Supporting Information

A comprehensive investigation of Sr segregation effects on the hightemperature oxygen evolution reaction rate

Weicheng Feng,^{‡ab} Geng Zou,^{‡ab} Tianfu Liu,^{‡ab} Rongtan Li,^{‡ab} Jingcheng Yu,^{ab} Yige Guo,^{ab} Qingxue Liu,^{ab} Xiaomin Zhang,^a Junhu Wang,^{ac} Na Ta,^a Mingrun Li,^a Peng Zhang,^d Xingzhong Cao,^d Runsheng Yu,^d Yuefeng Song,^{*ae} Meilin Liu,^{*e} Guoxiong Wang,^{*af} and Xinhe Bao^a

^aState Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. ^bCollege of Energy, University of Chinese Academy of Sciences, Beijing 100049, China Center for Advanced Mössbauer Spectroscopy, Dalian Institute of Chemical Physics, ^cChinese Academy of Sciences, Dalian 116023, Liaoning, China

^dMulti-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China

^eSchool of Materials Science and Engineering, Georgia Institute of Technology, Atlanta 30332, USA

^fDepartment of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200438, China

‡ These authors contributed equally to this work

*E-mail: songyf2014@dicp.ac.cn, meilin.liu@mse.gatech.edu, wanggx@dicp.ac.cn

Fig. S1 | (a) SEM images, and (c) EDS elemental maps of SCF-SDC anode after O_2 treatment at 800 °C for 3 h, and (b) SEM images, and (d) EDS elemental maps of SCF-SDC anode after stability test for 487 h.

Fig. S2 | SEM images SCF anode after treatment for 1 h at pure O_2 atmosphere. (a) SCF anode surface, (b) electrode/current collector interface, (c) electrode/electrolyte interface, (d) EDX of Sr aggregation at the boundaries.

Fig. S3 | Rietveld refinement results of the XRD patterns for (a) SCF and (b) SCF-O₂.

Fig. S4 | Electrical conductivity curves of SCF, SCF-d and SCF- O_2 at different temperatures in air.

Fig. S5 | The different surface or interface oxygen vacancy sites.

Fig. S6 | Models used for the DFT calculation. (a) SCF and (b) SCF-d for the calculation of E_{vfb} . Color code: O (red ball), Sr (green ball), Co (dark blue ball), Fe (light blue ball), respectively.

Fig. S7 | ${}^{18}O_2$ isotope exchange profiles of different samples.

Fig. S8 | ECR curves of SCF and SCF-d in air at 800 °C.

Fig. S9 | Schematic diagram of *quasi in-situ* TOF-SIMS measurement. (a) The pretreatment of SOEC with different anode by ${}^{18}O_2$ gas, and the grey box is the test area for elemental mapping of TOF-SIMS. (b) Schematic diagram of TOF-SIMS measurement. Color code: ${}^{18}O$ (green balls), ${}^{16}O$ (blue balls), and Bi (yellow balls).

Fig. S10 | Two-dimensional spectra of TOF-SIMS for different samples. Total O⁻ signal intensity distribution of (a) SCF and (b) SCF-d.

Fig. S11 | Schematic diagram of Ar ion etching and XPS measurements.

Fig. S12 | Variation of ohmic resistance at OCV and the amount of surface Sr species of SCF electrode under different conditions.

Fig. S14 | Equivalent circuit for the CNLS fitting of EIS curves.

Fig. S15 The SEM image of the SOEC.

Sampla		 Sr /Sr (%)			
Sample	${ m Sr}^{3+}(3/2)$	Sr ⁴⁺ (3/2)	${ m Sr}^{3+}(1/2)$	Sr ⁴⁺ (1/2)	
SCF	132.82	134.13	134.60	135.93	39.99
SCF-O ₂	131.12	132.76	133.30	134.77	60.60

Table S1 | Fitting results of Sr 3d XPS spectra of SCF and SCF-d.

Sampla	C ₁		C ₂		C ₃	
Sample —	τ_1 (ps)	I ₁ (%)	$\tau_2 (ps)$	I ₂ (%)	$\tau_3 (ps)$	I ₃ (%)
SCF	102.1	21.2	199.5	78.0	1384	0.856
SCF-O ₂	112.8	37.9	207.1	61.2	1527	0.91

 Table S2 | Positron annihilation lifetime measurement results for SCF and SCF-O2.

Atom	Wyck.	s.o.f.	X	У	Z
01	16m	0.909569	0.119014	0.119014	0.277600
02	16k	0.894607	0.124127	0.624127	0.250000
Sr1	8j	1.000000	0.242032	0.500000	0.000000
Sr2	8i	1.000000	0.254532	0.000000	0.000000
O3	8h	1.000000	0.237501	0.237501	0.000000
Fe1	8f	0.300000	0.250000	0.250000	0.250000
Fe2	4e	0.300000	0.000000	0.000000	0.250000
Fe3	4d	0.300000	0.000000	0.500000	0.250000
O4	4c	1.000000	0.000000	0.500000	0.000000
05	2a	1.000000	0.000000	0.000000	0.000000
Col	8f	0.700000	0.250000	0.250000	0.250000
Co2	4e	0.700000	0.000000	0.000000	0.250000
Co3	4d	0.700000	0.000000	0.500000	0.250000

 Table S3 | Rietveld refinement parameters of SCF sample.

Wyck.	s.o.f.	X	У	Z
2a	0.494631	0.000000	0.000000	0.277600
16m	0.609941	0.119000	0.119000	0.000000
8j	1.000000	0.242300	0.500000	0.000000
8i	1.000000	0.251000	0.000000	0.000000
8h	1.000000	0.234000	0.234000	0.000000
4e	0.300000	0.000000	0.000000	0.250000
8f	0.300000	0.250000	0.250000	0.250000
4d	0.300000	0.000000	0.500000	0.250000
16k	1.000000	0.123700	0.623700	0.250000
4c	1.000000	0.000000	0.500000	0.000000
4e	0.700000	0.000000	0.000000	0.250000
4e	0.700000	0.000000	0.000000	0.250000
8f	0.700000	0.250000	0.250000	0.250000
	Wyck. 2a 16m 8j 8i 8h 4e 8f 4d 16k 4c 4e 8f 4d 8f 4d 4e 8f 4c 4e 4e 4e 4f 4f 4f 4f	Wyck.s.o.f.2a0.49463116m0.6099418j1.0000008i1.0000008h1.0000004e0.3000004f0.3000004d0.30000016k1.0000004c1.0000004e0.7000004e0.7000004e0.7000008f0.700000	Wyck.s.o.f.x2a0.4946310.00000016m0.6099410.1190008j1.0000000.2423008i1.0000000.2510008h1.0000000.2340004e0.3000000.0000008f0.3000000.2500004d0.3000000.1237004c1.0000000.1237004e0.7000000.0000004e0.7000000.0000008f0.7000000.250000	Wyck.s.o.f.xy2a0.4946310.0000000.00000016m0.6099410.1190000.1190008j1.0000000.2423000.5000008i1.0000000.2510000.0000008h1.0000000.2340000.2340004e0.3000000.0000000.0000008f0.3000000.2500000.2500004d0.3000000.0000000.5000004c1.0000000.1237000.6237004c1.0000000.0000000.5000004e0.7000000.0000000.0000004e0.7000000.0000000.2500004e0.7000000.0000000.2500004e0.7000000.0000000.0000004e0.7000000.0000000.2500004e0.7000000.2500000.250000

Table S4 | Rietveld refinement parameters of SCF-O2 sample.

Sample		Fe ⁴⁺ /Fe				
Sample	$Fe^{3+}(3/2)$	$Fe^{4+}(3/2)$	$^{4+}(3/2)$ Fe ³⁺ (1/2) Fe ⁴⁺ (1/2) Sate			(%)
SCF	709.45	711.39	722.79	724.22	714.67	46.17
SCF-d	709.47	711.23	722.78	724.36	714.88	52.50

Table S5 | Fitting results of Fe 2p XPS spectra of SCF and SCF-d.

Sampla		Co ⁴⁺ /Co				
Sample	$Co^{3+}(3/2)$	$Co^{4+}(3/2)$	$Co^{3+}(1/2)$	$Co^{4+}(1/2)$	Satellite	(%)
SCF	781.01	779.71	796.44	794.94	784.71	43.65
SCF-d	781.18	779.78	796.68	795.12	784.73	47.66

Table S6 | Fitting results of Co 2p XPS spectra of SCF and SCF-d.

Sampla	Sub-	Ea spacios	IS	QS	Content
Sample	spectra	r e species	(mm s ⁻¹)	(mm s ⁻¹)	(%)
	D1	Fe ³⁺ (CN=5)	0.23(1)	0.28(3)	37.58
SCE	D2	Fe ⁴⁺ (CN=6)	-0.07(2)	0.50(3)	33.06
SCr	D3	Fe ³⁺ (CN=6)	0.29(3)	0.56(4)	18.70
	S 1	Fe ⁴⁺ (CN=6)	-0.17(1)	-	10.66
	D1	Fe ³⁺ (CN=5)	0.27(1)	0.28(3)	27.29
SCF-d	D2	Fe ⁴⁺ (CN=6)	-0.02(1)	0.51(5)	37.88
	D3	Fe ³⁺ (CN=6)	0.33(3)	0.56(4)	20.95
	S 1	Fe ⁴⁺ (CN=6)	-0.12(2)	-	13.88
	51	$\mathbf{U} = (\mathbf{U} - \mathbf{U})$	-0.12(2)	-	15.0

 Table S7 | ⁵⁷Fe-Mössbauer parameters for SCF and SCF-d.

The reference used for the IS test is α -Fe

Surface oxygen vacancy formation energy (eV)					
Site 1	Site 2	Site 3			
0.90	2.19	0.40			
0.72	2.00	0.23			
2.08	3.21	0.48			
	Surface oxyge Site 1 0.90 0.72 2.08	Surface oxygen vacancy formation Site 1 Site 2 0.90 2.19 0.72 2.00 2.08 3.21			

Table S8 | E_{vfs} of different sites in SCF, SCF-d and SCF-O₂.

Sample	Bulk oxygen vacancy formation energy (eV)					
Sample	Site 1	Site 2	Site 3	Site 4		
SCF	1.10	1.00	0.78	0.73		
SCF-d	-0.12	-0.12	-0.66	-0.33		

Table S9 E_{vfb} of different sites in SCF	and SCF-d.
---	------------

Sample		0 /0 (%)			
~ F	H ₂ O	OH-	O ⁻ /O ₂ ²⁻	O _{lat.}	- O _{ads.} /O(/0)
SCF-SDC	532 50	531.10	529.76	528 41	61 69
RT, OCV	552.50	551.10	529.10	520.41	01.09
SCF-SDC	532 50	531.02	520.63	528 40	26.01
1000 K, OCV	552.50	551.02	529.05	526.40	20.01
SCF-SDC	532 49	531.00	520 62	528 /1	32.06
1000 K, 1 mA	332.49	551.00	527.02	526.41	52.00
SCF-d-SDC	532 51	531 10	529 74	528 46	63 50
RT, OCV	552.51	551.10	527.14	520.40	05.50
SCF-d-SDC	522 40	530.04	520.60	528 20	25 20
1000 K, OCV	552.49	550.94	529.00	528.59	23.29
SCF-d-SDC	532 57	531.00	520 50	578 15	35 17
1000 K, 1 mA	552.51	331.00	527.57	520.45	33.42

 Table S10 | In-situ XPS analysis of O 1s spectra for SCF and SCF-d anodes under different conditions.

Sample	R1 (Ω cm ²)	R2 (Ω cm ²)	R3 (Ω cm ²)
SCF-SDC	0.0213	0.0344	0.0997
SCF-d-SDC	0.0072	0.0152	0.0665
SCF-O ₂ -SDC	0.0091	0.0128	0.0607

 Table S11 | Resistance of each electrode process for SOECs with different anodes.