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Experiment section

1. Materials:

The indium-doped tin oxide (ITO)-coated glass (<15 /square) was purchased from
Liaoning Youxuan New Energy Technology Co. Ltd. PM6, BTP-eC9, Y6, L8-BO,
and PNDIT-F3N were purchased from Solarmer Energy Inc. PEDOT:PSS was
purchased from Xi'an Yuri Solar Energy Technology Co.Ltd. The raw materials 3,6-
dibromocarbazole was purchased from Adamas, 3,4-dimethoxyphenylboronic acid
was purchased from Leyan, and diethyl 2-bromoethylphosphonate was purchased
from BIDD Pharmaceutical Company. All the chemicals were used as received
without further purification. All reactions and manipulations were carried out under
argon atmosphere with the use of standard Schlenk techniques. All these solvents

used here were commercially available from Chongqing Chuandong Chemical.

2. Device fabrication

The OSCs were fabricated with the traditional structure: ITO/ HTLs /activelayer /
PNDIT-F3N /Ag. After being cleaned with deionized water, acetone, and isopropanol,
the ITO glass was treated with the UV-Ozone for 15 min. For the PEDOT: PSS
device: the PEDOT:PSS solution was spin-coated at 6000 rpm onto the ITO substrates
for 20 seconds. Then the PEDOT:PSS layer was heated at 150 °C for 10 min in air.
For the SAMs device: the BrDECz (0.4 mg/mL in ethanol), BrCz (0.4 mg/mL in
ethanol), DECz (0.4 mg/mL in THF) solution was applied directly onto the ITO
substrate for 15 s followed by a spin-coating step at 3000 rpm for 30 s. The
ITO/SAMs substrate was then placed onto a hotplate and annealed at 100 °C for 5
min. PM6:Y6 (ratio 1:1.2, 17 mg/mL in chloroform with 12mg/ml 1,4-diiodobenzene)
were spun at 2800 rpm for 30 s to obtain an active-layer, then the active layer was
annealed at 90 °C for 2 min. PM6:L8-BO (ratio 1:1.2, 17 mg/mL in chloroform with
12mg/ml 1,4-diiodobenzene) were spun at 3000 rpm for 30 s to obtain an active-layer,
then the active layer was annealed at 90 °C for 5 min. PM6:BTP-eC9 (ratio 1:1.2, 16

mg/mL in chloroform and added 11 mg/ml 1,4-diiodobenzene) were spun at 2700 rpm
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for 30 s to obtain an active-layer, then the active layer was annealed at 90 °C for 5
min. With the PNDIT-F3N (0.5 mg/mL in methanol added 0.5%acetic acid, 2000 rpm)
spin-coated on the active layer, the devices were finally transferred to the evaporation

tank to deposit 100 nm Ag. The active area with calibration was 0.1 cm?.

3. Nuclear magnetic resonance (NMR) spectra.

Spectra were recorded on a Bruker Avance III Ultra shield Plus instrument (600 MHz)
for 'H and (150 MHZ) for 13C spectra. Proton ('"H)NMR information is given in the
following format: multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; qui, quintet;
sept, septet; m, multiplet), coupling constant(s) (J) in Hertz (Hz), and the number of
protons. Carbon ('*C) NMR spectra are reported in ppm (3) relative to residual
DMSO (8 77.16).

4. High-resolution mass spectrometry (HRMS).
Data for SAM molecules were obtained using Japan Shimadzu LCMS-IT-TOF mass

spectrometer.

5. UV-visible (UV-vis) absorption.
UV-visible spectra were recorded on a PerkinElmer LAMBDA 365 UV-Vis

spectrophotometer.

6. Electrochemical cyclic voltammogram.

Cyclic Voltammetry (CV) was conducted using CIH660e electrochemical workstation
with glassy carbon working electrode, platinum wire auxiliary electrode, and Ag/Ag*
glass electrode used as the reference electrode. Ag/Ag" reference electrode was
utilized ferrocene/ferrocenium (Fc/Fc*) redox couple with Fc/Fc* set relative to 4.8
eV vacuum level. All CV curves were obtained through casting thin films (from

DMSO solution of SMA materials) on a glassy carbon electrode.

7. Contact angle measurement.



Contact angles of two different solvents (water and formamide) were measured on
DSA-100 liquid droplet on the pure film (donor/acceptor) using a shape analysis
instrument (KRUSS Scientific). Miscibility of the two components in the mixture

could be estimated based on the solubility parameters (8) of each material, calculated

using the formula: = K\/Y where vy is the surface energy of the material, and K is a

proportionality constant (K= 116 x 10> m'?2),

8. X-ray photoelectron spectroscopy (XPS).

XPS was performed at Thermo Scientific K-Alpha. Appropriate-sized samples
(typically 5 x 5 mm in length and width) were mounted on the sample holder and
placed into the Thermo Scientific K-Alpha XPS instrument sample chamber. The
sample was transferred to the analysis chamber when the pressure in the sample
chamber was less than 2.0 x 10”7 mbar. The spot size was set to 400 um, the operating
voltage to 12 kV, and the filament current to 6 mA. For full-spectrum scans, the pass
energy was 150 eV with a step size of 1 eV; for narrow-spectrum scans, the pass

energy was 50 eV with a step size of 0.1 eV.

9. Ultraviolet photoelectron spectroscopy (UPS).

The UPS analysis was performed utilizing the Thermo Fisher Scientific ESCALAB
XI+ apparatus, situated within an ultra-high vacuum environment where the baseline
pressure was maintained at an extremely low level of 1 x 10-10 mbar. The continuous
supply of photons for the UPS investigation was sourced from the monochromatized
He I a radiation produced by the discharge lamp, delivering photon energies precisely
at 21.22 electron volts. The criteria for preparing the samples were consistent with the
protocols established for the XPS studies, ensuring comparability between the two

spectroscopic techniques.

10. Density functional theory (DFT) computation.



The molecular geometry optimizations and ESP distribution of BrDECz, DECz and
BrCz were performed by Gaussian 16 ! at B3LYP/6-311G** level.

E

ads

=F E_-FE

iso/surf T Fiso surf

The adsorption energies (E,4s) were calculated by the following equation:

Here, the three terms on the right are the total energy of surface covered with
adsorbates, the total energy of isolated adsorbate molecule, and the total energy of the
bare surface. A vacuum spacing of over 15 A was added to each interfacial bulk
model to avoid possible interactions between the periodic slabs. The ITO (001)
surface was selected for the construction of interfacial models, with 4 In atoms
randomly replaced by Sn atoms. The surface is saturated by H. The formula for the
ITO surface model is InsSnsO7,Hs,.

The DFT calculations for the interfacial models were carried out using Vienna Ab
initio Simulation Package (VASP 5.4.4) software’>. We utilized the Perdew—Burke—
Ernzerhof (PBE) exchange-correlation functional® and Projector Augmented Wave
(PAW) pseudopotentials® for structure optimization and total energy calculations. A
plane—wave cutoff energy of 500 eV and a 1x2x1 I'-centered k-mesh were selected.
The one-dimensional planar-average charge density difference was calculated by
VASPKIT?. To take into account van der Waals interaction, the vdW-DF2 functional

was used.

11. Materials synthesis:
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Scheme S1. Synthetic routes of BrDECz and DECz.
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11.1 Synthesis of 3-bromo-6-(3,4-dimethoxyphenyl)-9H-carbazole (2)

The compound 1 (2.00 g, 6 mmol), 3,4-dimethoxyphenylboronic acid (2.78 g, 13
mmol), and potassium carbonate (3.30 g, 24 mmol) were dissolved in a mixed solvent
of dioxane (50 mL) and water (5 mL) at a ratio of 10:1. A catalytic amount of the
pd(pphs)4 (160 mg, 0.1 mmol) was then added, and the mixture was stirred at 90°C
for 24 hours. The reaction mixture was extracted with ethyl acetate (EA) and saturated
brine. The organic layer was collected, dried over anhydrous sodium sulfate (Na,SO,),
filtered, and concentrated under reduced pressure. Purification by silica gel column
chromatography using a 1:1 eluent of dichloromethane (DCM) and petroleum ether
(PE) yielded a white solid compound 2(600 mg, yield 51%). "TH NMR (600 MHz,
DMSO-dg) 6 11.45 (s, 1H), 8.52 (s, 1H), 8.48 (s, 1H), 7.75 (d, J = 8.5 Hz, 1H), 7.56 (d,
J=8.4 Hz, 1H), 7.53 (d, J = 10.4 Hz, 1H), 7.49 (d, J = 8.6 Hz, 1H), 7.36 (s, 1H), 7.29
(d, J = 8.3 Hz, 1H), 7.06 (d, J = 8.3 Hz, 1H), 3.92 (s, 3H), 3.82 (s, 3H). BC NMR
(151 MHz, DMSO-ds) & 149.60, 148.37, 139.82, 139.39, 134.42, 131.91, 128.45,
125.74, 125.16, 123.53, 122.60, 119.12, 118.87, 113.50, 112.82, 111.89, 111.10,
111.07, 56.12.

11.2 Synthesis of diethyl(2-(3-bromo-6-(3,4-dimethoxyphenyl)-9H-carbazol-9-yl)
ethyl)phosphonate (3)

The white compound 2 (200 mg, 0.52 mmol), diethyl 2-bromoethylphosphonate (141
mg, 0.57 mmol), and potassium carbonate (143 mg, 1.04 mmol) were dissolved in
DMSO. The solution was heated and reacted at 110°C overnight. The reaction
mixture was then extracted with ethyl acetate (EA) and saturated brine. The organic
phase was collected and purified using EA:petroleum ether (PE) at a ratio of 2:1 as
the eluent, yielding a pale yellow oil compound 3 (143 mg, 50% yield). 'TH NMR
(600 MHz, DMSO-ds) 6 8.56 (s, 1H), 8.53 (s, 1H), 7.84 (d, J = 6.8 Hz, 1H), 7.65 (d, J
= 8.6 Hz, 1H), 7.62 (d, J = 10.5 Hz, 1H), 7.59 (d, J = 8.7 Hz, 1H), 7.38 (s, 1H), 7.32
(d, J =2.1 Hz, 1H), 4.63 (dt, J = 14.2, 7.2 Hz, 2H), 3.99 (d, J = 1.0 Hz, 4H), 3.92 (s,

3H), 3.83 (s, 3H), 2.37 — 2.29 (m, 2H), 1.11 (t, J = 7.0 Hz, 6H). 3C NMR (151 MHz,
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DMSO) & 149.63, 148.49, 139.57, 139.25, 134.11, 132.38, 128.56, 125.79, 125.02,
123.59, 122.44, 119.15, 118.96, 112.80, 112.00, 111.64, 111.04, 110.30, 61.66, 60.24,
56.10, 40.40, 40.27, 40.13, 39.99, 39.85, 39.71, 39.57, 18.69, 17.76, 6.87.

11.3 Synthesis of (2-(3-bromo-6-(3,4-dimethoxyphenyl)-9H-carbazol-9-yl)ethyl)
phosphonic acid (BrDECz)

The compound 3 was added to anhydrous dichloromethane (DCM). Trimethylsilyl
bromide was then added at room temperature, and the mixture was stirred overnight.
Upon completion of the reaction, it was quenched by pouring into methanol. The
mixture was then concentrated under reduced pressure until only a small amount of
liquid remained. Water was added, resulting in the formation of a white precipitate.
After standing for 5 minutes, the product BrDECz was isolated by filtration, yielding
140 mg (98% yield). "TH NMR (600 MHz, DMSO-d; 6 8.56 (s, 1H), 8.53 (s, 1H), 7.84
(d, J = 8.6 Hz, 1H), 7.63 (d, J = 6.1 Hz, 2H), 7.56 (d, J = 8.7 Hz, 1H), 7.37 (s, 1H),
7.32 (d, J = 8.3 Hz, 1H), 7.08 (d, J = 8.3 Hz, 1H), 4.60 — 4.56 (m, 2H), 3.92 (s, 3H),
3.83 (s, 3H), 2.10 — 2.03 (m, 2H). 13C NMR (151 MHz, DMSO-ds) & 149.61, 148.47,
139.51, 139.16, 134.13, 132.37, 128.72, 125.95, 124.98, 123.74, 122.41, 119.19,
119.13, 112.83, 111.71, 111.62, 111.09, 110.05, 66.86, 56.13, 38.18, 28.19, 27.32.
HRMS-ESI m/z Calcd for C,,H,,BrNOsP [M+H]*: 490.03, found 490.04.

11.4 Synthesis 0f3,6-bis(3,4-dimethoxyphenyl)-9H-carbazole (4)

The compound 1 (2.00 g, 6 mmol), 3,4-dimethoxyphenylboronic acid (2.78 g, 13
mmol), and potassium carbonate (3.30 g, 24 mmol) were dissolved in a mixed solvent
of dioxane (50 mL) and water (5 mL) at a ratio of 10:1. A catalytic amount of the
Pd(PPh3), (160 mg, 0.1 mmol) was added, and the mixture was heated and reacted at
90°C for 24 hours. The reaction mixture was then extracted with ethyl acetate (EA)
and saturated brine. The organic layer was separated, dried over anhydrous sodium
sulfate (Na,SQy,), filtered, and concentrated under reduced pressure. The residue was
purified by silica gel column chromatography using a 1:1 eluent of dichloromethane
(DCM) and petroleum ether (PE), yielding 300 mg of white solid compound 4 (26%

yield). "H NMR (600 MHz, DMSO-d¢) 5 11.30 (s, 1H), 8.53 (s, 2H), 7.71 (d, J = 6.6
8



Hz, 2H), 7.55 (d, J = 8.4 Hz, 2H), 7.36 (s, 2H), 7.31 (d, J = 8.3 Hz, 2H), 7.07 (d, J =
8.3 Hz, 2H), 3.92 (s, 6H), 3.83 (s, 6H). 3C NMR (151 MHz, DMSO-ds) & 149.59,
14831, 139.93, 134.76, 131.59, 125.12, 123.75, 119.21, 118.68, 112.83, 111.73,
111.18, 56.17, 56.13, 40.45, 40.31, 40.17, 40.03, 39.89, 39.76, 39.62.

11.5 Synthesis of (2-(3,6-bis(3,4-dimethoxyphenyl)-9H-carbazol-9-yl)ethyl)
phosphonic acid (DECz)

The subsequent synthesis steps were similar to those used in the synthesis of BrDECz,
yielding a white product (138 mg, 60% yield). 'TH NMR (600 MHz, DMSO-dy) 6 8.57
(s, 1H), 7.80 (d, J = 8.3 Hz, 1H), 7.62 (d, J = 8.5 Hz, 1H), 7.37 (s, 1H), 7.33 (d, J =
8.5 Hz, 1H), 7.09 (d, J = 8.3 Hz, 1H), 4.61 (q, J = 7.9 Hz, 1H), 3.92 (s, 3H), 3.83 (s,
3H), 2.09 (dt, J = 17.3, 7.9 Hz, 1H). 3C NMR (151 MHz, DMSO-dg) & 149.60,
148.41, 139.62, 134.48, 132.07, 125.36, 123.64, 119.30, 118.95, 112.84, 111.22,
109.84, 56.20, 56.14, 40.40, 40.27, 40.13, 39.99, 39.85, 39.71, 39.57, 38.10, 28.29,
27.43. HRMS-ESI m/z Calcd for C30H3;NO,P [M+H]*: 548.18, found 548.18.

Br. r

— = Br. _ Br
Br. _ c_,(ﬂ' NaH, DMF “,L_// RT, ON Q‘Q
—_—= 1 E— N
y h
b LUD °$P:gv' DOM, BrSiMed o Pr;-":'”
g~ L OH
1 8 BrCz

Scheme. S2 Synthetic routes of SAM BrCz.

11.6 Synthesis of (2-(3,6-dibromo-9H-carbazol-9-yl)ethyl)phosphonic acid

The reagent 1 (1.00 g, 3 mmol) was added to 30 mL of DMF. Sodium hydride (NaH,
0.16 g, 3.3 mmol) was slowly added, and the mixture was pre-stirred for 30 minutes.
Afterward, diethyl 2-bromoethylphosphonate (0.90 g, 3.6 mmol) was added, and the
reaction was stirred at room temperature overnight. Upon completion of the reaction,
extraction was performed using ethyl acetate (EA) and saturated brine. The solution
was then concentrated under reduced pressure, and the residue was purified by

column chromatography using a 1:1 eluent of ethyl acetate (EA) and petroleum ether
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(PE), yielding 0.83 g of white solid compound 8 (56% yield). 'H NMR (600 MHz,
DMSO-dy) 6 8.45 (d, J = 2.0 Hz, 2H), 7.61 (d, J = 6.7 Hz, 2H), 7.56 (d, J = 8.7 Hz,
2H), 4.57 (dt, J = 14.5, 7.1 Hz, 2H), 3.86 (t, J = 7.1 Hz, 4H), 2.34 — 2.25 (m, 2H),
1.05 (t, J = 7.1 Hz, 6H). 3C NMR (151 MHz, DMSO-dg) 6 139.11, 129.28, 123.82,
123.64, 112.19, 112.01, 61.68, 61.64, 37.85, 37.45, 37.42, 25.00, 24.09, 16.47, 16.43.
Compound 8 was then dissolved in anhydrous dichloromethane. An excess of
trimethylsilyl bromide was added dropwise, and the reaction was allowed to proceed
overnight. Upon completion of the reaction, methanol was added to quench it. The
solution was then concentrated under reduced pressure until a small amount of liquid
remained, after which distilled water was added. This resulted in the precipitation of a
solid. After standing for 5 minutes, the solid was collected by filtration, yielding white
solid product BrCz (0.73 g, 98% yield). 'TH NMR (600 MHz, DMSO-dg) 6 8.49 (d, J
= 2.1 Hz, 1H), 7.65 (ddd, J = 8.7, 3.2, 2.0 Hz, 1H), 7.58 (t, J = 9.1 Hz, 1H), 4.59 —
4.53 (m, 1H), 2.17 — 2.01 (m, 1H). 3C NMR (151 MHz, DMSO) 6 139.08, 129.45,
124.02, 123.66, 111.99, 111.94, 60.67, 49.11, 40.44, 40.30, 40.16, 40.03, 39.89, 39.75,
39.61. HRMS-ESI m/z Calcd for C14H3Br,NO;P [M+H]": 431.89, found 431.89.
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12. Supporting Figures
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Figure S1. Dipole moments of the SAM molecules.
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lines. (¢) HOMO and LUMO energy level diagrams derived from values obtained by

cyclic voltammetry.
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Molecular geometry
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Figure S3. HOMO and LUMO energy levels calculated by DFT.
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Figure S4. UPS spectra of SAM modified ITO.
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B1

Figure S9. The chemical structures of the materials used in OSC devices.
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13. Supporting Tables

Table S1. Optimized concentration of BrDECz.

SAM Concentration Voc (V) Jsc(mA cm?) FF PCE (%)
0.3 0.85 28.03 75.58 18.02
BrDECz
0.3 0.86 28.88 76.09 18.85
0.4 0.86 29.22 77.84 19.56
BrDECz
0.4 0.87 28.85 78.37 19.67
0.5 0.87 28.47 77.68 19.15
BrDECz
0.5 0.86 28.84 77.50 19.32

Table S2. Optimized concentration of DECz.

SAM Concentration  Voc (V) Jsc(mA cm?) FF PCE (%)
0.3 0.85 28.75 72.83 17.82
DECz
0.3 0.84 29.05 72.37 17.81
0.4 0.85 29.28 76.21 18.99
DECz
0.4 0.85 29.17 76.43 18.86
0.5 0.85 28.80 75.94 18.58
DECz
0.5 0.84 28.55 75.86 18.30

Table S3. Optimized concentration ofBrCz.

SAM Concentration Voc (V) Jsc(mA cm?) FF PCE (%)
0.3 0.85 28.40 76.49 18.61
BrCz
0.3 0.85 28.39 76.79 18.57
0.4 0.85 27.77 72.94 17.34
BrCz
0.4 0.85 27.71 73.53 17.38
0.5 0.85 27.59 73.39 17.30
BrCz

0.5 0.85 28.17 72.20 17.41
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Table S4. Summary of the fitting parameter used to describe the Nyquist plots.

Electrodes Rs Roulk
ITO/BrDECz 27.7 2.8K
ITO/BrCz 239 1.9K
ITO/DECz 17.2 3.8K

Table S5. A summary of reported PCE values for conventional OSCs with SAM

interfaces.

SAMs BHJ Voc (V) PCE (%) Ref.
CI-2PACz PM6:PM7-Si: BTP-eC9:BV 0.866 18.9 4
BPC-M PBDB-TF: BTP-eC9 0.856 19.3 5
BrBACz PM6: BTP-eC9 0.856 19.7 6
4,5-C1-2PACz PM6: BTP-eC9:L8-BO-F 0.856 19.05 7
Br-2PACz PM6: BTP-eC9: PC,,BM 0.864 18.4 8
3-BPIC-F PM6:L8-BO: BTP-ec9 0.872 19.71 9
Poly-2PACz PM6: PTQ10: L8-BO 0.87 19.1 10
2PACz PM6: BTP-ec9: 0.845 18.03 1

PC;;BM
BrDECz PM6: BTP-eC9 0.87 19.67 This
work
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Table S6. The effect of interfacial materials on various active layer systems.

SAMs BHJ Voc(V) | Jsc(mA | FF(%) | PCE (%)
cm?)
PM6:Y6 BrDECz 0.85 28.01 76.46 18.29
DECz 0.83 28.01 75.94 17.65
BrCz 0.84 28.04 75.65 17.81
PEDOT:PSS 0.85 27.56 74.16 17.38
PM6:L8BO BrDECz 0.89 26.75 76.77 18.23
DECz 0.88 26.20 77.09 17.83
BrCz 0.88 26.13 76.68 17.52
PEDOT:PSS 0.89 24.98 76.89 17.03
PM6:BTP-eC9 BrDECz 0.87 28.85 78.32 19.67
DECz 0.85 28.64 77.00 18.74
BrCz 0.85 28.40 76.49 18.46
PEDOT:PSS 0.85 28.10 76.34 18.29
B1:BTP-eC9 BrDECz 0.81 26.63 74.36 16.05
DECz 0.81 26.15 73.43 15.59
BrCz 0.81 26.13 71.01 15.19
PEDOT:PSS 0.81 26.10 71.18 15.09
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Table S7. The costs associated with the synthesis of the unsymmetrical interfacial

materials.
) Unit price Quantity used Cost
Organic Reagents
8 8 ¥/g) &) ®
3,6-dibromocarbazole 1.02 1 1.02
3,4—dlmethoxyphenylboromc 56 0.8 4.43
acid
Diethyl 2-
4 2.
bromoethylphosphonate / 0 8
Bromotrimethylsilane 6.6 0.4 2.64
Pd(PPhs), 3.2 0.05 0.16
. Unit price Quantity used Cost
Inorganic Reagents
i i ¥/g) @ ®
K,CO;4 0.096 0.5 0.048
Silica gel 0.02 150 3
Unit price Quantity used Cost
Solvent
(¥/ml) 2 ¥
Dioxane 0.058 25 1.45
Dichloromethane 0.018 230 4.14
Petroleum ether 0.011 200 2.2
Ethyl acetate 0.014 500 7
Dimethyl sulfoxide 0.072 25 1.8
Unit price Quantity yield Cost
Product
(¥/g) ® ®
BrDECz 153.65 0.2 30.738
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