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Experimental Section 

Material  

The purchased lithium cobalt oxide (LiCoO2, 98%, International laboratory USA), 

Pseudo-bohemite (AlOOH), Phosphoric acid (H3PO4, 85%, International laboratory USA), 

and Triethylamine (TEA, 99%, International laboratory USA) were directly used without 

purification. 

Material synthesis  

LCO@A and LCO@Z were prepared by hydrothermal method. For LCO@A, pristine LCO 

was mixed with pseudo-bohemite and phosphoric acid in deionized water. For LCO@Z, 

pristine LCO was mixed with pseudo-bohemite, phosphoric acid, and triethylamine in 

deionized water. Both LCO@A and LCO@Z were processed under hydrothermal condition at 

155℃ for 1 h and the collected powders were annealed at 550℃ for 2 h.  

Materials Characterization 

The morphology and phase of cathodes were investigated by scanning electron microscope 

(SEM, MAIA3) and X-ray diffraction (XRD, Rigaku SmartLab). Cross-sectional samples 

were prepared by an ion Milling System (IM4000plus) and the cross-sectional images were 

observed using FE-SEM (Regulus8100). The microstructure of LCO@Z was studied by 

Transmission Electron Microscope (TEM, JEOL JEM-2100F). The Co-L3-edge X-ray 

absorption spectroscopy (XAS) data of cathodes were collected at the TLS 16A beamline, 

NSRRC, Taiwan. The chemical composition of the cycled cathode was investigated using a 

time-of-flight secondary ion mass spectroscopy (TOF-SIMS) equipment (IONTOF M6, 



Germany). A dual beam depth profiling method was used, combining a 30 keV Bi++ primary 

ion source that delivered 0.2 pA of target current over an area of 100 × 100 µm2 for analysis, 

with a 1 keV Cs+ sputter beam that delivered ≈90 nA of target current over an area of 300 × 

300 µm2 to create a sputtered crater. The surface components analysis was studied by X-Ray 

Photoelectron Spectroscopy (XPS, Thermo Fisher Scientific Nexsa). The specific surface area 

of powders was determined by Brunauer, Emmett, and Teller method (BET, ASAP 2020). 

In-situ XRD patterns were obtained using a specially designed cell with a beryllium (Be) 

window and at a scan range from 10° to 80°, scan rate = 10° min−1. Elemental ratios in the 

samples were determined using inductively coupled plasma optical emission spectroscopy 

(ICP-OES, Agilent 7700). Electrode conductivity of electrodes was conducted using 

automatic four-point probe powder resistivity instrument (ST2742B).  

Electrochemical Measurement  

To fabricate the electrodes, a slurry was prepared by dissolving 90% active material particles 

(LCO, LCO@A, and LCO@Z), 5 wt% super P, and 5 wt% polyvinylidene fluoride (PVdF) in 

an appropriate amount of N-methyl-1,2-pyrrolidone (NMP). The mass loading of active oxide 

in the slurry was set to ~4 and ˃10 mg cm−2 in half cells. The electrodes were prepared by 

punching the slurry onto a substrate with a diameter of 12 mm under a compression pressure 

of 2 MPa. In coin-type half cells, lithium metal was used as the anode. The electrolyte used in 

the half cells consisted of 1 M LiPF6 dissolved in a mixture of ethylene carbonate (EC) and 

dimethyl carbonate (DMC) in a volume ratio of 1:1. The electrochemical tests were conducted 

at room temperature (25℃) and high temperature (60℃) using a LAND instrument (CT-2001 

A). Galvanostatic intermittent titration technique (GITT) measurements were performed on 



the half cells within the voltage range of 3.0-4.6 V (vs. Li/Li+). A titration current of 0.3C (1C 

= 200 mA·g−1) was applied for 10 minutes, followed by a relaxation time of 1 hour to allow 

the system to reach the quasi-equilibrium potential. Cyclic voltammetry (CV) and 

electrochemical impedance spectroscopy (EIS) were conducted using a Solartron 1470E 

instrument (AMETEK, USA). The frequency range for EIS measurements was 10−2 to 106 Hz. 

Differential Electrochemical Mass Spectrometer (DEMS, QAS100 Li) were used for detecting 

the gas generation during charging and discharging of the anode material in a Swagelok-type 

cell, and the carrier gas was Argon with a flow rate of 1 mL min−1. 

Computational Methods 

All spin-polarized density functional theory (DFT) calculations were performed by using the 

projector-augmented wave method in VASP code1, 2. Perdew-Burke-Ernzerhof (PBE) scheme 

of generalized gradient approximation was applied as the exchange-correlation functional3. 

The van der Waals corrections were considered by Grimme’s DFT-D3 method4. Kinetic 

energy cutoff was set as 420 eV, and K-points meshes with density higher than 0.035 × 2π Å−1 

were used for Brillouin zone sampling. All structures were relaxed until energy and force 

convergence criteria of 10−5 eV and 0.02 eV Å−1 were reached, respectively. Hubbard U 

correction term of 3.32 eV was applied on strongly correlated cobalt atoms5. The adsorption 

energy ΔE was calculated as ΔE = Esurface-ad – Esurface – Ead, where Esurface-ad, Esurface, and Ead 

represent DFT-calculated energies of surface with adsorption, clean surface, and adsorbate, 

respectively. Vacuum layers with a thickness of at least 15 Å were added to the slab structures 

to prevent spurious interactions. The climbing-image nudged elastic band (CI-NEB) method 

was used for calculating the diffusion barriers6. 



 

Fig. S1 a SEM image of pristine LCO, and b magnified area of the white rectangle in a. c 

HRTEM image of pristine LCO and d FFT pattern of the orange rectangle in c. 

 



 

Fig. S2 a SEM image of LCO@A, and b magnified area of the white rectangle in a. c 

HAADF and d HRTEM images of LCO@A and elemental distribution of e Co, f O, g P and h 

Al. 

 



 

Fig. S3 a SEM image of LCO@Z, and b magnified area of the white rectangle in a. c 

HAADF image of LCO@Z and elemental distribution of d Co, e O, f P, g Al and h Co/Al 

mixed. 



 

Fig. S4 Three view of the atomic structure of the (210) slab of AlPO4-5 zeolite. 

 

 

Fig. S5 a XRD patterns of AlPO4-5 zeolite and amorphous AlPO4. SEM image of b 

amorphous AlPO4 and c AlPO4-5 zeolite. 



 

Fig. S6 XRD patterns of as-prepared LCO@A and LCO@Z samples. 

 

 

 

Fig. S7 XRD patterns of LCO and LCO@Z samples, with the concentration of the precursor 

of AlPO4-5 in LCO@Z varying from 0.5% to 20%. 



 

Fig. S8 SEM images of LCO@Z samples. The concentration of AlPO4-5 precursor varies 

from 0.25% to 20%. 

 



 

Fig. S9 SEM images of a LCO, b AlPO4-5 zeolite and c LCO@Z. The corresponding 

Brunauer-Emmett-Teller (BET) result of d LCO, e AlPO4-5 zeolite and f LCO@Z. 

 

 

 



 

Fig. S10 Continuous charge/discharge curves under an upper cut-off voltage of 4.6 V (vs. 

Li/Li+) from 0.1C to 10C of a LCO, b LCO@A and c LCO@Z. 

 

 

Fig. S11 Continuous charge/discharge curves from 3rd to 200th cycles of a LCO, b LCO@A 

and c LCO@Z at 1C under an upper voltage of 4.6 V (vs. Li/Li+). d Cycling performance of 

mid-point voltage of LCO, LCO@A, and LCO@Z at 1C under an upper voltage of 4.6 V (vs. 

Li/Li+). 

 

 



 

Fig. S12 High rate (5C) electrochemical performance. Continuous charge/discharge curves 

from the 4th to the 200th cycles of a LCO, b LCO@A and c LCO@Z at 5C under an upper 

cut-off voltage of 4.6 V (vs. Li/Li+). d Cycling stability of half-cell at 5C under an upper cut-off 

voltage of 4.6 V (vs. Li/Li+) from 1st to 200th cycles. e Cycling performance of mid-point 

voltages of LCO, LCO@A, and LCO@Z at 5C under an upper cut-off voltage of 4.6 V (vs. 

Li/Li+). 



 

Fig. S13 High temperature (60℃) electrochemical performance. Continuous charge/discharge 

curves from the 3rd to the 100th cycles of a LCO, b LCO@A and c LCO@Z at 1C under an 

upper cut-off voltage of 4.6 V (vs. Li/Li+). d Cycling stability of half-cell at 1C under an upper 

cut-off voltage of 4.6 V (vs. Li/Li+) from 1st to 100th cycles. e Cycling performance of 

mid-point voltages of LCO, LCO@A, and LCO@Z at 1C under an upper cut-off voltage of 4.6 

V (vs. Li/Li+). 



 

Fig. S14 Low temperature (0℃) electrochemical performance. Continuous charge/discharge 

curves from the 1st to the 75th cycles of a LCO, b LCO@A and c LCO@Z at 2C under an upper 

cut-off voltage of 4.6 V (vs. Li/Li+). d Cycling stability of half-cells at 2C under an upper 

cut-off voltage of 4.6 V (vs. Li/Li+) from 1st to 75th cycles at 0℃. 

 



 

Fig. S15 High voltage (4.7 V vs. Li/Li+) electrochemical performance. Continuous 

charge/discharge curves from the 3rd to the 100th cycles of a LCO, b LCO@A and c LCO@Z at 

1C under an upper cut-off voltage of 4.7 V. d Cycling stability of half-cell at 1C under an upper 

cut-off voltage of 4.7 V from 1st to 300th cycles. e Cycling performance of mid-point voltages of 

LCO, LCO@A, and LCO@Z at 1C under an upper cut-off voltage of 4.7 V. 



 

Fig. S16 Cycling performance of high mass loading (> 10 mg cm−2) cathode of LCO, 

LCO@A and LCO@Z at 1C under an upper cut-off voltage of 4.6 V (vs. Li/Li+). 

 

 

Fig. S17 Cycling stability of LCO@Z samples (with the concentration of AlPO4-5 precursor 

increasing from 0.25% to 10%) at 1C under an upper cut-off voltage of 4.6 V from 1st to 100th 

cycles. 

 



 

Fig. S18 LCO||graphite pouch cell. Photo of the assembled pouch cell of a LCO and c 

LCO@Z before and after cycling. The first cycle of b LCO and d LCO@Z at 0.1C. e Cycling 

stability of pouch cells of LCO and LCO@Z at 3.0-4.5 V (vs. graphite). 

 

 

Fig. S19 Rate capability of LCO, LCO@A and LCO@Z at 3.0-4.2 V from 0.5C to 10C. 

 

 



 

Fig. S20 DFT-calculated energy barriers (in eV) for the diffusion of Li-EC-DMC-PF6 

complex into the 10.2 Å-pore of AlPO4-5 and Li+-desolvation on AlPO4-5. 

 

Fig. S21 The charging and discharging curves of a LCO, b LCO@A, and c LCO@Z 

electrodes in the second cycle during in-situ EIS measurements. 



 

Fig. S22 An equivalent electrical circuit that describes the impedance behavior of LCO, 

LCO@A, and LCO@Z electrodes. 

 

Fig. S23 The calculated density of states (DOS) for LCO and LCO@Z. The Fermi level was 

set as zero. DOS contributed from spin-up and spin-down channels are distinguished by 

curves above and below the central axis. 

 



 

Fig. S24 Plots of the real parts of the complex impedance versus ω−1/2 for a LCO, b LCO@A, 

and c LCO@Z. 



 

Fig. S25 Electronic conductivities of LCO, amorphous AlPO4, LCO@A, AlPO4-5 and 

LCO@Z under 10 MPa pressure. 

 

Fig. S26 TOF-SIMS patterns for negative secondary ion mode. 



 

Fig. S27 The a-c C1s and d-f O1s XPS spectra of LCO, LCO@A and LCO@Z cathode after 

200 cycles. 

  



 

Fig. S28 GITT curves of a LCO, b LCO@A and c LCO@Z at the 3rd, 50th, and 200th cycle. 

The corresponding Li+ ion diffusion coefficients of d LCO, e LCO@A and f LCO@Z at the 

3rd, 50th, and 200th cycle. g Cycling performance and overpotential properties of LCO, 

LCO@A and LCO@Z. GITT measurements are conducted at 0.3 C in the initial two cycles 

and 1C in the following cycles. 

As depicted in Fig. S28a-c, LCO@A and LCO@Z demonstrate the smallest electrode 

polarization from the 3rd to the 200th cycle, whereas LCO exhibits a rapid increase in electrode 

polarization starting from the 50th cycle. Furthermore, as shown in Fig. S28g, LCO@Z 

requires 32 days to complete 300 cycles, which is longer than LCO (13 days) and LCO@A 

(22 days). The extended cycling time signifies that LCO@Z exhibits superior cycling stability. 

The typical potential versus time profiles of LCO, LCO@A, and LCO@Z are illustrated in 



Fig. S29, providing further insight into their electrochemical behavior. The evolution of Li+ 

diffusion coefficient (DLi+) of cathodes during cycling is depicted in Fig. S28d-f. During the 

3rd cycle, the calculated DLi+ values are similar for all the three cathodes. However, as cycling 

progresses from the 50th to the 200th cycle, the average DLi+ of LCO@Z remains almost 

unchanged, while that of LCO experiences a significant decrease. The GITT results confirm 

that the effective zeolite coating strategy enhances the Li+ diffusion kinetics of LCO@Z, 

leading to larger and more stable Li+ diffusion coefficients compared to LCO and LCO@A. A 

linear relationship between potential and τ1/2 can be observed, and DLi+ can be calculated 

based on the equation (1) 

𝐷 =
4

𝜋𝜏
(
𝑚𝑉𝑀

𝑀𝐴
)2(

𝛥𝐸𝑆

𝛥𝐸𝜏
)2                            (1) 

where m and M indicate the mass and molar mass of the electrode material, respectively. VM 

(cm3 mol−1) refers to their molar volume, and A (cm2) stands for their active area.  

 



 

Fig. S29 A typical voltage versus time profile of a LCO, c LCO@A and e LCO@Z. A linear 

relationship between voltage and τ1/2 of b LCO, d LCO@A and f LCO@Z. 

  



 

Fig. S30 Cyclic voltammetry of bare LCO, LCO@A and LCO@Z after 200 cycles. 

The redox behaviors of the cathodes are investigated through cyclic voltammetry (CV), as 

shown in Fig. S30. After 200 cycles, the redox peaks of LCO@Z remain sharp, indicating 

higher reversibility of the redox reactions in the LCO@Z cathode. This observation suggests a 

significant improvement in cycling stability following surface engineering. On the other hand, 

the redox peaks of LCO decrease, confirming the occurrence of irreversible structural 

evolutions after high-voltage long-term cycling. 

 

  



Table S1 Quantitative analysis of the Al, P in LCO@Z-0.5% powder by ICP-OES. 

Sample Elemental content (g kg−1) Molar ratio of Al/Co or P/Co 

LCO@Z-0.5% 

Co 619.11 / 

Li 95.11 / 

Al 1.14 0.41% 

P 1.21 0.37% 

 

  



Table S2 Performance comparison of capacity retention of various surface-modified 

commercial LCO cathodes under high voltage. 

Modification strategy Rate  Retention (%) Journal 

AlPO4-5 zeolite coated 

LiCoO2 (LCO@Z) 
1C 

94.6% after 100 cycles 

90.3% after 200 cycles 
This work 

[1] LCO@Carbonate 1C 90.9% after 100 cycles Advanced Materials (2024)7 

[2] LCO@RbAlF4 0.3C  90.2% after 100 cycles Advanced Science (2022)8 

[3] LCO@MXenes 0.5C 86.2% after 100 cycles 
Advanced Functional Materials 

(2023)9 

[4] LCO@Lu 0.5C 86.2% after 150 cycles 
Advanced Functional Materials 

(2022)10  

[5] LCO@LiCoPO4 1C (30℃) 92.0% after 200 cycles 
Advanced Energy Materials 

(2022)11 

[6] LCO@Li3NbO4 0.2C 90.9% after 200cycles Advanced Materials (2023)12 

[7] LCO@LiFe0.4Mn0.6PO4 1C 85.4% after 200 cycles 
Advanced Functional Materials 

(2023)13 

[8] LCO@Al-F 0.5C 86.9% after 200cycles 
Advanced Energy Materials 

(2022)14 

[9] LCO@Li-Al-F 0.5C 82.6% after 200 cycles 
Advanced Functional Materials 

(2022)15 

[10] LCO@Li/Al/F 0.1C 81.8% after 200 cycles Nature Communications (2018)16 

[11] LCO@Li2CoTi3O8 0.1C 81.2% after 200 cycles Advanced Science (2022)17 

[12] LCO@Rock-Salt 1C (4.65V) 85.9% after 300 cycles 
Advanced Energy Materials 

(2024)18 

[13] LCO@Nanofilm 1C (4.7V) 85.7% after 300 cycles 
Angewandte Chemie 

International Edition (2024)19 

[14] LCO@polyanionic 1C 84% after 300 cycles 
Energy & Environmental 

Science (2024)20 

 

  



Table S3 The simulated results from EIS spectra of LCO, LCO@A, and LCO@Z at various 

state of charges (SOCs) during the second charge/discharge cycle. 

Samples SOC 
Simulated electrochemical parameters 

Rsf (Ω) Rin(Ω) Rct (Ω) σ (Ω ·cm2 mol−1) DLi+(cm2·s−1) 

LCO 

Charged to 4.0 V 17.1 / 81.7 48.6 1.10 × 10−13 

Charged to 4.15 V 17.3 

 

/ 73.8 31.7 2.57 × 10−13 

Charged to 4.3 V 25.9 / 26.2 14.5 

 

1.22 × 10−12 

Charged to 4.45 V 29.6 / 37.3 15.11 1.13 × 10−12 

Charged to 4.6 V 35.4 / 179.9 36.4 1.95 × 10−13 

Discharged to 4.45 V 73.1 / 101.8 47.7 1.14 × 10−13 

Discharged to 4.3 V 127.9 / 80.5 

 

207.9 6.04 × 10−15 

Discharged to 4.15 V 132.5 / 88.9 108.7 2.19 × 10−14 

Discharged to 4.0 V 99.89 / 155.2 310.5 2.68 × 10−15 

LCO@A 

Charged to 4.0 V 15.2 27.4 134.9 55.1 

 

8.52 × 10−14 

Charged to 4.15 V 19.1 22.3 199.8 35.2 2.09 × 10−13 

Charged to 4.3 V 22.8 14.4 36.3 22.0 

 

5.34 × 10−13 

Charged to 4.45 V 24.3 13.8 36.1 20.5 6.16 × 10−13 

Charged to 4.6 V 28.2 12.1 72.5 23.2 4.82 × 10−13 

Discharged to 4.45 V 92.9 40.2 104.9 50.9 9.99 × 10−14 

Discharged to 4.3 V 79.7 85.5 140.3 133.8 1.44 × 10−14 

Discharged to 4.15 V 95.3 97.3 180.5 143.1 1.27 × 10−14 

Discharged to 4.0 V 100.2 99.6 219.9 450.1 1.28 × 10−15 

LCO@Z 

Charged to 4.0 V 12.1 21.9 50.2 23.1 4.83 × 10−13 

Charged to 4.15 V 9.3 15.4 29.3 14.5 1.23 × 10−12 

Charged to 4.3 V 7.5 6.1 21.4 9.6 2.81 × 10−12 

Charged to 4.45 V 8.5 5.3 18.9 8.5 3.58 × 10−12 

Charged to 4.6 V 11.3 9.5 24.3 9.9 2.65 × 10−12 

Discharged to 4.45 V 11.5 9.5 25.1 16.1 9.94 × 10−13 

Discharged to 4.3 V 7.1 6.4 15.1 107.9 2.22 × 10−14 

Discharged to 4.15 V 12.2 27.9 34.3 45.8 1.23 × 10−13 

Discharged to 4.0 V 12.9 29.2 43.8 139.1 1.34 × 10−14 



Table S4 Electronic conductivities of LCO, amorphous AlPO4, LCO@A, AlPO4-5 and 

LCO@Z under 10 MPa pressure. 

Sample LCO Amorphous AlPO4 LCO@A AlPO4-5 LCO@Z 

Conductivity 

(S m−1) 
8.07 × 10−5 1.34 × 10−7 4.56 × 10−5 1.21 ×10−4 9.59 × 10−4 

 

Table S5 Quantitative analysis of the Co and Li contents in cycled Li metal anodes paired 

with LCO, LCO@A and LCO@Z cathodes by ICP-OES. 

Sample LCO LCO@A LCO@Z 

Quality  

(ug kg−1) 

Co 12264 5109 665 

Li 2.25 × 107 2.40 × 107 2.18 × 107 

Molar ratio 

(Co/Li) 
4.736 ‰ 1.793 ‰ 0.249 ‰ 
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