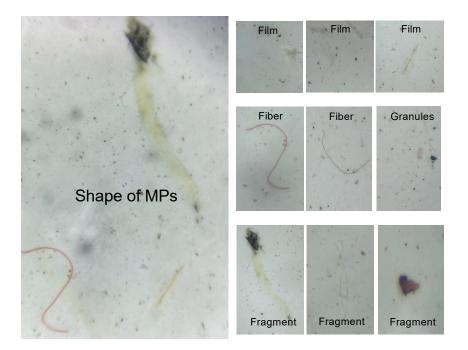
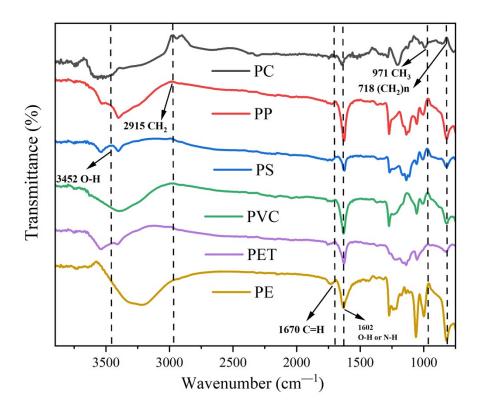
Supporting information

Abundance, characteristics, and risk assessment of microplastics in summer of urban river eastern China

Luming Wang^a, Juan Huang^{a,*}, Ming Chen^b, Hui Jin^b, Yufeng Wu^a, Xuan Chen^a


^a Department of Municipal Engineering, School of Civil Engineering, Southeast

University, Nanjing, 210096, China.


^b Nanjing Research Institute of Environmental Protection, Nanjing 210008,

China.

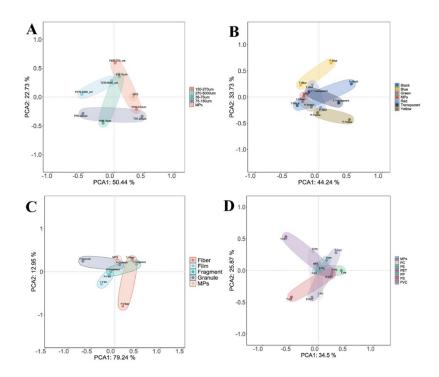

Fig.S1 Photographs of typical microplastics identified by microscopes	2
Fig.S2 ATR-Fourier transform infrared spectra (FTIR) of the selected microplastics _	3
Fig.S3 PCA analysis of MPs concentration and characterstics	4
Fig.S4 The potential risk index of different polymer type (Delete PC and PVC)	5
Table.S1 Sampling locations for microplastics of Qinhuai River in Nanjing, eastern Ch	ina 6
Table S2 Hazard scores for microplastic polymers	7
Table S3: Categories employed in the microplastics polymeric risk assessment (H), pollution loading index (PLI)	8
Table S4 Risk level criteria for microplastic pollution	9
Table S5Risk level criteria for microplastic pollution (Exclude PC and PVC content)) 10
Table S6 The value of the pollution load index in each sampling sites (C0i takes mean value of 218 items/L and 278 items/L in Plum rain and Typhoon rain, respectively)	n 11

Fig.S2 ATR-Fourier transform infrared spectra (FTIR) of the selected microplastics

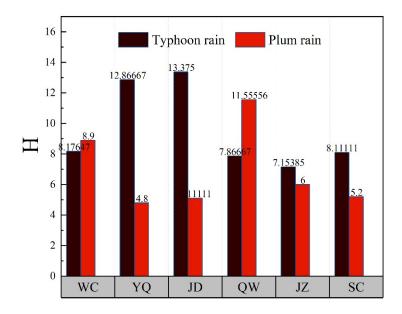


Fig.S3 PCA analysis of MPs concentration and characteristics

The correlation between microplastic concentration and characteristics in different rain seasons can be observed by principal component analysis (PCA). T represents typhoon rain seasons, while P represents plum rain seasons (Fig.S3). Microplastic concentrations are easier to correlate with typhoon rain seasons (Fig.S3A and Fig.3B). The abundance of MPs was significant with the smallsized MPs (75-150 μ m and 38-75 μ m) and colors of red, green and blue. In contrast, microplastics are more related to polymer type in the plum rain season, with the predominant correlation of PP, PE and PET (Fig. S3D). For the shape of microplastics, the correlation was revealed to the Fragment instead of the rainy seasons (Fig. S3C).

Sampling sites	Location	Longitude (E)	Latitude (N)
WC	Wucha Bridge	118.90	31.77
YQ	Yang Qiao(Bridge)	118.85	31.88
JD	Jiangjundadao Bridge	118.77	31.96
QW	Qiqiaowen Bridge	118.83	32.01
JZ	Jiezhi Estuary	118.67	31.96
SC	Sancha Estuary	118.73	32.08

Table.S1 Sampling locations for microplastics of Qinhuai River in Nanjing, eastern China

Table S2 Hazard scores for microplastic polymers

Polymer	Hazard score (highest level)	
РР	1	
PET	4	
PE	11	
PS	30	
PVC	10551	
РА	47	
РС	1177	

Table S3: Categories employed in the microplastics polymeric risk assessment (H),

		Ecologic	al risk level	
items -	Ι	II	III	IV
Ecological Risk Index (H)	<10	10-100	101-1000	>1000
Pollution Load Index (PLI)	<10	10-20	20-30	>30

pollution loading index (PLI)

Value of the polymer index (H)	<10	10-100	100-1000	>1000
Typhoon rain August				WC (2008.59) YQ (1498.13)
			JD (819.94) SC (138.89)	QW (2821.47)
				JZ (2623.08)
Plum rain June				WC (1181.7)
			JZ (398.33)	YQ (1177.6) JD (1439)
				QW (1445.44)
				SC (4225.6)
Risk category	Ι	II	III	IV

Table S4 Risk level criteria for microplastic pollution

Value of the polymer index (H)	<10	10-100	100-1000	>1000
	WC (8.18)			
	YQ (12.87)			
Typhoon rain	QW (7.87)	JD (13.38)		
August	JZ (7.15)			
	SC (8.11)			
	WC (8.9)			
	YQ (4.8)			
Plum rain	JD (5.11)	QW (11.56)		
June	QW (6)			
	SC (5.2)			
Risk category	Ι	II	III	IV

 Table S5
 Risk level criteria for microplastic pollution (Exclude PC and PVC content)

Table S6	The value of the pollution load index in each sampling sites (C_{0i} takes mean
Tuble 50	The value of the pollution load mues in each sampling sites (^{of} takes mean

Gamen ¹ ing sites	Value of the pollution load index (PLI)		
Sampling sites	Typhoon rain	Plum rain	
WC	1.48	1.22	
YQ	1.49	1.05	
JD	1.34	1.23	
QW	1.84	1.25	
JZ	1.19	1.48	
SC	1.53	1.35	

value of 218 items/L and 278 items/L in Plum rain and Typhoon rain, respectively)