Supplementary Information (SI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2025

Contents:

Figures S1-8

Tables S1-3

Reference

Figue S1. Fourier transform infrared transmission spectra of the films. Fourier transform infrared transmission spectra of PVA and *c*PVA films with different ratios of crosslinker (boric acid, 1%, 3%, 5%, 10% and 20%). The wavenumber bands centered at 661 cm⁻¹ and 3300 cm⁻¹ correspond B-O group and -OH group respectively.

Figure S2. The transmission of the electrodes after annealed at 200 °C for different times. The transmission of the AgNWs-em-PVA (a) and AgNWs-em-cPVA (b) electrodes after annealed at 200 °C for 0 min, 5 min, 10 min and 20 min. (c) The transmission at 550 nm of AgNWs-em-PVA and AgNWs-em-cPVA electrodes after annealed at 200 °C for different durations. Data are presented as mean values \pm standard deviation over 10 samples for each electrode. Curves drawn on top of data are guides to the eye.

Figure S3. The changes in color and transmittance of the electrodes after annealed at 160 °C for different times. Photos of color changes (a) and transmittance (b) of the AgNWs-em-PVA (87%) electrodes after annealed at 160 °C for 0 min, 5 min, 10 min and 20 min. Curves drawn on top of data are guides to the eye.

AgNWs-em-PVA (87%)

AgNWs-em-PVA

AgNWs-em-cPVA

Figure S4. The photos of the electrodes used for testing moisture adsorption rate. The electrode of the AgNWs-em-PVA (87%), AgNWs-em-PVA and AgNWs-em-*c*PVA electrodes, with dimensions of 9.5 cm \times 9.5 cm, were adhered to glass/PDMS substrates and exposed in an environment with a humidity of 60% and a temperature of 25 °C.

Figure S5. The moisture adsorption rate of the electrodes. The rate of change in the AgNWsem-PVA (87%) electrode mass (calculated as the difference between real-time mass and initial mass, divided by the initial mass) varies with the duration of placement. Data are presented as mean values \pm standard deviation over 10 samples. Curves drawn on top of data are guides to the eye.

Figure S6. Fourier transform infrared transmission spectrum of the *c***PVA.** Fourier transform infrared transmission spectrum of *c*PVA films with crosslinking degree of 5% (b) and 20% (b). The inset in (b) shows photographs of a 20% crosslinked PVA film before and after annealing at 200 °C for 60 minutes. Curves drawn on top of data are guides to the eye.

Figure S7. Thermal stability of 1-cm² flexible devices based on AgNWs-em-*c*PVA electrodes at 80 °C in a N₂-filled glovebox. Data are presented as mean values \pm standard deviation over 10 samples. Curves drawn on top of data are guides to the eye.

Figure S8. The transmittance of the UV filter with the wavelength from 300 nm to 1,000 nm. Curves drawn on top of data are guides to the eye.

Substrate	Placement time	$V_{\rm OC}({ m V})$	$J_{ m SC}$ (mA/cm ²)	FF	PCE (%)
AgNWs-em-PVA	0 h	0.84	25.27	0.76	$\frac{16.27}{(16.11\pm0.14)^{a}}$
	24 h	0.84	25.19	0.73	15.27 $(15.18 \pm 0.25)^{a}$
	96 h	0.83	25.13	0.68	14.24 $(14.08 \pm 0.38)^{a}$
	168 h	0.83	25.09	0.65	13.47 $(13.41 \pm 0.49)^{a}$
	0 h	0.84	25.32	0.77	16.38 (16.27 ± 0.13) ^a
	24 h	0.84	25.29	0.76	16.14 (16.07 ± 0.15) ^a
ади ws-сш-сг V А	96 h	0.84	25.27	0.76	16.11 (16.04 ± 0.18) ^a
	168 h	0.84	25.31	0.75	15.92 (15.89 ± 0.19) ^a

Table S1. Photovoltaic parameters of flexible OSCs (active area: 1 cm^2) based on the AgNWs-em-PVA and AgNWs-em-*c*PVA electrodes after being exposed in air with a R.H. of 60% and temperature of 25 °C for different time. The configuration of flexible OSCs is AgNWs-em-PVA or AgNWs-em-*c*PVA/PEI-Zn/PM6:BTP-eC9:PC₇₁BM/MoO₃/Ag.

^{*a*}Data are presented as mean values \pm standard deviation from 15 devices.

Table S2. Photovoltaic parameters of flexible OSCs (active area: 1 cm^2) based on the AgNWs-em-PVA or AgNWs-em-*c*PVA electrodes with the annealing temperature of the electron transport layer at 200 °C. The configuration of flexible OSCs is AgNWs-em-PVA/PEI-Zn/PM6:BTP-eC9:PC₇₁BM/MoO₃/Ag.

Substrate	$V_{\rm OC}({ m V})$	$J_{ m SC}$ (mA/cm ²)	FF	PCE (%)
AgNWs-em-PVA	0.84	23.14	0.72	$14.07~(13.97\pm0.11)^{\rm a}$
AgNWs-em-cPVA	0.84	25.26	0.76	16.13 (16.08 ± 0.12) ^a

^{*a*}Data are presented as mean values \pm standard deviation from 15 devices.

Year	Device structure	Area / cm ²	PCE / %
2011	PET/Cr/Al/Cr/P3HT:PCBM/PEDOT:PSS/Au-grid	13.2	2.2 ¹
2012	PET/Ag/ZnO/P3HT:PCBM/PEDOT:PSS/Ag	35.5	0.44 ²
2014	Ag grid&HC PEDOT:PSS/ZnO/MH301:PCBM/PFN/PEDOT:PSS(HTL)/ZnO/M H306:PCBM/PFN/PEDOT:PSS(HTL)/HC PEDOT:PSS&Ag grid	52.2	1.76 ³
2015	DET/Cr/A1/Cr/D2UT.DCDM/DEDOT.DSS/Accrid	32.55	1.78 4
	PET/CI/AI/CI/PSHT:PCBM/PEDOT:PSS/Ag Ond	6.10	2.72 4
2019	Embedded silver grid substrate/PEDOT:PSS/ZnO/P3HT:PCBM/PEDOT:PSS/Ag	36	1.84 5
2020	PET/Ag-grid/PEDOT:PSS/ZnO/PTB7-	25	10.09 6
	Th:COi8DFIC:PCBM/MoO ₃ /Ag	50	9.05 ⁶
2022	PET/Ag-grid/PEDOT:PSS/ZnO/PM6:Qx-1/MoO ₃ /Ag	30	12.2 7
2023	PET/Ag-grid/PEDOT:PSS/ZnO/AL/MoO ₃ /Ag	30	13.08 8
2023	PET/Ag/PEI-Zn/PM6:BTP-eC9/PEDOT:F/AgNWs-polymer	21	12.3 ⁹
2023	PET/Ag-grid/PEDOT:PSS/ZnO/AL/MoO ₃ /Ag	46.2	13.25 10
2024	AgNWs-em-PVA/PEI-Zn/PM6:BTP-eC9:PC ₇₁ BM/MoO ₃ /Ag	41	14.04 11
this work	AgNWs-em-cPVA/PEI-Zn/PM6:BTP-eC9:PC ₇₁ BM/MoO ₃ /Ag	52.3	14.78

Table S3. Summary of the efficiency of flexible large-area modules prepared based on non-ITO electrodes.

Reference

- 1. B. Zimmermann, H. F. Schleiermacher, M. Niggemann and U. Würfel, *Sol. Energy Mater. Sol. Cells*, 2011, **95**, 1587-1589.
- 2. D. Angmo, M. Hösel and F. C. Krebs, Sol. Energy Mater. Sol. Cells, 2012, 107, 329-336.
- T. R. Andersen, H. F. Dam, M. Hosel, M. Helgesen, J. E. Carle, T. T. Larsen-Olsen, S. A. Gevorgyan, J. W. Andreasen, J. Adams, N. Li, F. Machui, G. D. Spyropoulos, T. Ameri, N. Lemaitre, M. Legros, A. Scheel, D. Gaiser, K. Kreul, S. Berny, O. R. Lozman, S. Nordman, M. Valimaki, M. Vilkman, R. R. Sondergaard, M. Jorgensen, C. J. Brabec and F. C. Krebs, *Energy Environ. Sci.*, 2014, 7, 2925-2933.
- 4. D. Kaduwal, H.-F. Schleiermacher, J. Schulz-Gericke, S. Schiefer, Y. Liang Tan, J. Zhang, B. Zimmermann and U. Würfel, *Sol. Energy Mater. Sol. Cells*, 2015, **136**, 200-205.
- 5. S.-W. Kwak, S.-M. Yoon, S.-M. Yu, Y. Ju and D. Kim, *Sol. Energy Mater. Sol. Cells*, 2019, **193**, 169-177.
- 6. G. Wang, J. Zhang, C. Yang, Y. Wang, Y. Xing, M. A. Adil, Y. Yang, L. Tian, M. Su, W. Shang, K. Lu, Z. Shuai and Z. Wei, *Adv. Mater.*, 2020, **32**, 2005153.
- 7. Y.-F. Shen, H. Zhang, J. Zhang, C. Tian, Y. Shi, D. Qiu, Z. Zhang, K. Lu and Z. Wei, *Adv. Mater.*, 2023, **35**, 2209030.
- 8. C. Tian, J. Zhang, Y. Shen, H. Zhang, Z. Zhang, D. Qiu, L. Zhang and Z. Wei, *Sol. RRL*, 2023, 7, 2300349.
- 9. C. Xie, Y. Liu, W. Wei and Y. Zhou, Adv. Funct. Mater., 2023, 33, 2210675.
- C. X. Wang, X. M. Ma, Y. F. Shen, D. Deng, H. Zhang, T. Wang, J. Q. Zhang, J. Li, R. Wang, L. L. Zhang, Q. Cheng, Z. Q. Zhang, H. Q. Zhou, C. Y. Tian and Z. X. Wei, *Joule*, 2023, 7, 2386-2401.
- 11. X. Lu, C. Xie, Y. Liu, H. Zheng, K. Feng, Z. Xiong, W. Wei and Y. Zhou, *Nat. Energy*, 2024, **9**, 793-802.