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Fabrication of the based-layer (DFSA-Li) anode
The fabrication of based-layer anodes was carried out in an argon-filled glove box (O2 <0.1 ppm, 
H2O < 0.1 ppm). 4 vol% of 2-(Fluorosulphonyl)difluoroacetic acid (DFSA, 98%, Energy-Chemical) 
was added into dimethyl ether (DME, 99.9%, DoDoChem) to form uniform solutions. 
Subsequently, 80 μL of the above solution was dropped on the surface of a lithium foil (15.6 mm 
in diameter) for a certain time at room temperature and then washed with DME for over 3 times 
to remove the remaining DFSA. The prepared based-layer anode was cut into 12 mm discs for 
further use. The fabrication method for the based-layer on Cu collectors was the same, except that 
the former used different deposition amounts of Li.
Preparation of the electrolyte
Two basic electrolytes were used in this study (FEC-based carbonate electrolyte and commercial 
carbonate electrolyte). The applied FEC-based carbonate electrolyte was dissolved 1 M lithium 
hexafluorophosphate (LiPF6, 99.9%, DoDoChem) into fluoroethylene carbonate (FEC, 99.9%, 
DoDoChem) and ethyl methyl carbonate (EMC, 99.9%, DoDoChem) with v/v=3:7, if not specifically 
stated. The commercial carbonate electrolyte consisted of 1 M LiPF6 in ethylene carbonate EC/EMC 
with v/v=3:7 (LB-224, 99.9%, DoDoChem). For the TSFSA electrolyte, 2 vol% trimethylsilyl 2-
(fluorosulphonyl)difluoroacetate (TSFSA, 95%, Leyan) was added into the two basic electrolytes to 
obtain the TSFSA electrolyte.
Material characterization
The SEM images of Li metal wereobserved by field emission scanning electron microscopy (SEM, 
HITACHI S-4800). The AFM images were tested by atomic force microscopy (AFM, SPM 5500; 
Keysight Technologies, Santa Rosa, CA, USA). The contact angles were determined using SL250 
contact angle goniometer (U.S. KINO Company). The morphology/HRTEM/SAED/Mapping of SEI 
was characterized by transmission electron microscope (JEM 200F) with frozen sample rod 
(Fischione 2550). X-ray diffraction (XRD) was conducted using a Rigaku Ultima IV X-ray 
diffractometer based on Cu Kα radiation (λ = 1.5418 Å). Fourier transform infrared spectroscopy 
(FTIR) experiments were conducted by using a Nicolet iS50 FTIR spectrophotometer. X-ray 
photoelectron spectroscopy (XPS) was obtained by using PHI QUAN-TUM 2000. Time-of-flight 
secondary ion mass spectrometry was conducted using a PHI nanoTOF II Time-of-Flight SIMS 
(30 keV, 2 nA, Ion species: Bi3++). The contact angles were tested the SL250 contact angle 
measuring instrument (KINO Company, USA). In-situ optical devices for in-situ optical 
characterization was designed as shown in Supplementary Fig. S23. The Li foils were used with a 
thickness of 300 μm.
Computational Details
The DFT calculations were performed at the B3LYP/6-311+G (d, p) level using Gaussian 09 and 
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GaussView 5.0 software. EC, EMC, FEC, LiPF6, DFSA-Li and TFSFA molecules were optimized using 
the B3LYP hybrid functional. Ab initio molecular dynamics (AIMD) simulations were carried out by 
using Perdew-Burke-Ernzerhof (PBE) gradient-corrected exchange-corrected functional with the 
projector augmented plane wave (PAW) method as implemented in the Vienna ab-initio 
simulation package (VASP). The plane wave kinetic energy cutoff was set to 400 eV. NVT ensemble 
was used at 300 K with a time step of 1 fs. 
Electrochemical characterization
For the four research systems, BE was used basic electrolyte without any improvement, based-
layer was used DFSA-Li as Li anode and basic electrolyte and ESEI was used based-layer as Li anode 
and 2 vol% TSFSA as electrolyte. Li||Li symmetric cells (CR-2025 coin cells), Li-Cu half cells (CR-
2016 coin cells), Li||LFP full cells (CR-2016 coin cells) and Li||NCM811 full cells (CR-2016 coin cells) 
were both assembled using a Celgard 2025 separator (19 mm in diameter). The electrolyte was 
controlled 35 μL for each cell. For the Li||LFP coin cells, the mass loading of the LFP cathode was 
20.5 mg cm-2, and the area capacity of Li anode was deposited 3 mAh cm-2 and 10 mAh cm-2 with 
basic FEC-based electrolyte or TSFSA electrolyte (the above capacities excluded the loss of the 
chemical reaction). The voltage windows for the Li||LFP full cells were set to 2.5-4.2 V. For the 
high-voltage Li||NCM811 full cells, the mass loading of the NCM811 cathode was 26.0 mg cm-2, 
and the area capacity of Li anode was deposited 10 mAh cm-2 with TSFSA electrolyte (the above 
capacities excluded the loss of the chemical reaction). The voltage windows for the Li||NCM811 
full cells were set to 2.8-4.6 V.
Cells galvanostatically charge and discharge tests were uesd the NEWARE BTS-5 V 5/20 mA 
(Shenzhen NEWARE). Electrochemical impedance spectra (EIS) were performed by Autolab 
PGSTAT204 with a test range of 1 MHz to 0.1 Hz. CV and Tafel curves were obtained by an 
electrochemical workstation (CHI 660E) using coin cells.
To evaluate the average CE of ESEI and based-layer, Cu foil pre-deposited with 1 mAh cm-2 Li were 
treated with DFSA and assembled Li-Cu half cells. First, completely stripping the Li metal on Cu 
foils. Then, redeposited 5 mAh cm-2 Li on Cu foil at a current density of 1 mA cm-2 and 
deposited/stripped 10 times at a capacity of 1 mAh cm-2. After n cycles, the remaining Li was 
completely stripped to the cut-off voltage. The average CE over n cycles can be calculated by 
measuring the capacity of Li remaining after cycling with the equation:

                                                                                                                                          (1)
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝐸 =

𝑛𝑄𝐶 + 𝑄𝑆

𝑛𝑄𝐶 + 𝑄𝐿𝑖

where QC was the deposition and stripping capacity per cycle. Qs was the final stripped capacity of 
Li remaining after n cycles and QLi was the initial deposited capacity of Li. Herein, the value of QLi 
was 5 mAh cm–2 and QC was 1 mAh cm−2.
The method to obtain the activation energy (Ea) of Li deposition was as follows. EIS tests with Li||Li 
symmetric cells at different temperatures were carried out. Ea can be obtained by the following 
equation:

                                                                                                                                                      (2)

1
𝑅𝑆𝐸𝐼

= 𝐴0𝑒
‒ 𝐸𝑎/𝑅𝑇

where RSEI, A0 and R represent the resistance of SEI, pre-exponential constant, the standard gas 
constant and the activation energy, respectively. Therefore, Ea can be obtained from the slope 
plot of log RSEI vs. T-1.



To obtain the lithium-ion diffusion coefficient of BE, based-layer and ESEI, CV tests were conducted 
at different scan speeds (0.1 mV s-1-0.5 mV s-1) using the Li||LFP full cells. The lithium-ion diffusion 
coefficient was obtained by fitting the Randles-Sevcik equation:

                                                                                                                                (3)
𝐼𝑃 = 0.4463𝑛𝐹𝐴𝐶𝑥𝑣1/2 𝑛𝐹𝐷𝑥

𝑅𝑇

where IP, n, A, Dx, v and Cx represent peak current, number of electrons in electrode reaction, 
electrode area, ion diffusion coefficient, scan rate and lithium-ion concentration.



Supplementary Figures

Fig. S1. HOMO energy level diagrams of the investigated salts (LiPF6), solvents (EC, EMC and FEC), 
DFSA-Li and TSFSA.

Fig. S2. The SEM images of DFSA-Li surface with different treatment concentration: (a) 1%, (b) 2%, 
(c) 4% and (d) 6%.

Fig. S3. The SEM images of Bare-Li surface.



Fig. S4. XRD patterns of based-layer and bare-Li.

Fig. S5. (a) The SEM images of the surface of based-layer. (b-e) The corresponding energy 
dispersive spectroscopy (EDS) mapping (carbon, oxygen, fluorine and sulfur) in the same area.

Fig. S6. The cross-sectional SEM images of (a) Bare-Li and (b) based-layer.



Fig. S7. Capacity-voltage curves of Li||Cu half cells with DFSA-treated Li on Cu foil and bare Cu foil.
To determine the active Li capacities consumed by the displacement reaction, a Cu electrode pre-
deposited with 1 mAh cm-2 of Li metal was selected as the target for the reaction. After 
reassembling the Li||Cu half-cell, all stripped Li capacity was 0.604 mAh cm-2, indicating that 
approximately 0.342 mAh cm-2 of active Li was consumed by DFSA (4%). This consumption has a 
negligible impact on energy densities.

Fig. S8. (a) CV profiles scanned at -0.2-3 V of 1 mV s-1 in TSFSA electrolyte. (b) The first cycle CV 
profiles of BE and TSFSA with FEC-based carbonate electrolyte (1 M LiPF6 in FEC/EMC, v/v=3:7). (c) 
CV profiles scanned at - 0.2-3 V of 1 mV s-1 in TSFSA electrolyte.



Fig. S9. The first cycle CV profiles of BE and TSFSA in commercial carbonate electrolyte (1 M LiPF6 

in EC/EMC, v/v=3:7).

Fig. S10. Coulombic efficiency (CE) of Li||Cu half cells at a current density of 1 mA cm−2 and a 
capacity of 1 mAh cm−2.

Fig. S11. Nucleation overpotential comparison of BE and TSFSA using Li||Cu half cells at a current 
density of 1 mA cm−2.
.



Fig. S12. (a) Cycle stability of Li||Li symmetric cells with BE and based-layer at a current density of 
3 mA cm−2 and a capacity of 3 mAh cm−2. (b) Cycle stability of Li||Li symmetric cells at a current 
density of 3 mA cm−2 and a capacity of 3 mAh cm−2 with different treatment concentration.

Fig. S13. (a) Nucleation overpotential comparison of BE and based-layer using Li||Li symmetric 
cells at a current density of 0.5 mA cm−2. (b) Nucleation overpotential comparison of based-layer 
with different treatment concentration at a current density of 3 mA cm−2.



Fig. S14. Coulombic efficiency (CE) of Li||Cu half cells with different TSFSA concentration at a 
current density of 1 mA cm−2 and a capacity of 1 mAh cm−2.

Fig. S15. Nucleation overpotential comparison of BE and ESEI using Li||Li symmetric cells at a 
current density of 0.5 mA cm−2.

Fig. S16. Voltage-time curves of Li||Cu half cells with (a) BE, (b) based-layer and (c) ESEI.



Fig. S17. The CE in BE and ESEI using Li||Cu cells of 1 mAh cm−2 with (a) 2 mA cm−2, (b) 3 mA cm−2.

Fig. S18. Cycle stability of Li||Li symmetric cells with BE and ESEI at a current density of 1 mA cm−2 
and a capacity of 1 mAh cm−2 in commercial carbonate electrolyte (1 M LiPF6 in EC/EMC, v/v=3:7).

Fig. S19. Li metal plating/stripping average CE evaluated by Li||Cu half cells in commercial 
carbonate electrolyte (1 M LiPF6 in EC/EMC, v/v=3:7).



Fig. S20. Contact angle measurements of BE, based-layer and pre-ESEI.

Fig. S21. SEM images of (a) BE, (b) based-layer and (c) ESEI at 10th plating.

Fig. S22. AFM images of Li surface morphology at 10th plating of (a) BE (b) based-layer and (c) ESEI 
with an area of 10μm×10μm. The Corresponding 3D AFM model images of Li surface morphology 
at 10th plating of (d) BE (e) based-layer and (f) ESEI with an area of 10μm×10μm. Color bars :−4-
2.5 μm.



Fig. S23. The Corresponding Young’s modulus mapping of (a) BE (b) based-layer and (c) ESEI with 
an area of 10μm×10μm. Color bars :−10-5 Gpa.

Fig. S24. SEM images of (a) BE, (b) based-layer and (c) ESEI at 50th plating.

Fig. S25. In-situ optical devices for in-situ optical characterization.



Fig. S26. The enlarged detail views of Fig. 4g.

Fig. S27. The enlarged detail views of Fig. 4i.

Fig. S28. The HAADF-STEM image and elemental mapping of BE in Li||Li symmetric cell after 5 
cycles.



Fig. S29. XPS S 2p spectra for ESEI cycled after 5 cycles.

Fig. S30. TOF-SIMS mappings of the (a) LiF2
-, (b) C2H3O- and (c) C2F- species on the surface of the 

cycled BE batteries.



Fig. S31. TOF-SIMS mappings of the (a) LiF2
-, (b) C2H3O-, (c) C2F- and (d) S- species on the surface of 

the cycled ESEI batteries.

Fig. S32. The TOF-SIMS depth sputter curves of Li surface for (a) BE and (b) ESEI.



Fig. S33. The EIS fitting results of Li||Li symmetric cells.

Fig. S34. (a) The Arrhenius behavior and corresponding unactivation energy for Li+ diffusion 
through activated SEI film derived from RSEI in Nyquist plots at various temperatures of fresh Li||Li 
symmetric cells with BE and ESEI. EIS plots of the Li||Li symmetric cells with (b) ESEI and (c) BE at 
different temperatures before cycling.

Fig. S35. EIS plots of the Li||Li symmetric cells with BE at different temperatures after cycling.

 

Fig. S36. The equivalent circuit used to fit the Li||Li symmetric cells.



Fig. S37. The CV curves of Li||LFP full cells with (a) BE, (b) based-layer and (c) ESEI at different scan 
rates (0.1-0.5 mV s-1) after two cycles activation. (d) Reduction peaks and (e) oxidation peaks 
currents against square root of scan rates for BE, Based-layer and ESEI.

Fig. S38. Charge-discharge profiles of Li||LFP full cells with BE under a N/P of 2.98. 

Fig. S39. Nyquist plots of Li||LFP full cells at various cycles for (a) BE, (b) based-layer and (c) ESEI.



Fig. S40. The CV curves of Li||LFP full cells at two cycles activation and 50 cycles for (a) BE, (b) 
based-layer and (c) ESEI.

Fig. S41. (a) Long-cycling performance of the Li||LFP full cells in commercial carbonate electrolyte 
(1 M LiPF6 in EC/EMC, v/v=3:7). The mass loading of LFP is ~20.5 mg cm−2 and the thickness of Li 
chip is 300 µm. Charge-discharge voltage profiles of the Li||LFP full cells with (b) ESEI and (c) BE. 
The mass loading of LFP is ~20.5 mg cm−2 and the thickness of Li chip is 300 µm.



Fig. S42. The LSV curves of BE and TSFSA electrolyte with 1mV s-1.

Fig. S43. (a) Long-term cycling performance of high voltage Li||NCM811 full cells with BE and ESEI 
in a 1 M LiPF6 in FEC/EMC (v/v = 3:7) electrolyte. Conditions: 10 mAh cm-2 deposited Li, high area 
loading NCM811 (6.4 mAh cm−2 at 0.1C, 26 mg cm−2), 2.8 V-4.6 V. The cells were activated at 0.1 C 
for 2 cycles, then charged at 0.5 C and discharged at 1 C in subsequent cycles (1C=200 mA g-1). The 
corresponding charge-discharge profiles of the high voltage Li||LFP NCM811 cells with (b) BE and 
(c) ESEI.



Table S1. Cycling stability of ESEI compared with previously reported work.
Electrolyte Method Current 

density
(mA cm-2)

Areal 
capacity

(mAh cm-2)

Cycling 
time (h)

Ref.

1 M LiPF6 
EC/EMC+TSFSA

chemical 
reaction + 

electrochemical 
activation

1 1 800 This 
work

1 M LiPF6 
EMC/FEC+TSFSA

chemical 
reaction + 

electrochemical 
activation

1
3

1
3

2100
450

This 
work

1 M LiPF6 EC/DEC Artificial SEI 0.5
1

1
1

2325
850

1

1 M LiPF6 
EC/EMC/FEC

Artificial SEI 1 0.5 1200 2

1 M LiPF6 EC/DEC Artificial SEI 1 1 750 3

1 M LiPF6 
EC/DEC/FEC/VC

Artificial SEI 1 1 450 4

1 M LiPF6 
EC/DMC/FEC

Artificial SEI 0.5 1 950 5

1 M LiPF6 EC/DMC Artificial SEI 0.5 1 320 5

1 M LiPF6 
EC/DEC/FEC/VC

Artificial SEI 1
2
4

1
1
1

800
250
150

6

1.3 M LiPF6 
EC/DEC/FEC

Artificial SEI 0.5 2 800 7

1 M LiPF6 
EC/DEC/DMC

Artificial SEI 0.5 1 400 8

1 M LiPF6 EC/DEC/FEC Artificial SEI 1
3

1
3

400
80

9

1 M LiPF6 EC/DEC Artificial SEI 1
2

1
1

900
400

10

1 M LiPF6 FEC/DMC Artificial SEI 0.5
1

1
1

1800
800

11

1 M LiPF6 EC/DEC/FEC Additive 1 1 1200 12

1 M LiPF6 
EC/DEC+EITC

Additive 0.5 0.5 600 13

1 M LiPF6 
EC/EMC+TMSILN

Additive 1 1 550 14

1 M LiPF6 
EC/DMC+HFAC

Additive 1 0.5 500 15

1 M LiPF6 
EC/DEC+DETFP

Additive 2 2 250 16

1 M LiPF6 
EC/DEC/FEC+ 

RbNO3+18-Crown-6

Additive 1
3

1
1

250
140

17

1 M LiPF6 
EC/DEC+ KSeCN

Additive 1 3 120 18

1 M LiPF6 
EC/DMC/FEC

+DIDP+TMSF+ LiNO3

Additive 1 1 500 19



Table S2. AFM characterization of average root-mean-square roughness at 10th plating of BE, 
Based-layer and ESEI with an area of 10μm×10μm.

Average roughness BE (nm) Based-layer (nm) ESEI (nm)

Rq 718.0 217.0 30.1

Ra 561.0 176.0 22.6

Table S3. The specific values of RSEI of Li||Li symmetric cells at various temperatures for BE with 
unactivated.

T (K) RSEI (Ω) ln (1/ RSEI) 1000/T (K−1)

303 56.89 -4.04107 3.2987
313 45.35 -3.81441 3.19336
323 22.06 -3.09377 3.09454
333 10.63 -2.36368 3.00165

Table S4. The specific values of RSEI of Li||Li symmetric cells at various temperatures for ESEI with 
unactivated.

T (K) RSEI (Ω) ln (1/ RSEI) 1000/T (K−1)

303 28.68 -3.35634 3.2987
313 12.90 -2.55754 3.19336
323 6.06 -1.80171 3.09454
333 3.40 -1.22378 3.00165

Table S5. The specific values of RSEI of Li||Li symmetric cells at various temperatures for BE with 
activated.

T (K) RSEI (Ω) ln (1/ RSEI) 1000/T (K−1)

303 58.44 -4.06800 3.2987
313 27.33 -3.30798 3.19336
323 13.91 -2.63261 3.09454
333 6.40 -1.85630 3.00165

Table S6. The specific values of RSEI of Li||Li symmetric cells at various temperatures for ESEI with 
activated.

T (K) RSEI (Ω) ln (1/ RSEI) 1000/T (K−1)

303 24.88 -3.21406 3.2987
313 11.96 -2.48157 3.19336
323 6.59 -1.88555 3.09454
333 3.22 -1.16938 3.00165



Table S7. Full cells of ESEI compared with previously reported work.
Capacity 

(mAh 
cm-2)

Cycle 
Life

Electrolyte Strategy Charge 
C-rate

Discharge 
C-rate

N/P Ref.

3.49 160 1 M LiPF6 
EC/EMC+TSFSA

Chemical 
reaction + 

electrochemical 
activation

C/5 1 C ~17 This 
work

3.49 115
260

1 M LiPF6 
EMC/FEC
+TSFSA

Chemical 
reaction + 

electrochemical 
activation

C/2
C/5

C/2
1 C

0.89
2.98

This 
work

6.4 70 1 M LiPF6 
EMC/FEC
+TSFSA

Chemical 
reaction + 

electrochemical 
activation

0.5 C 1 C 1.56 This 
work

1.60 150 1M LiPF6 
EC/DEC

Artificial SEI 1 C 1 C >30 1

4 300 1 M LiPF6 
EC/EMC/FEC

Artificial SEI C/5 1 C 2.5 2

0.76 300 1 M LiPF6 
EC/DEC/FEC/V

C

Artificial SEI 1 C 1 C 5.26 6

3 50 1M LiPF6 
EC/DEC/FEC

Artificial SEI C/3 C/3 1 20

3.67 100 1M LiPF6 
EC/DEC/EMC

Artificial SEI C/5 1 C 2.72 21

2.5 250 1M LiPF6 
EC/DEC/FEC

Artificial SEI C/5 C/3 4 22

1.72 200 1 M LiPF6 
EC/DMC/FEC

+DIDP+TMSF+ 
LiNO3

Additive 1 C 1 C >100 19

3.4 200 1 M LiPF6 
FEC/DMC+LiNO

3+TPFPB

Additive C/3 C/3 2.71 23

2.5 200 1 M LiPF6 
FEC/DMC+LiNO

3+DMSO

Additive C/2 C/2 4 24

4.0 100 1M LiPF6 
EC/DMC/EMC

Artificial SEI 0.5 C 0.5 C 2.49 25

3.5 180 1.0 M LiTFSI 
DOL/DME+LiN

O3

Artificial SEI 0.3 C 0.3 C 2.33 26

2.5 220 1.5 M LiTFSI
DME+ LiNO3+ 

CsNO3

Additive 1 C 1 C to 2 C 2 27

2.55 75 LiFSI-PES=1:2.5 
(mol.)

Electrolyte 5 C 5 C 2.5 28

2.5 150 1 M LiPF6 
EC/DEC/FEC+4

0% 3 M 
TMP/LiNO3

Electrolyte 0.2 C 0.2 C 5 29
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