution 

was dropped onto the glass and spin-coated at 4000 rpm for 30 s. Then samples were annealed 

at 100°C for 5 min.

J-V measurement 



J-V characteristics were measured with a Keithley source measurement unit and a 

WAVELABS SINUS-70 3A solar simulator, which provides illumination with an AM1.5G 

spectrum and light intensity of 100 mW cm-2. The J-V characteristics were performed from 0 

to 1.2 V (forward scan) and from 1.2 to 0 V (backward scan) at a scan rate of 30 ms/step and a 

scan step of 40 mV. The light intensity was calibrated with a Si reference cell (91150V) bought 

from Newport. 

Operational stability measurement

Devices without encapsulation were loaded into a degradation chamber flowed with N2 flow. 

Light source was provided by 4 white LED (XLamp® CMA3090 LED) without using 

additional filter. The light intensity was controllable and adjusted to 1-sun or 2-sun equivalent 

intensity by measuring and matching the same or double JSC value of the devices under AM 

1.5G solar simulator (e.g. 21-23 mA cm-2 for 1-sun, 42-46 mA cm-2 for 2-suns).  A hotplate 

underneath the chamber was set to desired temperature and a temperature sensor (PT100) was 

installed inside the chamber and put against to one of the device’s corner to record the 

temperature trend. The J-V characteristics were measured by LabView program with different 

interval time (2-10 minutes in the early stages and 45-90 minutes in the later stages). Samples 

were loaded under either open-circuit or 0.7 V bias during ageing.

Characterization

Work function (WF) was performed with a SPS040 Kelvin Probe from KP Technology. The 

tip’s WF was determined by using a highly oriented pyrolytic graphite (HOPG) with a WF ~4.6 

eV. Photoluminescence and absorption spectra were carried out by Tecan Infinite 200 PRO. 

X-ray diffraction (XRD) patterns were taken from a Panalytical X’pert powder diffractometer 

with filtered Cu Kα radiation (λ = 1.54178 Å) and an X’Celerator solid-state stripe detector. 



The impedance spectra were measured by Zahner Zennium Pro potentiostat, under short-circuit 

and different illumination controlled by LED lamp (LSW-2, s/n LS 1858). 

X-ray photoelectron spectroscopy (XPS) was performed on an EA 125X U7 Energy Analyser 

from Scienta Omicron using Al K-alpha radiation with 1486.7 eV excitation energy, 0.05 eV 

step and 20 eV pass energy.

The Time-of-flight secondary ion mass spectrometry (ToF-SIMS) depth profiles were acquired 

by using a Time-of-Flight SIMS IV (Ion-TOF GmbH, Muenster, Germany) equipped with a 

Bi+ primary ion gun working at 25 keV in dual beam mode. The sputtering was realized with 

2 keV O2 source (for positive ions) and 1 keV Cs source (for negative ions) using of active 

electron flooding to prevent the surface charging to increase the yield of positively and 

negatively charged secondary ions.

Numerical simulation

Optical simulation was done with Setfos software. Drift diffusion was done with SIMsalabim 

tool developed by Koster et al. (http://simsalabim-online.com).2 The simulation parameters are 

listed in Table S 3.

pKa calculation

The pKa value is calculated using the pKa calculators from Chemaxon.
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Figure S 1 The operational stability of 3D/2D-mono-ammonium and 3D/2D-di-ammonium based passivated 
perovskite solar cells under 85 °C and 1-sun condition. (a-d) Those parameters were obtained from the J-V curves 
during degradation and normalized by the value at 0.6 hour. Each type of cell contains three individual cells and 
the error bars represent the standard deviation. (e) The unnormalized PCE of devices. Each color represents one 
individual device. (f) The recorded temperature during the stability measurement. The sharp drop of PCE at the 
very beginning (0 - 0.6 h) is due to the of negative temperature coefficient from around 30°C to 85°C. The small 
stepwise drop of PCE and JSC around 140 h is due to the fluctuation of the light source.
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Figure S 2 (a-e) The forward and reverse J-V curves and (f-i) statistical results of device parameters for 3D/2D-
mono-ammonium and 3D/2D-di-ammonium based devices. 
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Figure S 3 Upper part: XRD patterns of different films formed by 2 mol mono-cation iodide and 1 mol PbI2 (2 
AI + 1 PbI2) before and after ageing at 85 °C and 2-suns. Lower part: the corresponding phase (RP, near-DJ 
(nDJ) and no 2D phase forming (non)) together with the photograph.  EA3 and CF3PA are labelled as “non”, 
since their mixture with PbI2 do not have corresponding characteristic diffraction peak along (100) planes in 
XRD patterns. HA and Br-PMA are labelled as “nDJ”, since their offsets of inorganic layers are small and hence 
have near-DJ stacking4, 5. 
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Figure S 4 Upper part: XRD patterns of different films formed by 1 mol di-cation iodide and 1 mol PbI2 (AI2 + 
PbI2) before and after ageing at 85 °C and 2-suns. Lower part shows the corresponding phase (DJ, near-RP (nRP) 
and no 2D phase forming (non)) together with the photograph. EDA, PDA6, DMe-EDA and PhDA7, 8 are labelled 
as “non”, as they do not have 2D (100) planes in XRD patterns. DMe-PDA, BDA and HDA are labelled as “nRJ”, 
since their offsets of inorganic layers are large and hence have near-RP stacking6, 9-11.



Table S 1 The summary of the photo-thermal stability (85°C and 2-suns) of organic-inorganic compounds formed 
by different spacers and PbI2. Those, whose XRD patterns change largely or Pb0 peak emerge after 200 hours or 
color change obviously, are labelled as “unstable”. Here both RP (nRP) and DJ (nDJ) refer to the n=1 case.

RP or nRP DJ or nDJ non-2D

mono-ammonium unstable unstable unstable

di-ammonium relatively stable relatively stable unstable



Figure S 5 The XRD patterns of 2D-mono-ammonium and 2D-di-ammonium perovskite (n=2 and 3) before and 
after ageing at 85 °C and 2-suns. For PEA based 2D, the diffraction peak emerged at around 7° can be attributed 
to the product of (phenethylamino)methaniminium (PEAMA+), suggesting the reaction between PEA and FA12.



n=1 2 >3

Figure S 6 The PL spectra of PEAI passivator (with 10 mM and 100 mM concentration) on 3D perovskite after 
ageing at different conditions for 300 hours. The wide peak at 450 nm is due to the fluorescence of the glass 
substrate itself.



Figure S 7 PL spectra of 3D perovskite films with different concentration of mono-ammonium passivators after 
ageing at light, heat, and light-heat conditions for 300 hours.  The wide peak at 450 nm results from the 
fluorescence of the glass substrate itself.



control control

Figure S 8 UV-Vis spectra of 3D perovskite films with different concentration of passivators after ageing at light, 
heat, and light-heat conditions for 300 hours.  



control control

Figure S 9 XRD patterns of 3D perovskite films with different concentration of passivators after ageing at light, 
heat, and light-heat conditions for 300 hours.  
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Figure S 10 (a)Bandgap, (b) Urbach energy and (c)absorbance change (area integration between fresh and aged 
samples at 650-850 nm region) are calculated from UV-Vis data (Figure S 8). Concentration of 10 mM was shown 
here. The combination of light and heat has great influence on 3D perovskite. 

 



Figure S 11  XPS spectra of 3D, 3D/2D-mono and 3D/2D-di devices after 300 h ageing at 85 °C 2-suns. The 
perovskite films were exposed by removing the gold electrode with scotch tape, and washing upper transport 
layers away with chlorobenzene. 
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Figure S 12 ToF-SIMS depth profiles of the aged 3D/2D-mono, 3D and 3D/2D-di devices (300 hours under 85 
°C 2-suns).



 

Figure S 13 Operational stability under 85°C and 2-suns illumination. (a-c) Reverse J-V curves of 3D/2D-mono, 
3D and 3D/2D-di devices at different ageing time. (d) The normalized parameters dependent on time. Each 
color contains 3 independent devices. (e) The unnormalized PCE dependent on time. Each color contains 3 
individual devices.  As there is a fast burn-in at the very beginning due to the negative temperature coefficient, 
data were normalized at 0.6 h when the chamber’s temperature increased to 80-85°C (f).



Figure S 14 Corresponding simulation parameters (HTL doping concentration and mobile ion density) obtained 
at various ageing time.



Figure S 15 Trends in PCE, VOC, JSC and FF with different simulation parameters. It shows how J-V parameters 
(PCE, VOC, JSC and FF) change by only changing one or two simulation parameters at one time. The J-V 
parameters are normalized by the initial values (3D sample at 0.6 h under 85°C and 2-suns). For example, in 
case of the first graph (HTL mobility), it shows that the FF loss dominates when it decreases the HTL mobility 
from 5 × 10-8 to 5 × 10-11 m2 /Vs. In case of HTL doping concentration, when the legends change from 5e23 to -
1e23 m-3 (from p to n type), FF loss dominates the PCE losses as well. For bulk trap density, both JSC and FF 
losses are primary losses as the bulk trap density increases from 2.2e20 to 2.2e23 m-3.
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Figure S 16 Carrier (hole) diagram from the simulation result. 
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Figure S 17 Capacitance versus frequency plot of samples before and after 85 °C 2-suns degradation. The 
impedance was carried out at short-circuit and different illumination intensities. The aged 3D and 3D/2D-mono 
devices exhibit high resistance and lack of frequency-dependent capacitance. The aged 3D/2D-di has 2 order of 
magnitude increased of low frequency response, which is likely attributed to the increased recombination rate13.



Figure S 18 XPS spectra of fresh device and aged 3D/2D-mono, 3D and 3D/2D-di devices at 85 °C 2-suns for 
300 h.
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Figure S 19 Operational stability performance of CsMAFA and CsFA devices under 85°C and 2-suns 
illumination: (a-e) Normalized PCE, unnormalized PCE, JSC, VOC, and FF. Error bar represents the standard 
deviation of three individual devices. Each color contains 3 samples in Figure S 19b. As there is a fast burn-in at 
the very beginning due to the negative temperature coefficient, data were normalized at 0.6 h when the 
chamber’s temperature increased to 80-85°C



Figure S 20 XRD pattern of the CsMAFA and CsFA devices before and after ageing under 85°C 2-suns for 100 
hours. 
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Figure S 21 (a-b) CsMAFA and CsFA based devices stability under different light intensities. As there is a fast 
burn-in at the very beginning due to the negative temperature coefficient, data were normalized at 0.6 h when 
the chamber’s temperature increased to 80-85°C. (c-d) Fitting the acceleration factor of light using 

, where a is constant, γ is the acceleration factor and .𝑘𝑑𝑒𝑐𝑎𝑦 = 𝑎 × 𝑆𝑢𝑛𝑠𝛾 𝑘𝑑𝑒𝑐𝑎𝑦 = 1 𝑇80 𝑜𝑟 1 𝑇60
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Figure S 22 The PL spectra and XRD patterns of perovskite films treated by di-ammonium ligand with different 
concentrations (10, 20, 50, 100 mg/mL in DMF). 10 mg/mL is the optimized concentration used in operational 
stability testing. The wavelength of excitation light is 375 nm. There is no 2D PL peak at short wavelength 
region and no 2D characteristic XRD peak at around 8°. The position of (100) XRD diffraction peak does not 
change when different concentrations of di-ammonium ligand are introduced.  
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three independent devices.  
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Figure S 24 Operational stability under 85°C and 2-suns illumination. Di-ammonium ligand (BDAI2) was 
introduced at bottom interface (2D-di/CsFA), at top interface (CsFA/2D-di) or at both interfaces (2D-di 
/CsFA/2D-di). The bottom treated devices (2D-di /CsFA) show the best stability, while the unpassivated devices 
(CsFA) are the worst. The 2D-di-top treatment inducing iodide interstitial near top interface is not beneficial to 
the stability. As there is a fast burn-in at the very beginning due to the negative temperature coefficient, data were 
normalized at 0.6 h when the chamber’s temperature increased to 80-85°C
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Figure S 25 XRD pattern of the control (CsFA-based) and target-2D-di (CsFA with 2D-di bottom) devices before 
and after ageing under 85°C 2-suns for 300 hours. 



Figure S 26 Capacitance versus frequency plot of control and target-2D-di samples after 85 °C 2-suns degradation. 
The impedance was carried out at short-circuit and different illumination intensities. It shows that the target-2D-
di device has around one order of magnitude lower response at low frequency than the untreated device, indicating 
suppressed recombination (caused by traps)13.



Table S 2 Summary of operational stability under harsh conditions (>80 °C)

Device structure Temperature
Light intensity PCE remain Ref.

p-i-n
FTO/NiOx/AlOx/

Cs0.05MA0.16FA0.79PbI3
/C60/BCP/Cu

85°C, 1-sun 2000 h (100%) 14

p-i-n
FTO/2PACz/

Cs0.05MA0.05FA0.9PbI3
/345FAn/C60/SnO2/Ag

85°C, 0.8-sun 1586 h (84%) 15

p-i-n
ITO/PTAA/

Cs0.10FA0.90PbI3 + PEAMAI
/C60/BCP/Ag

85°C, 1-sun 1500 h (90%) 12

p-i-n
ITO/PTAA-AlCl4/

(CsPbI3)0.05[(FAPbI3)0.92(MAPbBr3)0.08]0.9

/PCBM/BCP/Ag

85 °C, 1-sun 1500 h (93%) 16

p-i-n
FTO/NiOx/MeO-4PACz/DPPP/

Cs0.05FA0.95PbI3
PEAI/C60/BCP/Cr/Cu

85°C, 0.9-sun 1500 h (108%) 17

p-i-n
ITO/NiOx/MeO-4PADBC/

Cs0.05MA0.1FA0.85PbI3
/C60/BCP/Ag

85°C, 1-sun 1200 h (74%) 18

p-i-n
ITO/PTAA/

Cs0.07FA0.93PbI3
BiOBr/C60/BCP/Ag

85°C, 1-sun 1000 h (91%) 19

p-i-n
ITO/mix-SAM/

Rb0.05Cs0.05MA0.05FA0.85Pb2.85Br0.15
/C60/SnO2/Ag or Au

85°C, 1.2-sun 1000 h (80%)
(extroplated)

20

p-i-n
ITO/PTAA/

Cs0.05(MA0.15FA0.85)0.95Pb(I0.85Br0.15)3
/PCBM/ZrL3: bis C60/Ag

85°C, 1-sun 1000 h (92%) 21

p-i-n
ITO/SAM/

Cs0.2FA0.80PbI3
C[4]P/PCBM/C60/BCF/Ag

85°C, 1-sun 500 h (87%) 22



p-i-n
FTO/MeO-2PACz/

Rb0.05Cs0.05MA0.05FA0.85Pb2.85Br0.15
/C60/YbOx/Cu

85°C, 1-sun 500 h (85%) 23

p-i-n
ITO/MeO-2PACz/

FAPbI3-2D
/C60/BCP/Cu

85°C, 1-sun 1000 h (97%) 24

p-i-n
ITO/DC-TMPS/

Cs0.05(FA0.95MA0.05)0.95Pb(I0.95Br0.05)3
/C60/ZnO/Au

85°C, 1-sun 1200 h (98%) 25

ITO/2PACz/
FA0.92Cs0.08PbI3/HUBLA

/C60/BCP/Au
85°C, 1-sun 1500h 94% 26

n-i-p
FTO/TiO2/Al2O3/

CsPbI3
/Cs2PbI2Cl2/CuSCN/Cr/Au

85°C & 110°C
1.2-sun

85°C 4000h (85%)
110°C 2300h (80%)

27

n-i-p
ITO/SnO2-CBD/SnO2-np/

MAFAPbIBr
/PTAA-HFDF/MoOx/Au

85°C, 1-sun 1000 h (92%) 28

n-i-p
ITO/SnO2-CBD/

Cs0.05MA0.05FA0.9PbI3 
/PTAA/Au

85°C, 1-sun 1250 h (85%) 29

n-i-p
ITO/SnO2/

CsMAFAGAPbIBr
/L3/MoOx/Au

85°C, 1-sun 500 h (85%) 30

n-i-p
ITO/SnO2-CBD/

Cs0.1FA0.9PbI3 + selenophene
/OAI/Spiro-PTAA/Au

85°C, 1-sun 500 h (89%) 31

n-i-p
ITO/SnO2/PCBM/

Cs0.15FA0.85PbI2.75Br0.25
/PDCBT/PTAA/Au

85°C, 2-suns 560 h (80%) This 
work



Table S 3 The parameters for J-V curves simulation

Parameter Symbol 3D
0.6 h

3D/2D-mono
0.6 h

3D/2D-di
0.6 h

Unit

Temperature T 360 K
Thickness of perovskite dpero 500 nm

Thickness of ETL (SnO2) dETL 20 nm
Thickness of HTL (PTAA) dHTL 50 nm

Electron mobility in perovskite μpero,n 6 × 10-4 m2/Vs
Hole mobility in perovskite μpero,p 8 × 10-4 m2/Vs
Electron mobility in ETL μETL 1 × 10-4 m2/Vs

Hole mobility in HTL μHTL 5 × 10-8 m2/Vs
Density of state in perovskite NC/V,pero 3.1 × 1024 m-3

Density of state in ETL NC/V,ETL 2.7 × 1024 m-3

Density of state in HTL NC/V,HTL 5 × 1025 m-3

Doping concentration in ETL Ne,ETL 0 m-3

Doping concentration in HTL Nh,HTL 5 × 1023 m-3

Conduction band of perovskite EC,pero 3.8 eV
Valance band of perovskite EV,pero 5.4 eV
Conduction band of ETL EC,ETL 3.9 eV

Valance band of ETL EV,ETL 7.9 eV
Conduction band of HTL EC,HTL 2.25 eV

Valance band of HTL EV,HTL 5.25 eV
Work function of cathode WITO 4.0 eV
Work function of anode WAu 5.1 eV

Relative dielectric constant of 
perovskite

εr,pero 24

Relative dielectric constant of ETL εr,ETL 3
Relative dielectric constant of HTL εr,HTL 3

Capture coefficient for electrons Cn 2 × 10-13 m3/s
Capture coefficient for holes Cp 6.77 × 10-14 m3/s
Trap density in perovskite Nt,bulk 2.2 × 1020 m-3

Interface trap density at 
ETL/Perovskite

Nt,ETL 5 × 1013 m-2

Interface trap density at 
HTL/Perovskite

Nt,HTL 6 
× 1014

1 
× 1014

1.5 
× 1014

m-2

Energy level of all traps Etrap 4.91 eV
Mobile negative ions concentration Nion 1.5 

× 1022
1.3 

× 1022
1.3 

× 1022
m-3

Shunt resistance Rsh 2000 Ω cm2

Series resistance Rs 1 2.5 2 Ω cm2



Table S 4 The parameters for simulation showed in Figure 4 and Figure S 14.

         

 hours

Rs
(Ω cm2)

μHTL
(10-8 m2V-

1s-1)

Nh,HTL
(1023 m-3)

Nt,HTL
(1014 m-2)

Nt,bulk
(1020 m-3)

Nion
(1022 m-3)

3D/2D-mono
0.6 2.5 5 5 1 2.2 1.3
5 3.5 5 5 5 2.2 1.3
15 6 5 5 10 4 1.3
25 9 1 1 10 6 2
35 70 0.1 0.2 10 6 2

3D
0.6 1 5 5 6 2.2 1.5
10 1.7 5 5 6 3.5 1.9
50 2 3 2 6 6 3
100 6 0.8 1 6 20 3
125 70 0.1 0.2 6 20 3

3D/2D-di
0.6 2 5 5 1.5 2.2 1.3
25 2 5 5 1.5 2.2 1.8
75 2.5 5 5 4 22 2.2
150 3 1 1 4 40 2.2
200 3.5 0.7 0.7 4 45 2.3
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