Supporting Information

for

Deep reconstruction of Mo-based electrocatalyst for high-performance water/seawater oxidation at ampere-level current density

Jianpeng Sun^{a,b}, Shuai Zhou^{b,c}, Zhan Zhao^a, Shiyu Qin^a, Xiangchao Meng^{a*}, Chen-Ho Tung^{b,c} and Li-Zhu Wu^{b,c^*}

^aKey Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong, 266100, China.

^bKey Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing, 100190, China

^cSchool of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China

Experimental section

Preparation of FeMoO₂/NF

FeMoO₂/NF was synthesised by a method similar to that of MoO₂/NF, except that the addition of 100 mg of Fe(NO₃)₃·9H₂O to the precursor synthesis.

Preparation of s-FeMoOOH/NF

A typical three-electrode system were used to prepare s-FeMoOOH/NF. Among them, a carbon counter electrode and a SCE were used as the counter electrode and the reference electrode. And then, FeMoO₂/NF was placed in 1.0 M KOH solution as the working electrode. Subsequently, electrochemical anodic reconstruction was performed at a constant voltage (0.87 V *vs.* Hg/HgO) of 2 h to obtain the surface amorphous s-FeMoOOH/NF electrocatalysts.

Electrochemical measurements

The OER activity of samples were tested in CHI 660E electrochemical workstation with a typical three-electrode system. The counter electrode and the reference electrode were Graphite rod and a Hg/HgO electrode, respectively. The equation ($E_{RHE} = E_{Hg/HgO} + 0.0592pH + 0.098$ V) was applied to the conversion of the applied potentials. LSV curves were performed at a scan rate of 5 mV s⁻¹ with 100% iR-compensation. The electrochemically active surface areas (ECSA) were calculated from the CV curves at various scan rates. The electrochemical impedance spectroscopy (EIS) were obtained with frequencies ranging from 10⁵ Hz to 10⁻² Hz at 10 mA cm⁻². The stability tests were conducted under a constant voltage. Alkaline seawater was collected by dissolving 28 g of potassium hydroxide in natural seawater in a 500-mL volumetric bottle. During the measurement, high-purity O₂ has been bubbled through the electrolyte to saturate it and fix the reversible oxygen potential. The dimensions of the FeMoOOH/NF electrodes were 0.25 cm². The anion-exchange membrane (FAA-3–50) was purchased from Suzhou Sinero Technology Co., Ltd.

The Proton Reaction Order (ρ^{RHE}) represented the dependence of OER reaction kinetics on proton activity and was defined by the following formula:

$$\rho^{\text{RHE}} = \partial \text{log}(j) / \partial p H$$

In this case, the pH value had ranged from 12.5 to 13.5, and log(j) referred to the logarithm of the current density at 1.5 V versus RHE. When proton-coupled electron transfer reactions occurred, the OER kinetics were nearly independent of the pH value of the solution, resulting in a low ρ RHE. On the other hand, if non-synergistic proton-electron transfer was involved in the OER, the kinetics would display a strong pH-dependence, leading to a higher ρ^{RHE} value.

Regarding the ¹⁸O isotope labeling experiments, both FeMoOOH/NF and MoO_x/NF had first been activated by the electrochemical CV method (ranging from 0 to 1.8 V versus Hg/HgO, across 10 CV cycles) in an ¹⁸O-labeled KOH electrolyte. They then underwent an OER test (20 mA cm⁻² for 10 minutes) in 1.0 M KOH using regular H₂O. Following this, the gas was collected for GC-MS analysis.

The efficiency of electro-hydrogen energy conversion (η_{ETH}) and the electricity consumption per cubic meter of hydrogen $(E_{H2}, \text{kW h Nm}^{-3})$ were calculated using the unit electric quantity per cubic meter of hydrogen $(Q_u, \text{A h Nm}^{-3})$ and cell voltage (V, V) at an industrially relevant current density of 500 mA cm⁻², as follows:

$$Q_u = \frac{2N_A e}{3600 \times 22.43 \times 10^{-3}} = 2390 \ A \ h \ Nm^{-3}$$

where 1.48 V represents the thermal-neutral voltage for overall water splitting, and e and N_A denote the electron charge and Avogadro's number ($6.022 \times 10^{23} \text{ mol}^{-1}$), respectively.

For the Co₂Mo₃O₈/MoO₂/NF//FeMoOOH/NF electrolyzer,

$$E_{H2} = \frac{Q_u V}{1000} = 2390 \times 1.64 \div 1000 = 3.94 \ km \ h \ Nm^{-3}$$

$$\eta_{ETH} = \frac{1.48 \times Q_u}{E_{H2} \times 1000} \times 100\% = \frac{1.48 \times 2390}{3.94 \times 1000} \times 100\% = 89.7\%$$

DFT computations:

Theoretical calculations were performed via the Vienna ab initio software package (VASP). The computational procedure employed the gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) parameterization was used to represent the exchange-correlation energies. The phase structure was modeled using a $3 \times 3 \times 1$ k-point mesh in the Brillouin zone. Computational parameters included an energy cutoff of 300 eV, and convergence thresholds for force and energy were set to 0.05 eV·Å⁻¹ and 10⁻⁵ eV, respectively. The vacuum layer was 15 Å.

Characterization:

X-ray diffraction (XRD) was tested on the Bruker D8 focus. Hitachi S-4800 and JEOL JEM 2100 were used to study scanning electron microscope (SEM) and high-resolution transmission electron microscopy (HRTEM), respectively. The energy dispersive X-ray (EDX) element mapping images were studied on the TEM equipped. The X-ray photoelectron spectroscopy (XPS) spectra were tested on ESCALAB 250Xi. The in-suit Raman tests were performed on Renishaw inVia-Qontor using a 532 nm laser excitation. The inductively coupled plasma-mass spectrometry (ICP-MS) were evaluated by Varian 710-OES. In-situ attenuated total reflection infrared (ATR-IR) spectra was performed between 1.2 V to 1.7 V vs. RHE.

Figures

Fig. S1. Real time reaction temperature of carbothermal shocking process of MoO₂/NF.

Fig. S2. (b) OER polarization curves of MoO_2/NF at different temperatures.

Fig. S3. The schematic representation of anodic reconstruction.

Fig. S4. SEM of (a) FeMoOOH/NF-0 h and (b) FeMoOOH/NF-2 h.

Fig. S5. XPS survey spectrum of FeMoOOH/NF-2h.

Fig. S6. XPS spectrum of Mo 3d in MoO_x/NF .

Fig. S7. Alkaline solution: (a) OER polarization curves of FeMoOOH/NF for different reconstruction time and (b) OER polarization curves for different electrolyte concentrations containing Fe(NO₃)₃·9H₂O.

Fig. S8. Alkaline solution: CV curves of (a) FeMoOOH/NF and (b) MoO_x/NF. C_{dl} of (c)

FeMoOOH/NF and (d) MoO_x/NF.

Fig. S9. (a) CVs for as-prepared samples in phosphate buffer (pH 7), (b) TOF.

Fig. S10. Alkaline solution: EIS of FeMoOOH/NF, MoO_x/NF and MoO_2/NF .

Fig. S11. Comparison of overpotential.

Fig. S12. LSV curves of FeMoOOH/NF, Fe-NF and NF.

Fig. S13. (a) XRD of FeMoOOH/NF and (b) SAED of FeMoOOH/NF after the 100-hour

I-t test.

Fig. S14. TEM and HRTEM of FeMoOOH/NF after the 100-hour I-t test.

Fig. S15. Raman of FeMoOOH/NF after the 100-hour I-t test.

Fig. S16. ICP-MS tests of FeMoOOH/NF after the 100-hour I-t test.

Fig. S17. Schematic diagram of the synthesis of surface amorphous FeMoOOH/NF (s-

FeMoOOH/NF).

Fig. S18. TEM of s-FeMoOOH/NF.

Fig. S19. LSV curves of alkaline solution.

Fig. S20. Nucleophilic properties of atoms in MoO_x.

Fig. S21. Nucleophilic properties of atoms in FeMoOOH.

Fig. S22. Charge density difference plots.

Fig. S23. DOS of (a) MoO_x and (b) FeMoOOH.

Fig. S24. TDOS of (a) MoO_x and (b) FeMoOOH.

Fig. S25. p-band centers of MoO_x and FeMoOOH.

Fig. S26. Water droplets contact angle at NF.

Fig. S27. Water droplets contact angle at MoO_2/NF .

Fig. S28. Water droplets contact angle at FeMoOOH/NF.

Fig. S29. Digital images showing the bubble generation behavior and the corresponding statistics of size distribution of releasing bubbles: (a-d) NF.

Fig. S30. Digital images showing the bubble generation behavior and the corresponding statistics of size distribution of releasing bubbles: (a-d) MoO₂/NF.

Fig. S31. Digital images showing the bubble generation behavior and the corresponding statistics of size distribution of releasing bubbles: (a-d) FeMoOOH/NF.

Fig. S32. The scheme for a mechanism of bubble-detachment.

Fig. S33. Comparison of overpotential.

Fig. S34. Optical picture of AEM.

Tables

		η 10	η100	D.C.	
Catalysts	Electrolyte	(mV)	(mV)	Keterence	
FeMoOOH/NF	1 M KOH	-	240	This work	
Ru SAs-MoO _{3-x} /NF	1 M KOH	-	282	Adv. Sci. 2023, 10, 2300342	
Ir ₁ /Ni LDH-T	1 M KOH	228	-	Nat. Commun. 2024, 15, 559	
		266		ACS Nano 2024,	
LQINMP-C02O3	ТМКОП	200	-	10.1021/acsnano.3c11199	
Fe-Ni-CoOOH-TPA	1 M KOH	236	-	ACS Catal. 2024, 14, 1553–1566	
Co@MocCT	1 M KOH	300		Appl. Catal. B Environ. 346,	
$CO(w)$ $VIO_2 CI_x$	I M KOH	390	-	2024, 123731	
NiV _{0.1} -	1 М КОН		268	Adv Funct Mater 2024 2315040	
BLDH/NiCoP/NF	I M KOII	-	200	<i>Auv. 1 unci. Whitel.</i> 2027, 2515777	
V-Co ₂ P ₄ O ₁₂ /CC	1 M KOH	316	-	Adv. Funct. Mater. 2024, 2313974	
		251	-	J. Am. Chem. Soc. 2023, 145,	
10.0 wt 76 CO SAC	ΙΜΚΟΠ	551		8052-8063	
NiMoO4	1 M KOH	260	-	Nano-Micro Lett. 2023, 15, 30	
Li a MaOa/CEP	1 M KOH	158		ACS Materials Lett. 2023, 5,	
LI-u-WIOO3/CIT		430	-	1196–1201	
EaCoDDA VCN		218		Adv. Energy Mater. 2023,	
recorda-ven		210	-	2302403	
		270		Angew. Chem. Int. Ed. 2020,	
00/00304/11		270	-	59,6929 -6935	
		260		Angew. Chem. Int. Ed.2020,	
00/00304/00	ΙΜΚΟΠ	200	-	59,6929 –6935	
V _O -		101	220	Cham Eng I 177 2022 147016	
CoMoO4@Cu2S/CF	ΙΜΚΟΠ	101	520	Chem. Eng. J. 477, 2025, 147010	
				J. Energy Chem. 2023, 87, 286-	
	ΙΝΙΚΟΠ	270 -		270 -	294
FeOOH/Ni ₃ S ₂ /NF	1 M KOH	_	268	Small 2023, 2309371	

 Table S1. OER performance of recently reported catalysts in 1 M KOH.

Co ₃ Mo/Mo ₂ C@NC	1 M KOH	282	355	Adv. Funct. Mater.2024, 2314247
MoS ₂ @Co	1 M KOH	370	-	Energy Environ. Mater. 2024, 0, e12702
NiCo ₂ O ₄ @CeO ₂	1 M KOH	228	-	Chem. Eng. J. 482, 2024, 148787
Ni ₃ S ₂ /Fe ₃ O ₄ /NF	1 M KOH	220	-	J. Colloid Interface Sci. 2024, 660, 440-448

		η_{10}	η 100		
Catalysts	Electrolyte	(mV)	(mV)	Reference	
Ε ₄ Μ ₂ ΟΟΗ/ΝΕ	1 M KOH		200	This work	
remount/mr	Seawater	-	300	1 nis work	
	1 M KOH		320	Appl. Catal. B Environ. 338,	
C021V103O8/1V10O2/1NF	Seawater	-	(η_{40})	2023, 123015	
E-M-NI-/NIE	1 M KOH		210	Appl. Catal. B Environ. 340,	
F CIVIOINI/INF	Seawater	-	~310	2024, 123277	
(NiFaCaV)S.	1 M KOH		200	J. Colloid Interface Sci. 2023,	
$(NIFeCOV)S_2$	Seawater	-	299	<i>645, 724–734</i> .	
NG D E D NIE	1 M KOH	240	205	Adv. Funct. Mater.2021, 31,	
1N12 F -FC2F/1NF	Seawater	240	303	2006484.	
Ea MaO./NE	1 M KOH		240	Mater. Horiz., 2024,	
FE-101002/1NF	Seawater	-	540	10.1039/D3MH01757E	
CoSo/MoSo	1 M KOH	250		ACS Sustain. Chem. Eng. 2022,	
0050/1010502	Seawater	330	-	10, 30, 9980–9990	
NiTa@EaOOU	1 M KOH		280	Chem. Eng. J. 2023, 474,	
INTIE W FEOOD	Seawater	-	280	145568-145575	

 Table S2. OER performance of recently reported catalysts in 1 M KOH Seawater.

		η_{100}	η_{1000}	
Catalysts	Electrolyte	(V)	(V)	Reference
Co2Mo3O8/MoO2/NF // FeMoOOH/NF	1 М КОН	1.53	1.75	This work
R-CoC ₂ O ₄ @Mxene // R- CoC ₂ O ₄ @MXene	1 M KOH	~1.61 (ŋ ₈₀)	-	Nat. Commun. 2022, 13, 5785
Fe-Ni ₂ Pv Fe-Ni ₂ Pv	1 M KOH	-	1.86	Adv. Mater. 2024, 36, 2307395
V-Co ₂ P ₄ O ₁₂ /CC // V-		1.60		Adv. Funct. Mater. 2024,
$Co_2P_4O_{12}/CC$		(η_{10})	-	2313974
EMCO/NE // EMCO/NE		~1.65		Appl. Catal. B Environ.
	I M KOII	(η_{40})	-	2023, 328, 122488
CoEo NieP// CoEo NieP		1 72	1.84	Adv. Energy Mater. 2023,
Core-mi2r// Core-mi2r	I M KOII	1.75	(ŋ ₅₀₀)	2301475
		1 50	-	Appl. Catal. B Environ.
re-r-cm0// re-r-cm0	I M KOII	1.39		2024, 346, 123741
Ru SAs-MoO _{3-x} /NF // Ru SAs-		1 71		Adv. Sci. 2023, 10,
MoO _{3-x} /NF		1./1	-	2300342

 Table S3. OWS performance of recently reported catalysts in alkaline water.

Catalysts	Electrolyte	η100 (V)	η1000 (V)	Reference
Co2Mo3O8/MoO2/NF/NF // FeMoOOH/NF	1 M KOH Seawater	1.61	1.89	This work
R-CoC ₂ O ₄ @Mxene // R- CoC ₂ O ₄ @MXene	1 M KOH Seawater	~1.70 (ŋ ₈₀)	-	Nat. Commun. 2022, 13, 5785
CoFe-Ni ₂ P// CoFe-Ni ₂ P	1 M KOH Seawater	1.74	1.89 (η ₅₀₀)	Adv. Energy Mater. 2023, 2301475
Ru SAs-MoO _{3-x} /NF // Ru SAs- MoO _{3-x} /NF	1 M KOH Seawater	1.76		Adv. Sci. 2023, 10, 2300342
MoO _x /Co(OH) ₂ /NF // NiFe- LDH/NF	1 M KOH Seawater	1.74	-	Nano Energy 2024, 121, 109246
FeMoNi/NF // FeMoNi/NF	1 M KOH Seawater	~1.68	-	Appl. Catal. B Environ. 2024, 340, 123277
Mo–Ru/CNTs//RuO ₂	1 M KOH Seawater	1.54 (η ₄₀)	_	J. Mater. Chem. A, 2023,11, 22430- 22440
Co2Mo3O8/MoO2/NF // Co2Mo3O8/MoO2/NF	1 M KOH Seawater	~1.76	-	Appl. Catal. B Environ. 2024, 338, 123015
Pt2/Ni(OH) ₂ /NF // RuO ₂ /NF	1 M KOH Seawater	`1.80	-	Appl. Catal. B Environ. 2023, 331, 122703

 Table S4. OWS performance of recently reported catalysts in alkaline seawater.

Catalysts	Solar cell	STH efficiency	Reference
	Perovskite solar cell	14.3	This work
Co2Mo3O8/Mo	Triple-junction solar cell (GaInP ₂ /InGaAs/Ge)	~18.3	Nat. Sustain. 2024, 7,158-167
O ₂ /NF//FeMo OOH/NF	Commercial GaAs solar cell	~19.6	Carbon Energy, 2023, e217
	Perovskite single- junction device stack glass/ITO/NiO _x /perovskit e/C60/Au,	~21.3	J. Mater. Chem. A, 2021,9, 14085-14092

 Table S5. Solar-to-hydrogen (STH) conversion efficiency with different reported solar cell.

Table S6. Comparison between $Co_2Mo_3O_8/MoO_2/NF//FeMoOOH/NF$ and other reported electrolysers of unit electricity consumption per cubic meter hydrogen (E_{H2}) and electricity-to-hydrogen energy conversion efficiency (η_{ETH}).

Electrolyser	E _{H2} (kW h m ⁻³)	ηетн (%)	Reference
Co2Mo3O8/MoO2/NF//FeMoOOH/NF (1 M KOH Seawater)	4.04	87.6	This work
Co2Mo3O8/MoO2/NF//FeMoOOH/NF (1 M KOH)	3.94	89.7	This work
NMFSOH	3.99	88.7	Adv. Energy Mater. 2023, 13, 2301222
Fe (FeNiMo)O ₂ /NF	3.97	89.1	Small, 2024, 20, 2404786
NiFe LDH NiFe LDH	4.49	78.8	Small, 2022, 18, e2104354
NiFe LDH-PMo NiFe LDH-PMo	4.44	79.2	Adv Mater, 2022, 34, e2110696
NiFe NiFe	4.06	88.1	Energ. Environ. Sci., 2020, 13, 86-95.
NiMoO/NiMoS NiMoO/NiMoS	4.21	84.0	Nat Commun, 2020, 11, 5462-5474
CoMoS CoMoS	4.52	78.2	Angew. Chem. Int. Ed., 2020, 59, 1659-1665.
NiFeMoO NiFeMoO	6.28	56.3	Adv Sci, 2020, 7, 1902034.

Material	Suppliers	Price (US\$ kg ⁻¹)	Component price in catalyst (US\$ m ⁻²)	Total price of catalyst (US\$ m ⁻²)
(NH4)6M07O24 ⁻ 4H2O	Shanghai Aladdin Biochemical Technology Co., Ltd	80.8	37.0	
Fe(NO ₃) ₃ ·6H ₂ O	Shanghai Aladdin Biochemical Technology Co., Ltd	47.5	17.2	84.2
Ni foam	Kunshan Guangjiayuan Technology Co., Ltd	-	~30	-

 Table S7. Price of the scaling-up prepared FeMoOOH/NF catalyst.

 Table S8. Price of the scaling-up prepared FeMoOOH/NF.

Catalysts	Support	Suppliers	Price per 1 m ² catalyst (US\$ m ⁻²)
FeMoOOH/NF	Ni foam	This work	84.27
Raney Ni	Ni foam	Jiangsu Leini Metal Tech. Co., Ltd	60
Pt black	Carbon cloth	Fuel Cell store	9100