Supplementary information

An oxide-promoted, self-supported Ni₄Mo catalyst for high current density anion exchange membrane water electrolysis

Ariana Serban^a, Meng-Ting Liu^b, Nanjun Chen^a, Hao Ming Chen^{b,*} and Xile Hu^{a*}

^a Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and

Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL)

Lausanne CH-1015, Switzerland

^b Department of Chemistry, National Taiwan University, Taipei, Taiwan

*Corresponding author: Email: <u>haomingchen@ntu.edu.tw;</u> <u>xile.hu@epfl.ch;</u>

Fig.S1. Voltage profile during the electrodeposition of the NiMo catalysts on Ni mesh.

Fig.S2. Voltage profile during the electrodeposition of the NiMo catalysts on C paper support

Fig.S3. Comparison of LSV curves of NiMo-AS1 catalyst with a similarly made catalyst where NH₄Cl in the deposition bath was replaced by (NH₄)₂SO₄.

Fig.S4. SEM image of the NiMo catalyst made with $(NH_4)_2SO_4$ (see Fig. S3) after one LSV measurement

Fig.S5. pH profile during the electrodeposition of NiMo catalysts.

Α

Fig.S6. A. LSVs of NiMo catalysts made using different Ni/Mo precursor ratios; B. LSVs of NiMo catalysts made using different electrodeposition currents; C. LSVs of NiMo catalysts made using different electrodeposition times.

Fig.S7. Activation process at 1 A cm⁻² for the NiMo catalysts on Ni mesh, bare Ni mesh, and Pt mesh.

Fig.S8. Activation process at 1 A $\rm cm^{-2}$ for the NiMo catalysts and Pt/C on C paper .

В

D

Fig.S9. CVs in the non-faradaic region after the activation process (AA) of the NiMo catalysts on Ni mesh, bare Ni, and Pt mesh.

Fig.10. The double-layer capacitances of the activated (AA) NiMo catalysts on Ni mesh, barre Ni and Pt mesh.

В

D

S12

Ε

Fig.S11. CVs in the non-faradaic region after the activation process (AA) of the NiMo catalysts on C, Pt/C on C, and bare C paper. The capacitive current densities for bare carbon paper are negligible compared to those of the other samples.

Fig.S12. The double-layer capacitances of the activated (AA) NiMo catalysts on C, Ni mesh, Pt/C on C, and bare C paper.

Fig.S13 Comparison of the overpotential at 1 A cm⁻² with other reported catalysts.¹⁻¹⁹

The comparison was made based on their activity in a conventional 3-electrode setup.

Fig.S14. A: LSV of bare Ni foam and NiMo-AS1 deposited on Ni foam. B: LSV of bare Ni paper and NiMo-AS1 deposited on Ni paper.

Fig.S15. Long-term electrolysis data at a constant current density of 1 A/cm² and cell temperature of 80°C of (A) NiMo-AS1 on Ni foam and (B)NiMo-AS1 on Ni paper

TOP:

Bottom:

Fig. S16. (Top) SEM images and EDX mapping of the as-prepared catalysts on C paper. (Bottom) Element mapping showing the weight percentages for different samples. A: NiMo-AS1; B: NiMo-citric; C: NiMo-boric; D: Pt/C.

Тор

Bottom.

Fig. S17. (Top) SEM images and EDX mapping of the catalysts on C paper after operating at 3 A cm-2 for 150 h. (Bottom) Element mapping showing the weight percentages for different samples. A: NiMo-AS1; B: NiMo-citric; C: NiMo-boric; D: Pt/C.

Fig.S18. ICP-MS result of the NiMo-AS1 catalyst in the as-prepared state (AP) and after activation (AA) at 1 A cm⁻² for 2 h; relative composition is referring to mol ratio.

We describe the averaged ICP-MS results, with the Standard error and deviation in Tabel S4.

Fig.S19. SEM images of the initial NiMo-AS1 on (A) Ni foam and (B) Ni paper.

Fig.S20. SEM images of: (A) NiMo-AS electrodeposited at -0.5 A/cm²; (B) NiMo-AS electrodeposited at -1 A/cm²; (C) NiMo-AS electrodeposited at -1.5 A/cm²; (D) NiMo-AS electrodeposited at -2 A/cm² for 1000 s.

Fig.S21. SEM images of NiMo-As electrodeposited at -1.5 A/cm² for: (A) 500 s; (B) 1000 s; (C) 1500 s; (D) 2000 s.

Fig. S22. (A) TEM image of the as-prepared NiMo-AS1; (B) SAED pattern of the asprepared NiMo-AS1; (C) TEM image of theNiMo-AS1 after HER at 1 A/cm²; (D) SAED pattern of the NiMo-AS1 after HER at 1 A/cm².

The protocol for catalyst detachment from the Ni mesh substrate consisted of immersing the as prepared NiMo -AS1 on Ni mesh and after the HER at -1 A cm⁻² for 30 min in 10 mL deionized (DI) water in an ultrasonication bath for 30 min. Afterwards, the DI was evaporated by keeping the solution in a drying oven at 120°C. The powder was collected and dispersed in 2 mL isopropanol. The solution was ultrasonicated and dispersed on the TEM grit by using a micropipette.

В

Fig.S23. (A) TEM and SAED profiles of different particles for the as-prepared NiMo -AS1 catalyst (B) TEM and SAED profiles of different particles for the NiMo -AS1 catalyst after HER at -1 A cm⁻²

Transmission Electron Microscopy (TEM) was employed to examine different particles of the NiMo-AS1 catalyst, both in its as-prepared state and after undergoing the Hydrogen Evolution Reaction (HER) at -1 A cm⁻². The Selected Area Electron Diffraction (SAED) profiles were averaged in both cases to ensure a more precise interpretation of the results.

Fig.S24 (A) SAED d values and simulated patterns for the as-prepared NiMo -AS1 (B) SAED d values and simulated patterns for NiMo -AS1 after high current density HER.

Fig.S25. EDX mapping of NiMo-AS1: (A) in the as prepared state; (B) after after HER at 1A/cm².

Fig.S26. SEM images of NiMo-AS1 after 100 h of electrolysis at 1A/cm² at different temperatures. A: 24°C; B: 40°C ; C: 80°C.

Fig.S27. The XPS spectra of as-prepared NiMo -AS1 (A-C) (A) Ni $2p_{3/2}$ (B) Mo $3d_{3/2-5/2}$ (C) O 1s. And XPS spectra of NiMo -AS1 after HER at -1 A cm⁻² (D-E) (D) Ni $2p_{3/2}$ (E) Mo $3d_{3/2-5/2}$ (F) O 1s.

The intensity of the molybdenum species has nearly doubled post ER at a high current density. This result suggests that during the reaction, Mo species migrated from a deeper layer within the catalyst to the surface layer.

Fig.S28. The XPS spectra of as-prepared NiMo-citric (A-C) (A) Ni $2p_{3/2}$ (B) Mo $3d_{3/2-5/2}$ (C) O 1s. And XPS spectra of NiMo-citric after HER at -1 A cm⁻² (D-E) (D) Ni $2p_{3/2}$ (E) Mo $3d_{3/2-5/2}$ (F) O 1s.

In the case of the NiMo-citric sample, a reduction in Mo spectra intensity is observed after HER.

Fig.S29. The XPS spectra of the as-prepared NiMo-boric (A-C) (A) Ni $2p_{3/2}$ (B) Mo $3d_{3/2-5/2}$ (C) O 1s. And the XPS spectra of NiMo-Boric after HER at -1A cm⁻² (D-E) (D) Ni $2p_{3/2}$ (E) Mo $3d_{3/2-5/2}$ (F) O 1s

Figure S30. *Operando* XAS data : (A-C)-Ni K-edge XANES spectra of A- NiMo-AS1; B-NiMo-citric; C- NiMo-boric; (D-F)- Ni K-edge k³-weighted EXAFS spectra for D-NiMo-AS1; E-NiMo-citric; F-NiMo-boric that underwent activation at various applied potentials in 1.0 M KOH.

Figure S31. *Operando* XAS data : (A-C)-First derivatives of the Ni K-edge XANES spectra of A- NiMo-AS1; B- NiMo-citric; C- NiMo-boric during activation in 1.0 M KOH.

Figure S32. *Operando* XAS data : (A-C)-First derivatives of the Ni K-edge XANES spectra of A- NiMo-AS1; B- NiMo-citric; C- NiMo-boric that underwent activation at various applied potentials in 1.0 M KOH.

Figure S33. *Operando* XAS data: (A-C)-The chemical state of the Ni sites of A- NiMo-AS1; B- NiMo-citric; C- NiMo-boric during activation in 1.0 M KOH.

Figure S34. *Operando* XAS data: (A-C) the chemical state of the Ni sites of A- NiMo-AS1; B- NiMo-citric; C- NiMo-boric that underwent activation at various applied potentials in 1.0 M KOH.

Figure S35. *Operando* XAS data. (A-C) Mo K-edge XANES spectra of A- NiMo-AS1; B-NiMo-citric; C- NiMo-boric; (D-F) Mo K-edge k3-weighted EXAFS spectra for D-NiMo-AS1, E-NiMo-citric, and F-NiMo-boric that underwent activation at various applied potentials in 1.0 M KOH.

Figure S36. *Operando* XAS data. (A-C)-First derivatives of the Mo K-edge XANES spectra of A- NiMo-AS1; B- NiMo-citric; C- NiMo-boric during activation in 1.0 M KOH.

Figure S37. *Operando* XAS data. (A-C)-First derivatives of the Mo K-edge XANES spectra of A- NiMo-AS1; B- NiMo-citric; C- NiMo-boric that underwent activation at various applied potentials in 1.0 M KOH.

Figure S38. *Operando* XAS data. (A-C)-The chemical state of the Mo sites of A- NiMo-AS1; B- NiMo-citric; C- NiMo-boric during activation in 1.0 M KOH.

Figure S39. *Operando* XAS data. (A-C)-the chemical state of the Mo sites of A- NiMo-AS1; B- NiMo-citric; C- NiMo-boric that underwent activation at various applied potentials in 1.0 M KOH.

Figure S40. **EXAFS fitting curves in k-space.** Fitting results of *operando* k-space Ni K-edge EXAFS spectra of NiMo-AS1 during activation in 1.0 M KOH. Fitting structural parameters are gathered in Table S5.

Figure S41. **EXAFS fitting curves in R-space.** Fitting results of *operando* R-space Ni K-edge EXAFS spectra of NiMo-AS1 during activation in 1.0 M KOH. Fitting structural parameters are gathered in Table S5.

Figure S42. **EXAFS fitting curves in k-space.** Fitting results of *operando* k-space Mo K-edge EXAFS spectra of NiMo-AS1 during activation in 1.0 M KOH. Fitting structural parameters are gathered in Table S6.

Figure S43. **EXAFS fitting curves in R-space.** Fitting results of *operando* R-space Mo K-edge EXAFS spectra of NiMo-AS1 during activation in 1.0 M KOH. Fitting structural parameters are gathered in Table S6.

Figure S44. **EXAFS fitting curves in k-space.** Fitting results of *operando* k-space Ni K-edge EXAFS spectra of NiMo-AS1 that underwent activation at various applied potentials in 1.0 M KOH. Fitting structural parameters are gathered in Table S7.

Figure S45. **EXAFS fitting curves in R-space.** Fitting results of *operando* R-space Ni K-edge EXAFS spectra of NiMo-AS1 that underwent activation at various applied potentials in 1.0 M KOH. Fitting structural parameters are gathered in Table S7.

Figure S46. **EXAFS fitting curves in k-space.** Fitting results of *operando* k-space Mo K-edge EXAFS spectra of NiMo-AS1 that underwent activation at various applied potentials in 1.0 M KOH. Fitting structural parameters are gathered in Table S8.

Figure S47. **EXAFS fitting curves in R-space.** Fitting results of *operando* R-space Mo K-edge EXAFS spectra of NiMo-AS1 that underwent activation at various applied potentials in 1.0 M KOH. Fitting structural parameters are gathered in Table S8.

Figure S48. **EXAFS fitting curves in k-space.** Fitting results of *operando* k-space Ni K-edge EXAFS spectra of NiMo-citric during activation in 1.0 M KOH. Fitting structural parameters are gathered in Table S9.

Figure S49. **EXAFS fitting curves in R-space.** Fitting results of *operando* k-space Ni K-edge EXAFS spectra of NiMo-citric during activation in 1.0 M KOH. Fitting structural parameters are gathered in Table S9.

Figure S50. **EXAFS fitting curves in k-space.** Fitting results of *operando* k-space Mo K-edge EXAFS spectra of NiMo-citric during activation in 1.0 M KOH. Fitting structural parameters are gathered in Table S10

Figure S51. **EXAFS fitting curves in R-space.** Fitting results of *operando* k-space Mo K-edge EXAFS spectra of NiMo-citric during activation in 1.0 M KOH. Fitting structural parameters are gathered in Table S10.

Figure S52. **EXAFS fitting curves in k-space.** Fitting results of *operando* k-space Ni K-edge EXAFS spectra of NiMo-citric that underwent activation at various applied potentials in 1.0 M KOH. Fitting structural parameters are gathered in Table S11.

Figure S53. **EXAFS fitting curves in R-space.** Fitting results of *operando* k-space Ni K-edge EXAFS spectra of NiMo-citric that underwent activation at various applied potentials in 1.0 M KOH. Fitting structural parameters are gathered in Table S11.

Figure S54. **EXAFS fitting curves in k-space.** Fitting results of *operando* k-space Mo K-edge EXAFS spectra of NiMo-citric that underwent activation at various applied potentials in 1.0 M KOH. Fitting structural parameters are gathered in Table S12.

Figure S55. **EXAFS fitting curves in R-space.** Fitting results of *operando* k-space Mo K-edge EXAFS spectra of NiMo-citric that underwent activation at various applied potentials in 1.0 M KOH. Fitting structural parameters are gathered in Table S12.

Fig.S56. A scheme of the electrodeposition bath.

Material	C _s values (uF cm ⁻²)
Ni	25
Pt	28
Pt/C	30

Tabel S1. Values of specific capacitance (Cs) of bare Nickel, Platinum and Pt /C The values of the Cs were taken from a previously reported work.²⁰

Support	ESCA/ (cm ²) NiMo- AS1 AA	ESCA/ (cm ²) NiMo-citric AA	ESCA/ (cm ²) NiMo-boric AA	ESCA/ (cm²) Pt/C	ESCA/ (cm²) Ni mesh AA	ESCA/ (cm ²) Pt mesh AA
C paper	2.76	3.22	1.6	2.28		
Mesh	3.2	5.04	2.6	x	1.44	1.78

Tabel S2. Values of the electrochemically active surface area of the NiMo-AS1, NiMocitric, NiMo-boric, Pt/C, Ni mesh, and Pt mesh.

The values of the ESCA were calculated using the formula:

ESCA=Cdl/Cs

The Cdl values were calculated using the formula:

2Cdl (Slope)=∆j

For consistency, Δj was measured at just one point in all cyclic voltammetries; at 0.21V vs. RHE

Support	NiMo-AS1 (mg cm ⁻²)	NiMo-citric (mg cm ⁻²)	NiMo-boric (mg cm ⁻²)
Ni mesh	32	26	17
Carbon paper	30	24	15

Tabel S3. Catalysts loadings for NiMo-AS1, NiMo-citric, and NiMo-boric on both C and Ni support.

Ni as prepared (ug/mg)	Average	Mo as prepared (ug/mg)	Average	Ni after activ. (ug/mg)	Average	Mo after activ.(ug/m g)	Average
334.73	355.46	194.26	168.65	361.19	351.13666 67	136.2	134.65
353.2	St deviation	144.59	St deviation	340.25	St deviation	128.19	St deviatio n
378.45	21.94	167.1	24.87	351.97	10.49	139.56	5.84
	St error		St error		St error		St error
	12.67		14.35		6.05		3.37
	Ni /Atomic mass		Mo/Atomic mass		Ni /Atomic mass		Mo/Ato mic mass
	6.05		1.75		5.98		1.41
		Ratio Ni/Mo as prep				Ratio Ni/Mo after activ	
		3.446				4.21	

Table S4. ICP-results and calculation.

sample	path	R	Ν	dE	DW	R-factor
OCV	Ni-Ni Ni-Mo	2.48(1) 2.46(1)	2.9(1) 1.1(1)	-0.0(4) -17.0(11)	0.044(6) 0.028(19)	1.204
30 min	Ni-Ni Ni-Mo	2.46(1) 2.44(2)	2.8(1) 1.0(1)	-1.3(4) -16.0(4)	0.052(5) 0.041(16)	2.085
60 min	Ni-Ni Ni-Mo	2.46(1) 2.46(2)	2.8(2) 1.0(2)	-1.1(6) -18.3(8)	0.074(6) 0.086(18)	2.694
90 min	Ni-Ni Ni-Mo	2.46(1) 2.46(2)	2.7(1) 1.0(2)	-1.4(6) -17.7(7)	0.067(5) 0.073(16)	2.929
120 min	Ni-Ni Ni-Mo	2.47(1) 2.46(2)	2.6(1) 0.9(1)	-1.7(5) -18.2(5)	0.060(6) 0.056(17)	2.205

Table S5. Structural parameters of NiMo-AS1 extracted from operando Ni K-edgeEXAFS refinement during activation in 1.0 M KOH.

sample	path	R	Ν	dE	DW	R-factor
OCV	Mo- Ni Mo-O	2.46(1) 2.03(5)	2.5(4) 0.5(3)	-18.2(19) -19.3(161)	0.126(13) 0.043(94)	0.129
30 min	Mo- Ni Mo-O	2.44(2) 1.98(5)	3.0(9) 1.0(9)	-20.2(39) -22.3(124)	0.117(27) 0.08(86)	0.139
60 min	Mo- Ni Mo-O	2.46(2) 1.98(3)	3.1(8) 1.1(5)	-16.9(33) -20.1(85)	0.118(22) 0.057(61)	0.569
90 min	Mo- Ni Mo-O	2.46(2) 1.97(3)	3.0(7) 1.1(6)	-17.5(34) -21.0(87)	0.115(20) 0.064(60)	0.466
120 min	Mo- Ni Mo-O	2.46(2) 1.96(1)	3.1(6) 1.5(8)	-17.8(31) -21.8(75)	0.111(19) 0.083(50)	0.572

Table S6. Structural parameters of NiMo-AS1 extracted from *operando* Mo K-edgeEXAFS refinement during activation in 1.0 M KOH.

sample	path	R	Ν	dE	DW	R-factor
00)/	Ni-Ni	2.51(1)	3.1(1)	2.7(7)	0.079(12)	4 000
UUV	Ni-Mo	2.47(2)	1.4(1)	-17.7(16)	0.059(20)	1.888
	Ni-Ni	2.49(1)	3.0(1)	-0.1(7)	0.063(15)	0.570
η= υ ν	Ni-Mo	2.46(2)	1.3(1)	-18.0(17)	0.048(29)	2.576
	Ni-Ni	2.49(1)	3.0(1)	0.7(7)	0.060(15)	0.005
η= -0.2 ν	Ni-Mo	2.47(2)	1.3(1)	-17.5(17)	0.042(31)	2.205
	Ni-Ni	2.49(1)	2.9(1)	0.4(7)	0.054(16)	0.100
11– -0.5 V	Ni-Mo	2.46(2)	1.3(1)	-18.1(17)	0.029(42)	2.100

Table S7. Structural parameters of NiMo-AS1 that underwent activation extracted fromoperando Ni K-edge EXAFS refinement at various applied potentials in 1.0 M KOH.

sample	path	R	Ν	dE	DW	R-factor
OCV	Mo- Ni Mo- O	2.47(2) 1.97(3)	3.2(5) 1.6(7)	-15.8(30) -21.0(71)	0.115(13) 0.087(36)	1.321
η= 0 V	Mo- Ni Mo- O	2.46(2) 1.97(3)	3.3(6) 1.7(8)	-16.5(31) -21.3(73)	0.116(14) 0.093(38)	1.152
η= -0.2 V	Mo- Ni Mo- O	2.47(2) 1.97(3)	3.3(6) 1.6(7)	-15.9(31) -20.4(74)	0.117(14) 0.086(36)	1.101
η= -0.5 V	Mo- Ni Mo- O	2.46(2) 1.97(3)	3.4(6) 1.7(7)	-16.2(30) -20.8(72)	0.115(14) 0.090(36)	1.233

Table S8. Structural parameters of NiMo-AS1 that underwent activation extracted fromoperando Mo K-edge EXAFS refinement at various applied potentials in 1.0 M KOH.

sample	path	R	Ν	dE	DW	R-factor
OCV	Ni- Ni Ni- Mo	2.48(1) 2.51(1)	3.2(1) 1.3(2)	2.7(6) -12.1(20)	0.096(8) 0.066(7)	2.621
30 min	Ni- Ni Ni- Mo	2.48(1) 2.51(1)	3.2(1) 1.2(2)	2.3(17) -10.7(23)	0.092(12) 0.059(23)	4.067
60 min	Ni- Ni Ni- Mo	2.48(1) 2.52(1)	3.2(1) 1.2(1)	2.5(15) -12.1(21)	0.098(10) 0.063(19)	3.367
90 min	Ni- Ni Ni- Mo	2.48(1) 2.52(1)	3.3(1) 1.2(1)	1.8(15) -13.1(21)	0.099(10) 0.063(18)	2.866
120 min	Ni- Ni Ni- Mo	2.47(1) 2.52(1)	3.3(1) 1.2(1)	1.2(14) -13.0(21)	0.101(8) 0.076(18)	2.670

Table S9. Structural parameters of NiMo-citric extracted from *operando* Ni K-edgeEXAFS refinement during activation in 1.0 M KOH.

sample	path	R	Ν	dE	DW	R-factor
OCV	Mo- Ni Mo- Mo	2.52(1) 2.63(2)	4.0(2) 1.9(5)	1.7(7) -5.4(30)	0.082(8) 0.113(33)	1.101
30 min	Mo- Ni Mo- Mo	2.51(2) 2.66(7)	3.8(5) 2.0(13)	0.1(13) -7.4(53)	0.084(10) 0.110(59)	0.989
60 min	Mo- Ni Mo- Mo	2.51(1) 2.67(2)	3.9(3) 2.0(5)	0.0(3) -5.3(10)	0.087(9) 0.097(19)	0.682
90 min	Mo- Ni Mo- Mo	2.52(1) 2.64(1)	4.4(4) 2.2(6)	0.9(9) -8.8(26)	0.099(22) 0.082(14)	1.253
120 min	Mo- Ni Mo- Mo	2.52(1) 2.64(3)	4.0(3) 2.1(8)	1.5(7) -6.4(32)	0.083(25) 0.101(65)	1.182

Table S10. Structural parameters of NiMo-citric extracted from operando Mo K-edgeEXAFS refinement during activation in 1.0 M KOH.

sample	path	R	Ν	dE	DW	R-factor
OCV	Ni- Ni Ni- Mo	2.48(1) 2.52(1)	3.3(1) 1.3(1)	2.8(15) -11.4(20)	0.095(10) 0.063(20)	2.389
η= 0 V	Ni- Ni Ni- Mo	2.48(1) 2.51(1)	3.3(1) 1.3(2)	2.5(5) -12.8(19)	0.096(8) 0.062(7)	2.502
η= -0.2 V	Ni- Ni Ni- Mo	2.49(1) 2.52(1)	3.3(1) 1.3(2)	3.6(5) -10.9(19)	0.092(8) 0.060(8)	2.861
η= -0.5 V	Ni- Ni Ni- Mo	2.49(1) 2.52(1)	3.3(3) 1.3(2)	3.4(8) -12.2(5)	0.095(8) 0.062(19)	2.779

Table S11. Structural parameters of NiMo-citric that underwent activation extracted from

 operando Ni K-edge EXAFS refinement at various applied potentials in 1.0 M KOH.

sample	path	R	Ν	dE	DW	R-factor
OCV	Mo- Ni Mo- Mo	2.52(1) 2.64(2)	3.9(3) 2.0(7)	1.2(7) -6.8(32)	0.084(21) 0.098(51)	1.100
η= 0 V	Mo- Ni Mo- Mo	2.52(1) 2.63(1)	4.2(2) 1.9(5)	1.4(7) -6.8(28)	0.087(11) 0.093(21)	1.408
η= -0.2 V	Mo- Ni Mo- Mo	2.52(1) 2.64(2)	4.1(5) 2.0(6)	1.2(8) -7.4(29)	0.094(26) 0.092(33)	0.920
η= -0.5 V	Mo- Ni Mo- Mo	2.52(1) 2.64(1)	4.3(4) 2.2(6)	0.9(8) -8.0(27)	0.097(23) 0.091(23)	1.062

Table S12. Structural parameters of NiMo-citric that underwent activation extracted from

 operando Mo K-edge EXAFS refinement at various applied potentials in 1.0 M KOH

Referenes

¹² Yang, H.; Chen, Z.; Guo, P.; Fei, B.; Wu, R. B-Doping-Induced Amorphization of Ldh for Large-Current-Density Hydrogen Evolution Reaction. Appl. Catal., B 2020, 261, 118240

¹³ Ren, B.; Li, D.; Jin, Q.; Cui, H.; Wang, C. Integrated 3D SelfSupported Ni Decorated MoO2 Nanowires as Highly Efficient Electrocatalysts for Ultra-Highly Stable and Large-Current-Density Hydrogen Evolution. J. Mater. Chem. A 2017, 5, 24453–24461

¹⁴ Hao, W.; Wu, R.; Huang, H.; Ou, X.; Wang, L.; Sun, D.; Ma, X.; Guo, Y. Fabrication of Practical Catalytic Electrodes Using Insulating and Eco-Friendly Substratesfor Overall Water Splitting. Energy Environ. Sci. 2020, 13, 102–110

¹⁵ Huang, C.; Yu, L.; Zhang, W.; Xiao, Q.; Zhou, J.; Zhang, Y.; An, P.; Zhang, J.; Yu, Y. N-Doped Ni-Mo Based Sulfides for High-Efficiency and Stable Hydrogen Evolution Reaction. Appl. Catal., B 2020, 276, 119137

¹⁶ Qian, G.; Yu, G.; Lu, J.; Luo, L.; Wang, T.; Zhang, C.; Ku, R.; Yin, S.; Chen, W.; Mu, S. Ultra-Thin N-Doped-Graphene Encapsulated Ni Nanoparticles Coupled with MoO2 Nanosheets for Highly Efficient Water Splitting at Large Current Density. J. Mater. Chem. A 2020, 8, 14545–1554

¹⁷ Yu, L.; Mishra, I. K.; Xie, Y.; Zhou, H.; Sun, J.; Zhou, J.; Ni, Y.; Luo, D.; Yu, F.; Yu, Y.; Chen, S.; Ren, Z. Ternary Ni2(1-x)Mo2xP Nanowire Arrays toward Efficient and Stable Hydrogen Evolution Electrocatalysis under Large-Current-Density. Nano Energy. 2018, 53, 492–500.

¹⁸ Wang, Y.; Qian, G.; Xu, Q.; Zhang, H.; Shen, F.; Luo, L.; Yin, S. Industrially Promising IrNi-FeNi3 Hybrid Nanosheets for Overall Water Splitting Catalysis at LargeCurrent Density. Appl. Catal., B 2021, 286, 119881.

¹⁹ H. Yang, Z. Chen, P. Guo, B. Fei and R. Wu, B-doping-induced amorphization of LDH for large-currentdensity hydrogen evolution reaction, Appl. Catal., B, 2020, 261, 118240

²⁰ McCrory, Charles CL, et al. "Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction." *J. Am. Chem. Soc.* 2013, 135, 16977-16987.

¹ Cao, Jun, et al. "Hierarchical NiMo alloy microtubes on nickel foam as an efficient electrocatalyst for hydrogen evolution reaction." *Int. J. Hydrogen Energy* 2019, 44-45, 24712-24718.

² Zhao, Meng-Jie, et al. "Green Synthesis of a Ni-Mo-O Composite Catalyst for Superior Hydrogen Production in Acidic and Alkaline Electrolytes." SSRN Electronic Journal, DOI:10.2139/ssrn.3996127.

³ Chen, Yudan, et al. "Macroporous NiMo alloy Self-Supporting Electrode for Efficient Hydrogen Evolution at Ultrahigh Current Densities." *Mater. Adv.,* 2023,4, 2868-2873

⁴ Mao, Fangxin, et al. "Electrodeposited Multimetal Alloyed NiMoCo on Ni Mesh for Efficient Alkaline Hydrogen Evolution Reaction." *Energy & Fuels* 2023, 37, 18137-18144.

⁹ L. Wang, Y. Hao, L. Deng, F. Hu, S. Zhao, L. Li and S. Peng, Rapid complete reconfiguration induced actual active species for industrial hydrogen evolution reaction, *Nat. Commun.*, 2022, **13**, 5785

¹⁰ Mishra, I. K.; Zhou, H.; Sun, J.; Qin, F.; Dahal, K.; Bao, J.; Chen, S.; Ren, Z. Hierarchical CoP/Ni5P4/CoP Microsheet Arrays as a Robust Ph-Universal Electrocatalyst for Efficient Hydrogen Generation. Energy Environ. Sci. 2018, 11, 2246–2252

¹¹Yu, P.; Wang, F.; Shifa, T. A.; Zhan, X.; Lou, X.; Xia, F.; He, J. Earth Abundant Materials Beyond Transition Metal Dichalcogenides: A Focus on Electro-catalyzing Hydrogen Evolution Reaction. Nano Energy. 2019, 58, 244–276