Supplementary Information

Pre-constructing a mortice-tenon joint based-layer to achieve an

enhanced SEI on Li metal anode

Kun Wang, ^a Cutao Wang, ^a Sheng Liu, ^a Congcong Du, ^b Qingyi Zheng, ^a Jiaqing Cui, ^a Xinxin Yang, ^b Yuxin Tang, ^a Ruming Yuan, ^a Mingsen Zheng, ^a Jingmin Fan*^a and Quanfeng Dong*^a

Fabrication of the based-layer (DFSA-Li) anode

The fabrication of based-layer anodes was carried out in an argon-filled glove box ($O_2 < 0.1$ ppm, $H_2O < 0.1$ ppm). 4 vol% of 2-(Fluorosulphonyl)difluoroacetic acid (DFSA, 98%, Energy-Chemical) was added into dimethyl ether (DME, 99.9%, DoDoChem) to form uniform solutions. Subsequently, 80 µL of the above solution was dropped on the surface of a lithium foil (15.6 mm in diameter) for a certain time at room temperature and then washed with DME for over 3 times to remove the remaining DFSA. The prepared based-layer anode was cut into 12 mm discs for further use. The fabrication method for the based-layer on Cu collectors was the same, except that the former used different deposition amounts of Li.

Preparation of the electrolyte

Two basic electrolytes were used in this study (FEC-based carbonate electrolyte and commercial carbonate electrolyte). The applied FEC-based carbonate electrolyte was dissolved 1 M lithium hexafluorophosphate (LiPF₆, 99.9%, DoDoChem) into fluoroethylene carbonate (FEC, 99.9%, DoDoChem) and ethyl methyl carbonate (EMC, 99.9%, DoDoChem) with v/v=3:7, if not specifically stated. The commercial carbonate electrolyte consisted of 1 M LiPF₆ in ethylene carbonate EC/EMC with v/v=3:7 (LB-224, 99.9%, DoDoChem). For the TSFSA electrolyte, 2 vol% trimethylsilyl 2-(fluorosulphonyl)difluoroacetate (TSFSA, 95%, Leyan) was added into the two basic electrolytes to obtain the TSFSA electrolyte.

Material characterization

The SEM images of Li metal wereobserved by field emission scanning electron microscopy (SEM, HITACHI S-4800). The AFM images were tested by atomic force microscopy (AFM, SPM 5500; Keysight Technologies, Santa Rosa, CA, USA). The contact angles were determined using SL250 contact angle goniometer (U.S. KINO Company). The morphology/HRTEM/SAED/Mapping of SEI was characterized by transmission electron microscope (JEM 200F) with frozen sample rod (Fischione 2550). X-ray diffraction (XRD) was conducted using a Rigaku Ultima IV X-ray diffractometer based on Cu K α radiation ($\lambda = 1.5418$ Å). Fourier transform infrared spectroscopy (FTIR) experiments were conducted by using a Nicolet iS50 FTIR spectrophotometer. X-ray photoelectron spectroscopy (XPS) was obtained by using PHI QUAN-TUM 2000. Time-of-flight secondary ion mass spectrometry was conducted using a PHI nanoTOF II Time-of-Flight SIMS (30 keV, 2 nA, Ion species: Bi³⁺⁺). The contact angles were tested the SL250 contact angle measuring instrument (KINO Company, USA). In-situ optical devices for in-situ optical characterization was designed as shown in Supplementary Fig. S23. The Li foils were used with a thickness of 300 µm.

Computational Details

The DFT calculations were performed at the B3LYP/6-311+G (d, p) level using Gaussian 09 and

GaussView 5.0 software. EC, EMC, FEC, LiPF₆, DFSA-Li and TFSFA molecules were optimized using the B3LYP hybrid functional. Ab initio molecular dynamics (AIMD) simulations were carried out by using Perdew-Burke-Ernzerhof (PBE) gradient-corrected exchange-corrected functional with the projector augmented plane wave (PAW) method as implemented in the Vienna ab-initio simulation package (VASP). The plane wave kinetic energy cutoff was set to 400 eV. NVT ensemble was used at 300 K with a time step of 1 fs.

Electrochemical characterization

For the four research systems, BE was used basic electrolyte without any improvement, basedlayer was used DFSA-Li as Li anode and basic electrolyte and ESEI was used based-layer as Li anode and 2 vol% TSFSA as electrolyte. Li||Li symmetric cells (CR-2025 coin cells), Li-Cu half cells (CR-2016 coin cells), Li||LFP full cells (CR-2016 coin cells) and Li||NCM811 full cells (CR-2016 coin cells) were both assembled using a Celgard 2025 separator (19 mm in diameter). The electrolyte was controlled 35 µL for each cell. For the Li||LFP coin cells, the mass loading of the LFP cathode was 20.5 mg cm⁻², and the area capacity of Li anode was deposited 3 mAh cm⁻² and 10 mAh cm⁻² with basic FEC-based electrolyte or TSFSA electrolyte (the above capacities excluded the loss of the chemical reaction). The voltage windows for the Li||LFP full cells were set to 2.5-4.2 V. For the high-voltage Li||NCM811 full cells, the mass loading of the NCM811 cathode was 26.0 mg cm⁻², and the area capacity of Li anode was deposited 10 mAh cm⁻² with TSFSA electrolyte (the above capacities excluded the loss of the chemical reaction). The voltage windows for the Li||NCM811 full cells were set to 2.8-4.6 V.

Cells galvanostatically charge and discharge tests were uesd the NEWARE BTS-5 V 5/20 mA (Shenzhen NEWARE). Electrochemical impedance spectra (EIS) were performed by Autolab PGSTAT204 with a test range of 1 MHz to 0.1 Hz. CV and Tafel curves were obtained by an electrochemical workstation (CHI 660E) using coin cells.

To evaluate the average CE of ESEI and based-layer, Cu foil pre-deposited with 1 mAh cm⁻² Li were treated with DFSA and assembled Li-Cu half cells. First, completely stripping the Li metal on Cu foils. Then, redeposited 5 mAh cm⁻² Li on Cu foil at a current density of 1 mA cm⁻² and deposited/stripped 10 times at a capacity of 1 mAh cm⁻². After n cycles, the remaining Li was completely stripped to the cut-off voltage. The average CE over n cycles can be calculated by measuring the capacity of Li remaining after cycling with the equation:

Average
$$CE = \frac{nQ_C + Q_S}{nQ_C + Q_{Li}}$$
 (1)

where Q_C was the deposition and stripping capacity per cycle. Q_s was the final stripped capacity of Li remaining after n cycles and Q_{Li} was the initial deposited capacity of Li. Herein, the value of Q_{Li} was 5 mAh cm⁻² and Q_C was 1 mAh cm⁻².

The method to obtain the activation energy (Ea) of Li deposition was as follows. EIS tests with Li | Li symmetric cells at different temperatures were carried out. Ea can be obtained by the following equation:

$$\frac{1}{R_{SEI}} = A_0 e^{-E_a/RT}$$
⁽²⁾

where R_{SEI} , A_0 and R represent the resistance of SEI, pre-exponential constant, the standard gas constant and the activation energy, respectively. Therefore, Ea can be obtained from the slope plot of log R_{SEI} vs. T^{-1} .

To obtain the lithium-ion diffusion coefficient of BE, based-layer and ESEI, CV tests were conducted at different scan speeds (0.1 mV s⁻¹-0.5 mV s⁻¹) using the Li | LFP full cells. The lithium-ion diffusion coefficient was obtained by fitting the Randles-Sevcik equation:

$$I_P = 0.4463nFAC_x v^{1/2} \sqrt{\frac{nFD_x}{RT}}$$
(3)

where I_P , n, A, D_x , v and C_x represent peak current, number of electrons in electrode reaction, electrode area, ion diffusion coefficient, scan rate and lithium-ion concentration.

Supplementary Figures

Fig. S1. HOMO energy level diagrams of the investigated salts (LiPF₆), solvents (EC, EMC and FEC), DFSA-Li and TSFSA.

Fig. S2. The SEM images of DFSA-Li surface with different treatment concentration: (a) 1%, (b) 2%, (c) 4% and (d) 6%.

Fig. S3. The SEM images of Bare-Li surface.

Fig. S4. XRD patterns of based-layer and bare-Li.

Fig. S5. (a) The SEM images of the surface of based-layer. (b-e) The corresponding energy dispersive spectroscopy (EDS) mapping (carbon, oxygen, fluorine and sulfur) in the same area.

Fig. S6. The cross-sectional SEM images of (a) Bare-Li and (b) based-layer.

Fig. S7. Capacity-voltage curves of Li||Cu half cells with DFSA-treated Li on Cu foil and bare Cu foil. To determine the active Li capacities consumed by the displacement reaction, a Cu electrode predeposited with 1 mAh cm⁻² of Li metal was selected as the target for the reaction. After reassembling the Li||Cu half-cell, all stripped Li capacity was 0.604 mAh cm⁻², indicating that approximately 0.342 mAh cm⁻² of active Li was consumed by DFSA (4%). This consumption has a negligible impact on energy densities.

Fig. S8. (a) CV profiles scanned at -0.2-3 V of 1 mV s⁻¹ in TSFSA electrolyte. (b) The first cycle CV profiles of BE and TSFSA with FEC-based carbonate electrolyte (1 M LiPF₆ in FEC/EMC, v/v=3:7). (c) CV profiles scanned at - 0.2-3 V of 1 mV s⁻¹ in TSFSA electrolyte.

Fig. S9. The first cycle CV profiles of BE and TSFSA in commercial carbonate electrolyte (1 M LiPF₆ in EC/EMC, v/v=3:7).

Fig. S10. Coulombic efficiency (CE) of Li||Cu half cells at a current density of 1 mA cm⁻² and a capacity of 1 mAh cm⁻².

Fig. S11. Nucleation overpotential comparison of BE and TSFSA using Li||Cu half cells at a current density of 1 mA cm⁻².

Fig. S12. (a) Cycle stability of Li||Li symmetric cells with BE and based-layer at a current density of 3 mA cm⁻² and a capacity of 3 mAh cm⁻². (b) Cycle stability of Li||Li symmetric cells at a current density of 3 mA cm⁻² and a capacity of 3 mAh cm⁻² with different treatment concentration.

Fig. S13. (a) Nucleation overpotential comparison of BE and based-layer using Li||Li symmetric cells at a current density of 0.5 mA cm⁻². (b) Nucleation overpotential comparison of based-layer with different treatment concentration at a current density of 3 mA cm⁻².

Fig. S14. Coulombic efficiency (CE) of Li||Cu half cells with different TSFSA concentration at a current density of 1 mA cm⁻² and a capacity of 1 mAh cm⁻².

Fig. S15. Nucleation overpotential comparison of BE and ESEI using Li||Li symmetric cells at a current density of 0.5 mA cm⁻².

Fig. S16. Voltage-time curves of Li||Cu half cells with (a) BE, (b) based-layer and (c) ESEI.

Fig. S17. The CE in BE and ESEI using Li ||Cu cells of 1 mAh cm⁻² with (a) 2 mA cm⁻², (b) 3 mA cm⁻².

Fig. S18. Cycle stability of Li ||Li symmetric cells with BE and ESEI at a current density of 1 mA cm⁻² and a capacity of 1 mAh cm⁻² in commercial carbonate electrolyte (1 M LiPF₆ in EC/EMC, v/v=3:7).

Fig. S19. Li metal plating/stripping average CE evaluated by Li||Cu half cells in commercial carbonate electrolyte (1 M LiPF₆ in EC/EMC, v/v=3:7).

Fig. S20. Contact angle measurements of BE, based-layer and pre-ESEI.

BE

Based layer

ESEI

Fig. S21. SEM images of (a) BE, (b) based-layer and (c) ESEI at 10th plating.

Fig. S22. AFM images of Li surface morphology at 10th plating of (a) BE (b) based-layer and (c) ESEI with an area of 10μ m×10 μ m. The Corresponding 3D AFM model images of Li surface morphology at 10th plating of (d) BE (e) based-layer and (f) ESEI with an area of 10μ m×10 μ m. Color bars :-4-2.5 μ m.

Fig. S23. The Corresponding Young's modulus mapping of (a) BE (b) based-layer and (c) ESEI with an area of $10\mu m \times 10\mu m$. Color bars :-10-5 Gpa.

BE-50 Cycle

Based layer-50 Cycle

ESEI-50 Cycle

Fig. S24. SEM images of (a) BE, (b) based-layer and (c) ESEI at 50th plating.

Fig. S25. In-situ optical devices for in-situ optical characterization.

Fig. S26. The enlarged detail views of Fig. 4g.

Fig. S27. The enlarged detail views of Fig. 4i.

Fig. S28. The HAADF-STEM image and elemental mapping of BE in Li||Li symmetric cell after 5 cycles.

Fig. S29. XPS S 2p spectra for ESEI cycled after 5 cycles.

Fig. S30. TOF-SIMS mappings of the (a) LiF_2^- , (b) $\text{C}_2\text{H}_3\text{O}^-$ and (c) C_2F^- species on the surface of the cycled BE batteries.

Fig. S31. TOF-SIMS mappings of the (a) LiF₂⁻, (b) C₂H₃O⁻, (c) C₂F⁻ and (d) S⁻ species on the surface of the cycled ESEI batteries.

Fig. S32. The TOF-SIMS depth sputter curves of Li surface for (a) BE and (b) ESEI.

Fig. S33. The EIS fitting results of Li||Li symmetric cells.

Fig. S34. (a) The Arrhenius behavior and corresponding unactivation energy for Li^+ diffusion through activated SEI film derived from R_{SEI} in Nyquist plots at various temperatures of fresh Li||Li symmetric cells with BE and ESEI. EIS plots of the Li||Li symmetric cells with (b) ESEI and (c) BE at different temperatures before cycling.

Fig. S35. EIS plots of the Li||Li symmetric cells with BE at different temperatures after cycling.

Fig. S36. The equivalent circuit used to fit the Li||Li symmetric cells.

Fig. S37. The CV curves of Li | LFP full cells with (a) BE, (b) based-layer and (c) ESEI at different scan rates (0.1-0.5 mV s⁻¹) after two cycles activation. (d) Reduction peaks and (e) oxidation peaks currents against square root of scan rates for BE, Based-layer and ESEI.

Fig. S38. Charge-discharge profiles of Li||LFP full cells with BE under a N/P of 2.98.

Fig. S39. Nyquist plots of Li||LFP full cells at various cycles for (a) BE, (b) based-layer and (c) ESEI.

Fig. S40. The CV curves of Li||LFP full cells at two cycles activation and 50 cycles for (a) BE, (b) based-layer and (c) ESEI.

Fig. S41. (a) Long-cycling performance of the Li ||LFP full cells in commercial carbonate electrolyte (1 M LiPF₆ in EC/EMC, v/v=3:7). The mass loading of LFP is ~20.5 mg cm⁻² and the thickness of Li chip is 300 μ m. Charge-discharge voltage profiles of the Li ||LFP full cells with (b) ESEI and (c) BE. The mass loading of LFP is ~20.5 mg cm⁻² and the thickness of Li chip is 300 μ m.

Fig. S42. The LSV curves of BE and TSFSA electrolyte with 1mV s⁻¹.

Fig. S43. (a) Long-term cycling performance of high voltage Li | |NCM811 full cells with BE and ESEI in a 1 M LiPF₆ in FEC/EMC (v/v = 3:7) electrolyte. Conditions: 10 mAh cm⁻² deposited Li, high area loading NCM811 (6.4 mAh cm⁻² at 0.1C, 26 mg cm⁻²), 2.8 V-4.6 V. The cells were activated at 0.1 C for 2 cycles, then charged at 0.5 C and discharged at 1 C in subsequent cycles (1C=200 mA g⁻¹). The corresponding charge-discharge profiles of the high voltage Li | LFP NCM811 cells with (b) BE and (c) ESEI.

Table S1. Cycling stability of ESEI compared with previously reported work.

Electrolyte	Method	Current	Areal	Cycling	Ref.
		density	capacity	time (h)	
		(mA cm ⁻²)	(mAh cm ⁻²)		
1 M LiPF ₆	chemical	1	1	800	This
EC/EMC+TSFSA	reaction +				work
	electrochemical				
	activation				
1 M LiPF ₆	chemical	1	1	2100	This
EMC/FEC+TSFSA	reaction +	3	3	450	work
	electrochemical				
	activation				
1 M LiPF ₆ EC/DEC	Artificial SEI	0.5	1	2325	1
		1	1	850	
1 M LiPF ₆	Artificial SEI	1	0.5	1200	2
EC/EMC/FEC					
1 M LiPF ₆ EC/DEC	Artificial SEI	1	1	750	3
1 M LiPF ₆	Artificial SEI	1	1	450	4
EC/DEC/FEC/VC					
1 M LiPF ₆	Artificial SEI	0.5	1	950	5
EC/DMC/FEC					
1 M LiPF ₆ EC/DMC	Artificial SEI	0.5	1	320	5
1 M LiPF ₆	Artificial SEI	1	1	800	6
FC/DFC/FFC/VC		2	1	250	
		4	1	150	
1.3 M LiPEc	Artificial SEI	0.5	2	800	7
FC/DFC/FFC		0.0	_		
1 M LiPFc	Artificial SEI	0.5	1	400	8
FC/DFC/DMC			_		
1 M LiPE FC/DFC/FFC	Artificial SEI	1	1	400	9
		3	3	80	
1 M LiPE∉ FC/DFC	Artificial SEI	1	1	900	10
		2	1	400	
1 M LiPE FEC/DMC	Artificial SEI	0.5	1	1800	11
2 101 201 101 201 201 201		1	1	800	
1 M LiPE _C EC/DEC/EEC	Additive	1	1	1200	12
	Additive	0.5	0.5	600	13
FC/DFC+FITC	Additive	0.5	0.5	000	
1 M LiPEc	Additive	1	1	550	14
FC/FMC+TMSILN	Additive	-	-	550	
	Additive	1	0.5	500	15
FC/DMC+HFAC	Additive	-	0.5	500	
	Additive	2	2	250	16
FC/DEC+DETEP	Additive	2	2	250	
1 M LiDE.	Additive	1	1	250	17
	Additive	2	1	140	
RhNO ₂ +18-Crown-6		5		140	
	Additivo	1	2	120	18
	Auditive	L L	5	120	-
	A dditiyo	1	1	E00	19
	Auditive	L L	1	500	
		1	1	1	1

Table S2. AFM characterization of average root-mean-square roughness at 10th plating of BE, Based-layer and ESEI with an area of 10μ m×10 μ m.

Average roughness	BE (nm)	Based-layer (nm)	ESEI (nm)
R _q	718.0	217.0	30.1
R _a	561.0	176.0	22.6

Table S3. The specific values of R_{SEI} of Li||Li symmetric cells at various temperatures for BE with unactivated.

т (К)	R _{SEI} (Ω)	In (1/ R _{SEI})	1000/T (K ⁻¹)
303	56.89	-4.04107	3.2987
313	45.35	-3.81441	3.19336
323	22.06	-3.09377	3.09454
333	10.63	-2.36368	3.00165

Table S4. The specific values of R_{SEI} of Li||Li symmetric cells at various temperatures for ESEI with unactivated.

т (к)	R _{SEI} (Ω)	In (1/ R _{SEI})	1000/T (K ⁻¹)
303	28.68	-3.35634	3.2987
313	12.90	-2.55754	3.19336
323	6.06	-1.80171	3.09454
333	3.40	-1.22378	3.00165

Table S5. The specific values of R_{SEI} of Li||Li symmetric cells at various temperatures for BE with activated.

т (К)	R _{SEI} (Ω)	In (1/ R _{SEI})	1000/T (K ⁻¹)
303	58.44	-4.06800	3.2987
313	27.33	-3.30798	3.19336
323	13.91	-2.63261	3.09454
333	6.40	-1.85630	3.00165

Table S6. The specific values of R_{SEI} of Li||Li symmetric cells at various temperatures for ESEI with activated.

т (К)	R _{SEI} (Ω)	In (1/ R _{SEI})	1000/T (K ⁻¹)
303	24.88	-3.21406	3.2987
313	11.96	-2.48157	3.19336
323	6.59	-1.88555	3.09454
333	3.22	-1.16938	3.00165

Table S7. Full cells of ESEI compared with previously reported work.

Capacity (mAh cm ⁻²)	Cycle Life	Electrolyte	Strategy	Charge C-rate	Discharge C-rate	N/P	Ref.
3.49	160	1 M LIPF ₆ EC/EMC+TSFSA	Chemical reaction + electrochemical activation	C/5	1 C	~17	This work
3.49	115 260	1 M LIPF ₆ EMC/FEC +TSFSA	Chemical reaction + electrochemical activation	C/2 C/5	C/2 1 C	0.89 2.98	This work
6.4	70	1 M LIPF ₆ EMC/FEC +TSFSA	Chemical reaction + electrochemical activation	0.5 C	1 C	1.56	This work
1.60	150	1M LiPF ₆ EC/DEC	Artificial SEI	1 C	1 C	>30	1
4	300	1 M LiPF ₆ EC/EMC/FEC	Artificial SEI	C/5	1 C	2.5	2
0.76	300	1 M LiPF ₆ EC/DEC/FEC/V C	Artificial SEI	1 C	1 C	5.26	6
3	50	1M LiPF ₆ EC/DEC/FEC	Artificial SEI	C/3	C/3	1	20
3.67	100	1M LiPF ₆ EC/DEC/EMC	Artificial SEI	C/5	1 C	2.72	21
2.5	250	1M LiPF ₆ EC/DEC/FEC	Artificial SEI	C/5	C/3	4	22
1.72	200	1 M LIPF ₆ EC/DMC/FEC +DIDP+TMSF+ LINO ₃	Additive	1 C	1 C	>100	19
3.4	200	1 M LiPF ₆ FEC/DMC+LiNO ₃ +TPFPB	Additive	C/3	C/3	2.71	23
2.5	200	1 M LiPF ₆ FEC/DMC+LiNO ₃ +DMSO	Additive	C/2	C/2	4	24
4.0	100	1M LiPF ₆ EC/DMC/EMC	Artificial SEI	0.5 C	0.5 C	2.49	25
3.5	180	1.0 M LITFSI DOL/DME+LIN O ₃	Artificial SEI	0.3 C	0.3 C	2.33	26
2.5	220	1.5 M LITFSI DME+ LINO ₃ + CsNO ₃	Additive	1 C	1 C to 2 C	2	27
2.55	75	LiFSI-PES=1:2.5 (mol.)	Electrolyte	5 C	5 C	2.5	28
2.5	150	1 M LiPF ₆ EC/DEC/FEC+4 0% 3 M TMP/LiNO ₃	Electrolyte	0.2 C	0.2 C	5	29

References

- R. Pathak, K. Chen, A. Gurung, K. M. Reza, B. Bahrami, J. Pokharel, A. Baniya, W. He, F. Wu, Y. Zhou, K. Xu and Q. Qiao, *Nature Communications*, 2020, **11**, 93.
- Y. Xie, Y. Huang, Y. Zhang, T. Wu, S. Liu, M. Sun, B. Lee, Z. Lin, H. Chen, P. Dai, Z. Huang, J. Yang,
 C. Shi, D. Wu, L. Huang, Y. Hua, C. Wang and S. Sun, *Nature Communications*, 2023, 14, 2883.
- J. Pokharel, A. Cresce, B. Pant, M. Y. Yang, A. Gurung, W. He, A. Baniya, B. S. Lamsal, Z. Yang, S. Gent, X. Xian, Y. Cao, W. A. Goddard, 3rd, K. Xu and Y. Zhou, *Nature communications*, 2024, 15, 3085-3085.
- 4. S. Ni, M. Zhang, C. Li, R. Gao, J. Sheng, X. Wu and G. Zhou, *Advanced Materials*, 2023, **35**, e2209028.
- Z. Peng, J. Song, L. Huai, H. Jia, B. Xiao, L. Zou, G. Zhu, A. Martinez, S. Roy, V. Murugesan, H. Lee, X. Ren, Q. Li, B. Liu, X. Li, D. Wang, W. Xu and J.-G. Zhang, *Advanced Energy Materials*, 2019, 9, 1901764.
- 6. S. Fang, F. Wu, S. Zhao, M. Zarrabeitia, G.-T. Kim, J.-K. Kim, N. Zhou and S. Passerini, *Advanced Energy Materials*, 2023, **13**, 2302577.
- 7. S. Sun, S. Myung, G. Kim, D. Lee, H. Son, M. Jang, E. Park, B. Son, Y.-G. Jung, U. Paik and T. Song, *Journal of Materials Chemistry A*, 2020, **8**, 17229-17237.
- 8. D. Kang, N. Hart, J. Koh, L. Ma, W. Liang, J. Xu, S. Sardar and J. P. Lemmon, *Energy Storage Materials*, 2020, **24**, 618-625.
- 9. D. Lee, S. Sun, H. Park, J. Kim, K. Park, I. Hwang, Y. Jung, T. Song and U. Paik, *Journal of Power Sources*, 2021, **506**, 230158.
- 10. Y. Wang, F. Liu, G. Fan, X. Qiu, J. Liu, Z. Yan, K. Zhang, F. Cheng and J. Chen, *Journal of the American Chemical Society*, 2021, **143**, 2829-2837.
- 11. X. Li, M. Lv, Y. Tian, L. Gao, T. Liu, Q. Zhou, Y. Xu, L. Shen, W. Shi, X. Li, Y. Lu, X. Liu and S. Xiao, *Nano Energy*, 2021, **87**, 106214.
- 12. Y. Qin, H. Wang, J. Zhou, R. Li, C. Jiang, Y. Wan, X. Wang, Z. Chen, X. Wang, Y. Liu, B. Guo and D. Wang, *Angewandte Chemie-International Edition*, 2024, DOI: 10.1002/anie.202402456.
- J. Zhang, X. Yue, Z. Wu, Y. Chen, Y. Bai, K. Sun, Z. Wang and Z. Liang, *Nano Letters*, 2023, 23, 9609-9617.
- 14. V. A. K. Adiraju, O. B. Chae, J. R. Robinson and B. L. Lucht, *Acs Energy Letters*, 2023, **8**, 2440-2446.
- 15. F. Li, J. Liu, J. He, Y. Hou, H. Wang, D. Wu, J. Huang and J. Ma, *Angewandte Chemie-International Edition*, 2022, **61**, e202205091.
- 16. P. Zhou, Y. Xia, W.-h. Hou, S. Yan, H.-Y. Zhou, W. Zhang, Y. Lu, P. Wang and K. Liu, *Nano Letters*, 2022, **22**, 5936-5943.
- 17. S. Gu, S.-W. Zhang, J. Han, Y. Deng, C. Luo, G. Zhou, Y. He, G. Wei, F. Kang, W. Lv and Q.-H. Yang, Advanced Functional Materials, 2021, **31**, 2102128.
- 18. A. Fu, J. Lin, Z. Zhang, C. Xu, Y. Zou, C. Liu, P. Yan, D.-Y. Wu, Y. Yang and J. Zheng, *Acs Energy Letters*, 2022, **7**, 1364-1373.
- 19. Y. Gao, G. Wu, W. Fang, Z. Qin, T. Zhang, J. Yan, Y. Zhong, N. Zhang and G. Chen, *Angewandte Chemie-International Edition*, 2024, DOI: 10.1002/anie.202403668.
- 20. S. Stalin, P. Chen, G. Li, Y. Deng, Z. Rouse, Y. Cheng, Z. Zhang, P. Biswal, S. Jin, S. P. Baker, R. Yang and L. A. Archer, *Matter*, 2021, **4**, 3753-3773.

- 21. S. Li, J. Huang, Y. Cui, S. Liu, Z. Chen, W. Huang, C. Li, R. Liu, R. Fu and D. Wu, *Nature Nanotechnology*, 2022, **17**, 613-621.
- Z. Huang, J.-C. Lai, S.-L. Liao, Z. Yu, Y. Chen, W. Yu, H. Gong, X. Gao, Y. Yang, J. Qin, Y. Cui and Z. Bao, *Nature Energy*, 2023, **8**, 577-585.
- 23. S. Li, W. Zhang, Q. Wu, L. Fan, X. Wang, X. Wang, Z. Shen, Y. He and Y. Lu, *Angewandte Chemie-International Edition*, 2020, **59**, 14935-14941.
- 24. S. Liu, X. Ji, N. Piao, J. Chen, N. Eidson, J. Xu, P. Wang, L. Chen, J. Zhang, T. Deng, S. Hou, T. Jin, H. Wan, J. Li, J. Tu and C. Wang, *Angewandte Chemie-International Edition*, 2021, **60**, 3661-3671.
- 25. H. Dai, J. Dong, M. Wu, Q. Hu, D. Wang, L. Zuin, N. Chen, C. Lai, G. Zhang and S. Sun, *Angewandte Chemie-International Edition*, 2021, **60**, 19852-19859.
- T. D. Pham, A. Bin Faheem, J. Kim, K. Kwak and K.-K. Lee, *Advanced Functional Materials*, 2023, 33, 2305284
- 27. M. M. Rahman, S. Tan, Y. Yang, H. Zhong, S. Ghose, I. Waluyo, A. Hunt, L. Ma, X.-Q. Yang and E. Hu, *Nature Communications*, 2023, **14**, 8414.
- 28. J. Yu, X. Ma, X. Zou, Y. Hu, M. Yang, J. Yang, S. Sun and F. Yan, *Energy & Environmental Science*, 2024, **17**, 4519-4530.
- 29. Z. Wang, Y. Wang, B. Li, J. C. Bouwer, K. Davey, J. Lu and Z. Guo, *Angewandte Chemie-International Edition*, 2022, **61**, e202206682.