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This ESI is based on the textbook of H. Girault.1 
 

A1. Electrochemical potential of electron in solution in the presence of a redox couple 
In view of its extreme reactivity, the electron can exist in solution as a solvated species only 
for relatively short periods of time, and consequently we will not deal with the case of the 
electrochemical potential of the solvated electron. Nevertheless, it can sometimes be useful 
to use the rather abstract notion of electrochemical potential or even the notion of the Fermi 
level of the electron in solution, knowing that the electron resides on a reduced species. To 
better understand this concept of a Fermi level for a redox pair in solution, we will consider 
the example of the redox pair Fe3+/Fe2+. 

To define the actual chemical potential of the electron in solution, consider the 
oxidation of  to  in solution and consider the electron as a species in its own right 

  
From a thermodynamic point of view, we can treat this virtual equilibrium and write 

 (A1) 

thus defining the electrochemical potential of the electron in solution. 
  
As shown in fig. A1, we can deconvolute this oxidation by using the following steps: 
 •  removal from the aqueous phase. The corresponding work is the opposite of 

the electrochemical potential of the Fe2+ ion, 

 (A2) 

 
1 Translated and adapted from H.H. Girault  Electrochimie Physique et Analytique, 2nd Edition, 2007, EPFL Press 
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 • addition to the aqueous phase. The work corresponds to the electrochemical 
potential of the Fe3+ ion 

 (A3) 

 • Transfer of the electron from vacuum to the solution. The work corresponds to the 
electrochemical potential of the electron in solution 

 (A4) 
 Thus, at equilibrium, we can define the real chemical potential of the electron in 
solution by 

 (A5) 

More generally, for a one electron redox pair, we can write 

 (A6) 

and define the standard real chemical potential of the electron in solution by 

 (A7) 

 The notion of the real chemical potential of the electron in solution therefore depends 
on the nature of the redox couple. The actual chemical potential corresponds to the work 
accompanying the transfer of an electron from infinity to an uncharged solution, as shown in 
figure A1. By analogy with metals, the actual chemical potential of the electron in solution is 
the opposite of the work of extracting an electron from a solution. Thus, we can define an 
oxidation energy  for an oxidation reaction in solution but considering the electron as a 
species at rest in vacuum. 

     +  
For one mole, we can the write 

 (A8) 

or again in the example in figure A1 assuming that the solution is ideally diluted 

 (A9) 
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Fig. A1:  Electrochemical potential of the electron in solution in the presence of a redox pair 

 
A2. Fermi level for the redox pair Fe3+/Fe2+ in solution 
 In solution, the Fe3+ and Fe2+ ions are hydrated and the interaction of these ions with 
the solvent molecules must be considered. Thus, the presence of the solvent has the effect 
of lowering the energy levels of the oxidized and reduced species, compared to their 
respective levels in the gas phase which define the ionization energy. For an uncharged liquid 
phase, the difference in energy related to the solvation of an ion is equal to the hydration 
Gibbs energy . 

 

Fig. A2 Energies of ions in solution and in the gas phase. EI stands for the ionization energy in 
the gas phase. 

 The main difference between an aqueous solution and the gas phase is due to the fact 
that the polarization energy of the polar solvent fluctuates with molecular agitation, as shown 
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in figure A2. Thus, the oxidation energy in solution defined by the equation A8 also fluctuates 
with the polarization of the solvent, unlike the ionization energy EI which is an intrinsic 
property of the redox couple in the gas phase. 
 As a first approximation, we can assume that the solvation energy varies harmonically 
with the polarization of the solvent, as illustrated by a parabola in figure A3. To be more 
rigorous, coordinates associated with normal modes should be considered for all degrees of 
freedom involved in solvent fluctuation. In this case, the energy curves would be paraboloids. 
Nevertheless, we will be satisfied here with a system with a single coordinate that we call the 
polarization of the solvent. 
 

 

Fig. A3 Variation in energy levels with fluctuation in solvent polarization. 

 We can thus write that the variation in energy related to the fluctuation of the 
solvent for the solvated Fe2+ ion is written as  

 (A10) 

and that for the solvated Fe3+ ion 

 (A11) 

or 

 (A12) 

where is the curvature of the parabola, P is the polarisation of the solvent out of 

equilibrium,  the optimal polarization of the solvent around the Fe2+ ion, and where  

is the oxidation energy defined by the equation (A8) when the polarizations are optimal. 

 (A13) 
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 To determine the curvature of the parabolas, let us compare their relative position. 
By introducing the parameter  defined by 

 (A14) 

the equation (A10) for Fe2+ is written 

 (A15) 

So when , then 

 (A16) 

This equation allows us to give a physical meaning to the parameter . Indeed,  
corresponds to the energy of re-organization of the solvent following the very rapid reduction 
of Fe3+ to Fe2+ (fast compared to the solvation time scale), where we end up with an Fe2+ ion 
having the optimal solvation of an Fe3+ ion. corresponds to the relaxation energy of the 
solvent from this out-of-equilibrium state to the optimal polarization. 
 In the same way, for Fe3+, we can set the parameter  

 (A17) 

and the equation (A12) becomes 

 (A18) 

when , then 

 (A19) 

Again,  corresponds to the energy of re-organization of the solvent following the very 
rapid oxidation of Fe2+ into Fe3+, where we end up with an Fe3+ ion having the optimal 
solvation of an Fe2+ ion. 
 Rather than plotting the fluctuation of an energy level as a function of polarization as 
shown in figure A3, it can also be plotted as a function of the difference  in the  energies 
of the oxidized and reduced states, which represents the oxidation energy in solution for a 
given polarization (with electron extraction to infinity), i.e., the vertical passage from one 
parabola to another. 

 (A20) 

 By difference of the equations (A18) and(A15), we obtain 

 (A21) 
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 For simplicity, let us make the additional assumption that the re-organization energies 
are equal, i.e. that the two parabolas in figure A3 have the same curvature. In this case, the 
equation (A21) becomes 

 (A22) 

 By substitution, the energy fluctuation for Fe2+ given by the equation (A15) becomes 

 (A23) 

and the one for Fe3+ given by the equation (A18) is written 

 (A24) 

 Figure A4 illustrates that fluctuations in the energy of ions in solution also vary 
parabolically with the fluctuation of oxidation energy.  When 
,   The reduced species is in its optimal polarization state and when  the 
oxidized species is in its optimal polarization state. 
 
 

 

Fig. A4 Variations in the energy levels of oxidized and reduced species with solvent fluctuation 
given by equations (A23) and (A24). 

 We can hypothesize that the fluctuations in energy levels  and  follow a 
Boltzmann statistic that can be written as a function of the energy difference associated with 
the fluctuation of the solvent around the ion. 
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 The normalized distribution function of the energy level , which represents the 
probability density of the energy level of the reduced species, is then written 

 (A25) 
and the one for Fe3+ 

 

 (A26) 
 
 These normalized distribution functions can be plotted as representing the energy 
probability densities for oxidized and reduced species as a function of the oxidation energy in 
solution DEO, as shown in figure A5. The curves thus obtained are Gaussians. It is important 
to understand that each Gaussian distribution does not represent a band of several energy 
levels, but rather the fluctuation of a single level associated with the fluctuation of the 
polarization of the solvent. 
 

 



 8 

 
 

Fig. A5 Distribution functions of the energy states of the reduced species (level 
occupied by the electron) and the oxidized species (vacant level) 

 When the oxidation energy DEO is equal to , i.e., the oxidation energy when the 
oxidized state and the reduced state are in their optimal solvation state (see figure A5), the 
distributions functions   and   are equal. As illustrated in figure A4, 
the deviations of the solvation energies from the minima are then also equal. 

 (A27) 
 The densities of energy states of redox species are obtained by considering their 
concentrations and the probability of the existence of this state 

 (A28) 
and 

 (A29) 

 
 The densities of energy states of redox species are obtained by considering their 
concentrations and the probability of the existence of this state 

 (A30) 
Taking the ratio of the equations (A29) and (A30), we obtain 
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(A31) 

by defining 

 (A32) 

 
 Thus, the probability  that the redox couple is oxidized obtained from the 
equation (A31) is in fact a Fermi-Dirac distribution with two energy levels 

 (A33) 

where  is the Fermi energy for this distribution. This energy represents the oxidation 

energy for which the densities of energy states  and  are equal. We 
thus deduce that for this energy we have 

 (A34) 

 
 In general, for example in the case of a metal, it is customary to visualize the filled 
energy states under the empty states. To do this, we can trace figure A5 and plot the density 
of the energy states no longer as a function of  but as a function of the opposite  
defined by 

 (A35) 

The probability densities are then expressed 

 (A36) 

and  

 (A37) 

as shown in figure A6. 
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Fig. A6 Distribution functions of the energy states of the reduced species (level occupied by 
the electron) and the oxidized species (vacant level) 

 
 In the same way, the densities of energy states of redox species are obtained by 
considering their concentrations and the probability of the existence of this state 

 (A38) 
and 

 (A39) 

 
If  represents the density of all possible states (occupied or vacant). 

 (A40) 

and if G(DER) is the probability that the ORP will be reduced, then 1–G(DER) is the probability 
that the ORP will be oxidized. We deduce that the density of energy states for the reduced 
state is equal to the product of the density of the energy states  by the probability 
that the state is reduced 

 (A41) 
and therefore that 

 (A42) 
Still taking the ratio of the equations (A41) and (A42), we obtain 
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(A43) 

with 

 (A44) 

 
 Thus, the probability for the redox torque to be reduced obtained from the 
equation (A43) is always of course a Fermi-Dirac distribution at two energy levels 

 (A45) 

where  represents the Fermi energy for of the distribution of the reduced state. This 

energy represents the reduction energy for which the densities of energy states  

and  are equal. We thus deduce that for this energy we have 

 (A46) 

where  represents the Fermi energy for of the distribution of the reduced state. This 

energy represents the reduction energy for which the densities of energy states  

and  are equal. We thus deduce that for this energy we have 

 (A47) 

 When the concentrations of Fe2+ and Fe3+ are equal (standard case), the equation 
(A47) allows us to define the standard electrochemical potential of the electron in solution 

 (A48) 

Thus, in the case of uncharged solutions ( ), the equations (A9) and (A35) allow us to 
write 

 (A49) 

thus defining the standard real chemical potential of the electron in solution. 
 

 
 
 


