Supporting Information

Cu(II) inhibited the transport of tetracycline in porous media: Role of

complexation

Chang Xu^{a, b}, Bo Gong^{a, b*}, Shan Zhao^{a, b}, Xiao-Min Sun^c, Shu-Guang Wang^{a, b, d, e}, Chao

Song^{a, b*}

^a Shandong Key Laboratory of Water Pollution Control and Resource Reuse,

School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China

^b Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China

^c Environment Research Institute, Shandong University, Qingdao 266237, China ^d Sino-French Research Institute for Ecology and Environment (ISFREE), School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China

^e WeiHai Research Institute of Industrial Technology of Shandong University, Weihai, 264209, China

^{*} Corresponding author. Tel.: +86 532 58630936; Fax: +86 532 58630907.

E-mail address: songchao@sdu.edu.cn (Chao Song); bogong@sdu.edu.cn (Bo Gong)

Figure Captions

Fig. S1 The breakthrough curves of TC transport in saturated porous media in the presence of Cu(II) in seawater (A) and freshwater (B).

Fig. S2 The optimized structures of (A) TC, (B-D) TC-Cu complex A, B, and C with atomic number labels.

Fig. S3 The optimized adsorption structure of (A) Complex A (CuHTC^{\pm}), (B) Complex B (CuHTC^{\pm}) and (C) Complex C (Cu₂TC^{\pm}) on SiO₂ (001) surface with only weak intermolecular interactions.

Fig. S4 The PDOS of (A) TC-SiO₂, (B) Complex A-SiO₂, (C) Complex B-SiO₂, and (D) Complex C-SiO₂.

Table S1 Common ions and water quality parameters in seawater and freshwater.

Table S2 The total DFT energies of TC species with different charges or spin multiplicities before complexation process.

Table S3 The total DFT energies of TC-Cu species with different charges or spin multiplicities after complexation process.

Table S4 The Cu-O bond distances and Mayer bond orders in TC-Cu complexes.

Table S5 The typical intermolecular bond distances and bond population between the TC/TC-Cu complex and SiO_2 (001) surface.

Fig. S1 The breakthrough curves of TC transport in saturated porous media in the presence of Cu(II) in seawater (A) and freshwater (B).

Fig. S2 The optimized structures of (A) TC, (B-D) TC-Cu complex A, B, and C with atomic number

labels.

Fig. S3 The optimized adsorption structure of (A) Complex A (CuHTC^{\pm}), (B) Complex B (CuHTC^{\pm}) and (C) Complex C (Cu₂TC^{\pm}) on SiO₂ (001) surface with only weak intermolecular interactions.

Fig. S4 The PDOS of (A) TC-SiO₂, (B) Complex A-SiO₂, (C) Complex B-SiO₂, and (D) Complex C-SiO₂.

Test item	Unit	Seawater	Freshwater
Ca ²⁺	mg/L	438	80.1
Mg^{2+}	mg/L	804	19.1
NO ₃ -	mg/L	4.89	< 0.004
SO4 ²⁻	mg/L	1.88×10 ³	81.6
Cl-	mg/L	1.58×10^{4}	104
Na ⁺	mg/L	7.88×10 ³	42.6
pН	-	7.86	8.51
TOC	mg/L	7.83	10.16
Conductivity	mS/cm	32.4	0.67

 Table S1 Common ions and water quality parameters in seawater and freshwater.

Structure	Charge	Number of unpair electron	Spin multiplicity	Energy (Hartree)
$\mathrm{HTC}^{\pm}(\mathrm{A})$	0	1	2	-1560.711
HTC ⁻ (A)	-1	0	1	-1560.886
$\mathrm{HTC}^{\pm}(\mathrm{B})$	0	1	2	-1560.707
HTC ⁻ (B)	-1	0	1	-1560.892
$TC^{\pm}(C)$	0	0	1	-1560.022
$TC^{\pm}(C)$	0	2	3	-1560.060
TC ⁻¹ (C)	-1	1	2	-1560.245
TC ⁻² (C)	-2	0	1	-1560.412
TC ⁻² (C)	-2	0	3	-1560.059

Table S2 The total DFT energies of TC species with different charges or spin multiplicities before complexation process.

Blue indicates the lowest energy of TC species under this condition.

Structure	Charge	Numbers of unpair electron	spin multiplicity	Energy (Hartree)
Complex A (CuHTC ⁺)	1	1	2	-3200.633
Complex A (CuHTC [±])	0	0	1	-3200.833
Complex B (CuHTC ⁺)	1	1	2	-3200.651
Complex B (CuHTC [±])	0	0	1	-3200.840
Complex C (Cu ₂ TC ²⁺)	2	0	1	-4839.888
Complex C (Cu ₂ TC ²⁺)	2	2	3	-4839.924
Complex C (Cu ₂ TC ⁺)	1	1	2	-4840.130
Complex C (Cu ₂ TC ^{\pm})	0	0	1	-4840.313

Table S3 The total DFT energies of TC-Cu species with different charges or spin multiplicities after complexation process.

Blue indicates the lowest energy of the complex under this condition.

Structure	Cu-O distance (Å)	Mayer bond order
	1.950	0.377
Complex A (CuHIC ⁺)	1.943	0.398
	1.952	0.389
Complex B (CuHIC ⁺)	1.945	0.408
	1.948	0.380
$C_{\rm employ} C_{\rm employ} C_{$	1.942	0.400
Complex C ($Cu_2 I C^2$)	1.948	0.396
	1.942	0.413

 $\textbf{Table S4} \ \textbf{The Cu-O bond distances and Mayer bond orders in TC-Cu complexes.}$

Structure –	Hydrogen bond		Cu-O	
	distance (Å)	population	distance (Å)	population
TC-SiO ₂	1.569	0.13	/	/
	2.476	0.00	/	/
	2.488	0.01	/	/
Complex A-SiO ₂	1.648	0.11		
	1.917	0.05	2 000	0.00
	2.117	0.02	2.008	0.09
	2.464	0.01		
Complex B-SiO ₂	/	/	1.943	0.10
Complex C-SiO ₂	2.477	0.01	1.892	0.14

Table S5 The typical intermolecular bond distances and bond population between the TC/TC-Cu complex and SiO_2 (001) surface.