Supplementary Information

Collaborative multi-interface engineering and dynamic iron exchange boost robust bifunctional water electrolysis at 2 A cm-2

1. Experimental section

Synthesis of the NiMoO₄ precursor. NiMoO₄ precursor was synthesized on Ni foam by a hydrothermal method. 0.04 M Ni(NO₃)₂·6H₂O and 0.01M (NH₄)₆Mo₇O₂₄·4H₂O were dissolved into 40 mL ultrapure water and stirred for 15 min at room temperature, which was then transferred into a 100 mL Teflon-lined autoclave with a piece of nickel foam. After a hydrothermal process at 150 °C for 6 h in drying oven, the as-prepared NiMoO₄ samples were cleaned by ultrapure water and dried in room temperature.

Synthesis of the Fe/MoNi₄/MoO₂ nanoarray. NiMoO₄ precursor was soaked in ferric nitrate ink for a few seconds. After drying at room temperature overnight, the as-prepared samples were placed at the center of the tube furnace, which was then heated to 400 \degree C with a duration of 2 h under H₂/Ar atmosphere to obtain the final Fe/MoNi₄/MoO₂. After that, the asprepared samples were cooled down to room temperature and passivated overnight under Ar atmosphere.

Synthesis of the MoNi₄/MoO₂ and Ar-NiMoO₄ samples. NiMoO₄ precursor was directly treated in Ar or H_2/Ar (8:92) atmosphere using the same conditions to obtain Ar- $NiMoO₄$ and $MoNi₄/MoO₂$ samples, respectively.

Synthesis of FeMo/MoO_2 **.** FeMo/MoO₂ was prepared following the same procedure for

MoNi₄/MoO₂ by changing Ni(NO₃)₂·6H₂O into Fe(NO₃)₃·9H₂O during the hydrothermal treatment.

Synthesis of MoO_2 **.** MoO₂ was prepared following the same procedure for $\text{MoNi}_4/\text{MoO}_2$ with the absence of $Ni(NO₃)₂·6H₂O$.

Electrochemical measurements. All the electrochemical measurements were performed in 100 mL 1 M KOH (pH = 14) or 100 mL 1M PBS (pH \approx 6.5) solutions at room temperature based on the standard three-electrode system. In 1 M KOH, the as-prepared samples were used as working electrode, Hg/HgO electrode and graphite rod were assigned as reference and counter electrodes, respectively. The linear polarization curves were obtained at a scan rate of 2 mV s⁻¹ by linear sweep voltammetry mode. Before testing, all the catalysts were electrochemically activated by 50 cyclic voltammetry at a scan rate of 50 mV s^{-1} with the potentials from 0.05 V to -0.23 V (HER) and 1.124 V to 1.574 V (OER). The EIS spectra were tested at -0.05 V for HER and 1.53 V for OER along with the frequencies varying from 0.1 Hz to 100 kHz. In 1 M PBS, graphite rod and saturated calomel electrode were employed as the counter and reference electrodes, respectively. During all the data measurements, onthe-fly *iR* compensation was automatically performed for all the polarization curves by the workstation system (Gamry Reference 3000 or 600+).[1]

Electrochemical active surface area (ECSA) calculation. The ECSA can be estimated

*C*dl

on the basis of the follow equation: $\text{ECSA} = \text{Cs}$, where C_s is the capacitance per unit area of an electrode with very flat surface, and C_{d} is related to the double-layer capacitances of our porous electrodes measured by an electrochemical method.^[2,3] Here the value of $C_s = 40 \mu$ F cm-2 was selected for ECSA calculation.

Turnover frequency (TOF) calculation. TOF was calculated according to the

following equation: \mathbb{R}^{\times} \mathbb{R}^{\times} \mathbb{R}^{\times} , where *j* is the HER current density, N is the number $TOF =$ *j* $N \times n_s \times F$ of electrons transferred per H_2 molecule (N = 2), F represents the Faraday constant, and n_s represents the density of total active sites per unit area of electrode material. The number of

active sites for HER was evaluated according to this formula: $\frac{2F}{3}$, where S, F and *Q* $n_{\rm s}$ = *Q* $2FS$ correspond to the geometric area of the electrode materials, Faraday constant and the whole charge of cyclic voltammetry curve collected in 1M PBS electrolyte (pH \approx 6.5).

In-situ **Raman measurements.** The Raman spectra were recorded under a 532 nm laser (Horiba JY HR Evolution). A typical three-electrode configuration (Beijing Scistar Technology Co. Ltd) was designed for in-situ Raman measurements, in which the selfsupported catalyst, AgCl/Ag and Pt wire were served as the working, reference and counter electrodes, respectively. The potential was controlled by an electrochemical workstation, as described previously, with applied potentials ranging from 1.12 to 1.72 V. Before collecting the Raman spectra at each potential, chronoamperometric tests were conducted on the OER catalysts for five minutes.

In-situ **XPS measurements.** The X-ray photoelectron (XPS) spectra were tested by a XPS spectroscopy (Thermo Fisher Scientific-Escalab 250Xi) with an analyzer pass energy of 30 eV and a dwell time of 50 ms. The chamber pressure was remained below 4.3×10^{-7} during the tests. For the in-situ XPS tests, a self-assembly three-electrode setup (working, reference and counter electrodes) was employed for OER testing, in which the OER catalyst, Hg/HgO electrode and Pt wire were served as working, reference and counter electrodes, respectively. The samples were tested at different anodic potentials ranging from 1.12 to 1.72 V for 30 min

in a glovebox continuously purged by N_2 gas (Suzhou Vigor Technologies Co., Ltd.). Following the OER tests, the samples were dried and transferred to the XPS spectrometer under N_2 atmosphere.

Fine structure characterization. Fe K-edge X-ray absorption spectra (XAS) were recorded in a transmission mode at the 1W1B and 1W2B beamlines of the Beijing Synchrotron Radiation Facility in China.

Computational method. Spin-polarized density functional theory (DFT) calculations were performed with the Vienna Ab Initio Simulation Package (VASP 5.3.5).[4] In our calculations, we adopted the Perdew-Burke-Ernzerhof (PBE) functional to consider exchange and correlation effects.[5] A cutoff energy of 400 eV was used for the plane-wave basis. The Gaussian smearing method with a smearing width of 0.03 eV was used to determine partial occupancies. DFT-D3 method was used to take into account the VdW interactions.[6]

Our calculated lattice constants of bulk MoNi₄ are $a=5.64$ Å and $c=3.53$ Å. For bulk MoO₂, the optimized lattice constants are $a = 4.92 \text{ Å}$ and $c = 2.75 \text{ Å}$. The calculated bulk structures were used to construct surface models. A 2×2 unit cell of MoNi₄ (200) with eight atomic layers was considered in our calculations. Here, the top four atomic layers were relaxed, and the bottom four layers were frozen. For comparison, the $MoO₂(110)$ surface was constructed with also six atomic layers. Here, we optimized the top three atomic layers and fixed the bottom three layers. In this work, the interfaces of $Fe/MoNi₄$ (200) and $Fe/MoO₂$ (110) models were modelled by Fe₄ cluster placed on MoNi₄ (200) and MoO₂ (110) surfaces. The size of MoNi₄ (200) and Fe/MoNi₄ (200) unit cells both were 11.37 Å \times 10.78 Å \times 20.11 Å. For the MoO₂ (110) and Fe/MoO₂ (110), we used the unit cell of 11.00 Å \times 13.90 Å \times

20.46 Å. The atom-layer slab separated by a 15 Å vacuum was considered for all the calculations. All the supercells in our DFT calculations are large enough to avoid interactions between periodic images that would affect the results of the predicted surface catalytic properties involving the small adsorbates. For the Brillouin zone integration, a Monkhorst-Pack k-point mesh of $3 \times 3 \times 1$ was used. Structure optimization was finished until the residual Hellmann-Feynman forces were smaller than 0.02 eV/Å.

To explore the energy barriers for water dissociation on the catalysts, we calculated the location and total electronic energy of transition states by the climbing-image nudged elastic band (CI-NEB) method.^[7] A frequency analysis was performed to confirm that each transition state has a single imaginary frequency in the direction of the reaction coordinate. The Gibbs free energies of hydrogen and water at 298.15 K and 1 atm were calculated with

$$
G = E_{DFT} + E_{ZPE} - TS \tag{1}
$$

Where *G* is Gibbs free energy, E_{DFT} is the electronic total energy from DFT calculation, E_{ZPE} is the zero-point energy of the calculated system, *T* stands for the Kelvin temperature and *S* represents the entropy. Free energy of hydrogen and water adsorption were calculated by

$$
\Delta G_{ads} = G_{surf+M} - (G_{surf} + G_M)
$$
 (2)

Here, $G_{\text{surf+M}}$ and G_{surf} are the free energies of atomic hydrogen atom or water adsorbed surface, and the catalytic surface, respectively. For the free energy of atomic hydrogen adsorption, G_M is half of the free energies of the gas phase hydrogen. For the free energy of molecular water adsorption, G_M is the free energy of the gas phase water molecule.

2. Material characterization and electrochemical analysis

Supplementary Fig. 1. SEM image of NiMoO⁴ precursor.

Supplementary Fig. 2. SEM images of MoNi₄/MoO₂ nanoarray.

Supplementary Fig. 3. SEM images of the as-prepared Fe/MoNi₄/MoO₂ nanoarray.

Supplementary Fig. 4. (a) SEM image of Fe/MoNi₄/MoO₂ nanorod and corresponding elemental mapping images of (b) Ni, (c) Mo and (d) Fe. (e) A typical EDX spectrum of Fe/MoNi₄/MoO₂ nanoarray.

Supplementary Fig. 5. A typical XRD pattern of the Ar-NiMoO₄ nanorods on Ni foam.

Supplementary Fig. 6. XRD spectra of $Fe/M_0N_4/M_0O_2$ (red line) and $MoNi_4/M_0O_2$ (green

line) nanoarray grown on Ni foam.

Supplementary Fig. 7. The XPS survey spectra of Fe/MoNi₄/MoO₂ nanoarray.

Supplementary Fig. 8. The HER polarization curves of Fe/MoNi₄/MoO₂ with automatic, manual (100%) *iR* compensation or without compensation.

Supplementary Fig. 9. Typical cyclic voltammetry curves collected on (a) Fe/MoNi₄/MoO₂, (b) $MoNi₄/MoO₂$, (c) $FeMo/MoO₂$, (d) $MoO₂$ and (e) Ar-NiMoO₄ electrodes in 1 M KOH with different scan rates. (f) The double-layer capacitance $(C_{\rm dl})$ of Fe/MoNi₄/MoO₂, M_4/M_0O_2 , FeMo/MoO₂, MoO₂ and Ar-NiMoO₄ electrodes in 1 M KOH.

Supplementary Fig. 10. The ECSA-normalized HER polarization curves of Fe/MoNi₄/MoO₂, MoNi₄/MoO₂, FeMo/MoO₂, MoO₂ and Ar-NiMoO₄ electrodes.

Supplementary Fig. 11. (a) The cyclic voltammetry curves collected on $Fe/M_0N_4/M_0O_2$, M_0 Ni₄/MoO₂, FeMo/MoO₂, MoO₂ and Ar-NiMoO₄ electrodes at a scan rate of 50 mV s⁻¹ in 1 M PBS. (b) The corresponding TOF values of these catalysts for the HER in 1 M KOH.

Supplementary Fig. 12. The schematic diagram of equivalent circuit. *R^s* : series resistance,

CPE*ct*: charge transfer constant phase element, *Rct*: charge transfer resistance, CPE*ϕ*: ionic intermediate adsorption constant phase element, *Rϕ*: ionic intermediate adsorption resistance.

Supplementary Fig. 13. Cyclic stability of Fe/MoNi4/MoO² nanoarray for HER.

Supplementary Fig. 14. The SEM image of post-HER Fe/MoNi4/MoO² nanoarray.

Supplementary Fig. 15. (a) A typical EDX spectrum for $Fe/M_0N_4/M_0O_2$ sample after HER and the atomic ratios of O, Ni, Mo and Fe elements were shown in the inset. (b) SEM image of Fe/MoNi4/MoO² after HER cycling test and corresponding EDS mapping of (c) Ni, (d) Mo and (e) Fe elements.

Supplementary Fig. 16. (a) The XPS survey and corresponding high-resolution spectra of (b)

Mo 3d, (e) Ni 2p, (d) Fe 2p for original (top) and post-HER $Fe/MoNi₄/MoO₂$ (bottom).

Supplementary Fig. 17. Adsorption free energy of water on MoNi₄, Fe/MoNi₄, Fe/MoO₂ and

MoO₂ catalysts.

Supplementary Fig. 18. The polarization curves of Fe/MoNi₄/MoO₂ for OER with automatic, manual (100%) *iR* compensation or without compensation.

Supplementary Fig. 19. Cyclic voltammetry curves of (a) $Fe/M_0N_4/M_0O_2$, (b) $MoNi_4/$

 $MoO₂$, (c) $MoO₂$ and (d) Ar-NiMo $O₄$ catalysts at various scan rates from 20 to 200 mV s⁻¹.

Supplementary Fig. 20. The ECSA-normalized OER polarization curves of Fe/MoNi₄/MoO₂, MoNi₄/MoO₂, MoO₂ and Ar-NiMoO₄ electrodes.

Supplementary Fig. 21. The Nyquist plots of $Fe/M_0N_4/M_0O_2$, MoN_4/M_0O_2 , MoO_2 and Ar-

NiMoO⁴ catalysts in 1 M KOH at 1.53 V.

Supplementary Fig. 22. Long-term stability tests of Fe/MoNi₄/MoO₂ and MoNi₄/MoO₂ catalysts for OER at current density of 50 mA cm-2 in 1 M KOH.

Supplementary Fig. 23. (a) SEM image and (b) TEM image of post-OER Fe/MoNi₄/MoO₂.

Supplementary Fig. 24. (A) SEM image of post-OER $Fe/MoNi₄/MoO₂$ and corresponding EDS mapping of (b) Ni, (c) Fe and (d) Mo elements. (e) A typical EDX spectrum for $Fe/MoNi₄/MoO₂$ sample after OER and the atomic ratios of O, Ni, Mo and Fe elements were shown in the inset.

Supplementary Fig. 25. Raman spectra of initial Fe/MoNi₄/MoO₂ sample.

Supplementary Fig. 26. The linear polarization curves of Fe/MoNi₄/MoO₂ collected after different CV cycles.

Supplementary Fig. 27. *In-situ* XPS spectra of Mo 3d for Fe/MoNi4/MoO² during OER.

Supplementary Fig. 28. *In-situ* XPS spectra of Ni 2p for MoNi4/MoO² during OER.

Supplementary Fig. 29. The overall-water-splitting polarization curves of Fe/MoNi₄/MoO₂|| Fe/MoNi4/MoO² with automatic, manual (100%) *iR* compensation or without compensation.

Supplementary Fig. 30. Measuring H₂ gas volume and determining the Faradaic efficiency

by comparing experimental (red dot) and theoretical (black line) H_2 amounts using a drainage method during HER catalysis at 200 mA cm-2 in 1M KOH.

Supplementary Fig. 31. Measuring O₂ gas volume and determining the Faradaic efficiency by comparing experimental (red dot) and theoretical (black line) O_2 amounts using a drainage method during OER catalysis at 200 mA cm-2 in 1M KOH.

Supplementary Fig. 32. (a) The current vs. cell voltage for the anion-exchange-membrane water electrolyzer in 1 M KOH at 65 \degree C. (b) Long-term stability test under a constant current of 4.5 A in 1 M KOH at 65 °C.

Supplementary Table 1. The HER activity comparison between our work and other nonnoble electrocatalysts in 1 M KOH. *η*¹⁰⁰ and *η*⁵⁰⁰ mean the overpotentials at 100 and 500 mA cm-2 , respectively.

Electrocatalyst	η_{100} (mV)	η_{500} (mV)	Reference	
Fe/MoNi ₄ /MoO ₂	23	59	This work	
MoNi ₄ /MoO ₂	25	60	This work	
NiMoO _x /NiMoS	89	174	Nat. Commun. 2020, 11, 5462	
$Fe, P-NiSe2$	83	141	Adv. Mater. 2021, 33, 2101425	
FeNi-LDH/CoP	$183*$	$265*$	Angew. Chem. Int. Ed. 2019, 58, 11903	
$CoP-MNA$	121	$196*$	Adv. Funct. Mater. 2015, 25, 7337	
$Fe_{0.01}$ -Ni & Ni _{0.2} Mo _{0.8} N	59	135	Energy Environ. Sci. 2022, 15, 3945	
Cu@NiFeLDH	192		<i>Energy Environ. Sci.</i> 2017, 10, 1820	

"*" means the data was estimated from the literatures.

At -0.05 V	Fe/MoNi ₄ /MoO ₂	MoNi ₄ /MoO ₂	FeMo/MoO ₂	MoO ₂		$Ar-NiMoO4$	
$R_s(\Omega)$	2.3	2.2	2.9	2.2		4.0	
$R_{\rm ct}(\Omega)$	1.5	1.8	14.8	5.9		4.8	
At 1.53 V	Fe/MoNi ₄ /MoO ₂	MoNi ₄ /MoO ₂	MoO ₂		$Ar-NiMoO4$		
$R_s(\Omega)$	2.3	2.4	2.5			2.5	
$R_{\rm ct}(\Omega)$	0.2	0.4	11.5			20.7	

MoNi4/MoO2, FeMo/MoO2, MoO² and Ar-NiMoO⁴ catalysts.

Supplementary Table 3. Adsorption free energies of H and H₂O on MoNi₄, Fe/MoNi₄,

Supplementary Table 4. The OER activity comparison between our work and other nonnoble electrocatalysts in 1 M KOH. $η₅₀₀$ corresponds to the overpotentials at 500 mA cm⁻² and

*j*³⁰⁰ means the current density at the overpotential of 300 mV.

" * " means the data was estimated from the literature.

Supplementary Table 5. The overall water splitting performance of different water electrolyzers made of non-noble electrocatalysts. The cell voltages at 100 and 500 mA cm-2 are denoted as V_{100} and V_{500} .

"*" means the data was estimated from the polarization curves given in the literature.

Reference

- 1. W. R. Zheng, *ACS Energy Lett.* **2023**, *8*, 1952.
- 2. Y. Yang, H. L. Fei, G. D. Ruan, J. M. Tour, *Adv. Mater.* **2015**, *27*, 3175-3180.
- 3. L. B. Wu, M. H. Ning, X. X. Xing, Y. Wang, F. H. Zhang, G. H. Gao, S. W. Song, D. Z. Wang, C. Q. Yuan, L. Yu, J. M. Bao, S. Chen, and Z. F. Ren, *Adv. Mater.* **2023**, *35*, 2306097.
- 4. G. Kresse, J. Hafner, *Phys. Rev. B* **1993**, *47*, 558.
- 5. J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.* **1996**, *77*, 3865-3868.
- 6. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, *J. Chem. Phys.* **2010**, *132*, 154104.
- 7. G. Henkelman, B. P. Uberuaga, H. Jónsson, *J. Chem. Phys.* **2000**, *113*, 9901-9904.