Supporting Information: HAIR MERCURY ISOTOPES, A NONINVASIVE BIOMARKER FOR DIETARY METHYLMERCURY EXPOSURE AND BIOLOGICAL UPTAKE

Sarah E. Rothenberg^{1,*}, Susan A. Korrick^{2,3}, Donald Harrington⁴, Sally W. Thurston^{4,5}, Sarah E. Janssen⁶, Michael T. Tate⁶, YanFen Nong⁷, Hua Nong⁷, Jihong Liu⁸, Chuan Hong⁹; Fengxiu Ouyang¹⁰

¹College of Health, Oregon State University, Corvallis, OR, USA, 97331

²Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA, 02115

³Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA, 02115.

⁴Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester NY 14642

⁵Department of Environmental Medicine, University of Rochester Medical Center, Rochester NY 14642

⁶U.S. Geological Survey Upper Midwest Water Science Center, Madison, WI, USA, 53726 ⁷Maternal and Child Health Hospital, Daxin County, China ⁸Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208

⁹Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208

¹⁰Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. The survey described in this information product was organized and implemented by the study team during the enrollment period and was not conducted on behalf of the U.S. Geological Survey.

TABLE OF CONTENTS

Detailed Methodspg. 3-8
Figure S1pg. 9
Figure S2pg. 10
Table S1pg. 11-12
Table S2pg. 13
Table S3pg. 14
Table S4pg. 15-17
Table S5pg. 18
Table S6pg. 19
Table S7pg. 20
Table S8pg. 21
Table S9pg. 22
Table S10pg. 23
Table S11pg. 24
Table S12pg. 25
Table S13pg. 26
Table S14pg. 27
Table S15pg. 28
Table S16pg. 29
Table S17pg. 30
Table S18pg. 31
Table S19pg. 32
Table S20pg. 33
Table S21pg. 34
Table S22pg. 35
Table S23pg. 36-37
Legend for Dataset S1pg. 38
SI Referencespg. 39-43

DETAILED METHODS

Cohort enrollment. The study was located in Daxin county, Guangxi province, China. In 2010, the population of Daxin county was 359,800, including ~50,000 residents living in the town of Daxin, and the remaining residents (rice farmers) living in rural villages.¹

Eligible mothers were in good general health, resided in Daxin county during the previous 3 months, and planned to remain in Daxin for at least 12 months. Between May 2013-March 2014, there were a total of 1261 births at the Maternal and Child Health Hospital in Daxin county, including 574 (46%) mothers living outside Daxin and thus ineligible, 228 (18%) mothers with infectious disease (e.g., Hepatitis B) and thus ineligible, 51 (11%) eligible mothers who refused to participate, and 408 (32%) eligible mothers, who enrolled in the study. Ten enrolled mothers were subsequently excluded because mothers lived outside Daxin county (n=3), gave birth to twins (n=1), or data collection was incomplete (n=6), resulting in a final analysis cohort of 398 mothers.

We previously reported hair Hg isotopes for 21 mothers from this cohort.² In the present study, Hg isotopes were analyzed in 244 additional maternal hair samples, including those mothers whose children participated in the study's 12-month neurodevelopmental assessment (n=265/398, 67%).^{3,4}

Questionnaire data. While in the hospital, mothers filled out a questionnaire concerning demographics, socioeconomic factors, and pregnancy health history. Mothers also completed a modified semi-quantitative 102-item food frequency questionnaire (FFQ), which was previously validated among pregnant mothers in rural, western China.⁵ The FFQ queried mothers concerning their diet during the third trimester, including ingestion of rice, seven categories of fish/shellfish (freshwater fish, ocean fish, shrimp, eel, snails, crab, and other shellfish) (hereafter

"fish"), and other foods. For each food item, mothers selected from eight intake frequencies ranging from "never or rarely" to " \geq 2 times/day," which were converted to servings/day. For rice, mothers estimated quantity/serving by selecting one of three bowls from a picture of bowls or actual bowls, with known quantities of rice. For fish, we assumed 170 g/serving for ocean fish and freshwater fish⁶, and 100 g/serving for shrimp, eel, snails, crab, and other shellfish.⁵ Serving sizes for other food groups were assigned based on Cheng et al.⁵ Data from the FFQ were used to calculate maternal energy intake (kcal), and the proportion (%) of calories from protein, carbohydrates, and fat.

Rice and fish methylmercury (MeHg) intake. We assumed rice and fish ingestion were the only two sources of dietary MeHg intake. Dietary MeHg intake from rice was calculated as follows:

(1) Rice MeHg intake (μ g/day) = Rice MeHg (μ g/g) × Rice ingestion rate (servings/day) × serving size (g/serving).

Eq. (1) was also used to calculate fish MeHg intake, by substituting fish for rice. Because MeHg comprises >90% of total mercury (THg) in fish⁷, THg concentrations in fish were used in place of MeHg. Dietary MeHg intake for fish was calculated for each of the seven categories, and then summed to obtain a single value.

Each family brought a ~100 g polished rice sample from home for analysis of rice MeHg, which was frozen until analysis. THg concentrations were analyzed in seven varieties of freshwater fish purchased in Daxin markets in 2014 (n=13 samples).¹ For the other six categories of fish, THg concentrations were estimated based on a comprehensive literature review, as follows.¹ Articles were retrieved from Thomas Reuters (ISI) Web of Science using the phrase "mercury and China", combined with the terms: "seafood", "fish", "eel", "shrimp", "crab",

"mollusk", "shellfish", "snail", "scallop", "oyster", "lobster", "spiral shell", or "bivalve," resulting in 209 articles. Eleven studies were included that met the following criteria: a) published after January 2011, b) conducted in non-contaminated sites in China, and c) concentrations of THg (or MeHg) in seafood were reported in wet weight. None of these studies analyzed eel; so for eel we relied on one study published in 2006, bringing the total number of articles to 12.

Total dietary MeHg intake (µg/day) was estimated as the sum of MeHg intake from rice and the MeHg intake from fish. The proportion (%) of MeHg intake for each dietary source (rice or fish) was also calculated.

Biomarker collection. While mothers were in the hospital, a maternal hair sample (~50 strands) was collected for analysis of hair THg, a biomarker for fetal MeHg exposure.⁸ Hair was collected from the occipital region using stainless steel scissors, the proximal end was tied with dental floss, and the sample was stored in a plastic bag at room temperature until analysis. With the proximal end secured, it was possible to analyze hair segments that corresponded to exposures occurring during each trimester of pregnancy, based on the growth rate of hair for Asian women (i.e., third trimester: 3.4 cm, second trimester: 3.8 cm, first trimester: 3.8 cm).⁹ While in the hospital, a maternal blood sample was collected for analysis of polyunsaturated fatty acids (with serum separated by centrifugation), which was stored at -26°C until analysis.

Hair washing. All hair samples were washed in acid-cleaned porcelain bowls for 1 h in 0.1% (v/v) beta-mercaptoethanol, then triple-rinsed with Milli-Q H₂O (18.2 M Ω cm⁻¹) and airdried overnight, as previously described.¹ Prior to use, porcelain bowls (250 mL) were acidwashed overnight with 1.2 N hydrochloric acid (HCl) and triple rinsed with Milli-Q H₂O. *Analyses of total mercury (THg) and methylmercury (MeHg).* At the U.S. Geological Survey Mercury Research Laboratory, hair THg concentrations were analyzed, using U.S. Environmental Protection Agency (EPA) Method 1631.¹⁰ The hair digestion methods differed slightly in 2016 and 2021. In 2016, hair samples were digested in 1.5 mL of nitric (HNO₃):HCL (3:1 v/v) at 85-95 °C for 1.5-2.5 h, then 0.25 mL of bromine monochloride (BrCl) was added at least 12 hr before analysis. In 2021, hair samples were digested in 2 mL of HNO₃ and heated at ~90°C for 8 h, then 0.2 mL of BrCl was added, and samples were heated for an additional 2 h before analysis.

At the University of South Carolina, MeHg concentrations were analyzed in hair samples corresponding to the third trimester.¹ Briefly, hair samples were digested in 50 mL Teflon tubes (Savillex, MN, USA) and 5 mL of 25% (w/v) sodium hydroxide-Milli-Q H₂O, for 3 hours at 75°C. After digestion, the volume was raised to 50 mL and samples were analyzed according to U.S. EPA Method 1630 using gas chromatography-cold vapor atomic fluorescence spectrometry (GC-CVAFS) (Brooks Rand Model III, Seattle, WA, USA).¹² To analyze rice MeHg, approximately 0.5 g rice was digested in 2 mL of 25% (w/v) potassium hydroxide-methanol for 3 h at 75 °C, then 6 mL of dichloromethane and 1.5 mL hydrochloric acid (HCl) was added, samples were shaken for 30 min, centrifuged (4000 rpm = $3000 \times g$, 30 min), the phases were separated (Whatman, 1PS), and Milli-Q H₂O was added to 25 mL.¹¹ The following day, samples were heated for 1.5 h in a water bath at 60-70 °C to expel dichloromethane, and the volume was raised using Milli-Q H₂O to 40 mL. Digests were analyzed using U.S. EPA Method 1630¹², as described above.

Fish tissue THg concentrations were analyzed at the Beijing Lumex Analytical Co. Ltd., China, by sample combustion coupled to atomic absorption spectrophotometry, using EPA Method 7473 (Lumex Model RA-915+/PYRO-915+, St. Petersburg, Russia).¹³

Serum fatty acids. Maternal serum fatty acids (omega-3: docosahexaenoic acid and eicosapentaenoic acid; omega-6: alpha-linolenic acid, linoleic acid and arachidonic acid) were assessed at the State Key Laboratory of Nutrition and Metabolism in Shanghai, China, by gas-liquid chromatography (Agilent 6890N-5975B with flame ionization detector).^{3,4} Peak retention times were identified by injecting known standards of >99% purity.

Detailed methods for Hg isotopes. Hg isotopes were analyzed at the U.S. Geological Survey Mercury Research Laboratory (Madison, WI), as previously described.^{14,15} Hg isotopes were also analyzed in the certified reference material for hair [International Atomic Energy Agency (IAEA)-086] (n=33, Table S2). Sample digests for five maternal hair samples and four IAEA-086 samples were pre-concentrated using established protocols.¹⁴ Following digestion (or digestion + pre-concentration), samples were diluted with ultrapure H_2O so that the acid content was <50%. Briefly, standards, samples, and reference materials were diluted to a THg concentration of 0.5 ng/mL (acid content <10%) and neutralized with hydroxylamine hydrochloride. Hg isotope analysis was performed using standard sample bracketing with a concentration- and matrix-matched National Institute of Standards (NIST) 3133 dilution. Hg and stannous chloride (in 3% in 10% HCl, respectively) were introduced using a custom gas-liquid separator¹⁵ at a flow rate of 0.85 mL min⁻¹, allowing for the reduction of Hg(II) to Hg(0) prior to introduction to the MC-ICP-MS. A thallium standard (Tl, 40 ng/L) was simultaneously introduced to the gas-liquid separator for mass bias correction using a desolvating nebulizer (Apex, ESI).¹⁴ The MC-ICP-MS was tuned for optimal voltage and signal intensity for ²⁰²Hg and 205 Tl prior to analysis.^{14,15} The concentration difference between the bracketing standard and the samples was <15%.

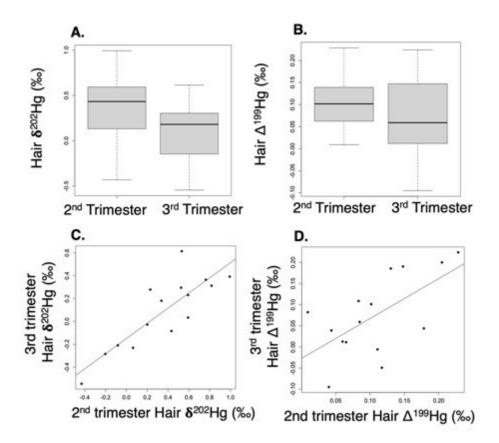


Figure S1. Bivariate associations between paired second and third trimester hair mercury isotopes (n=15 mothers), including A) boxplot for hair δ^{202} Hg (‰), B) boxplot for hair Δ^{199} Hg (‰), C) scatterplot relating hair δ^{202} Hg (‰) corresponding to exposures during the third trimester versus the second trimester, and D) scatterplot relating hair Δ^{199} Hg (‰) corresponding to exposures during the third trimester versus the second trimester. The center line in the boxplot represents the median, the box represents the lower and upper quartiles (i.e., middle 50% of the data), and the whiskers represent 1.5 times the interquartile range from the lower and upper quartiles. For these data, there were no potential outliers.

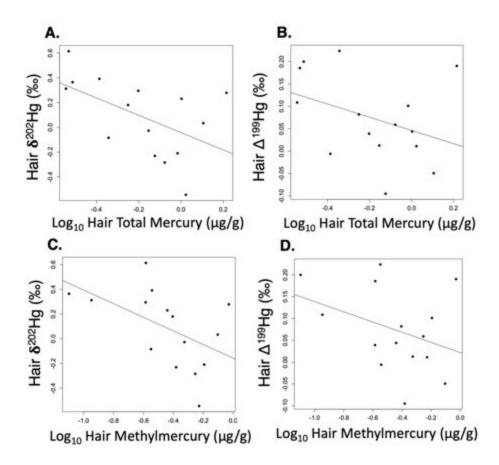


Figure S2. Bivariate associations between mercury isotopes and concentrations of total mercury and methylmercury, which were measured in hair samples corresponding to exposures during the third trimester (n=15), including a) hair δ^{202} Hg (‰) versus log₁₀ hair total mercury (µg/g) (Spearman's rho: -0.59), b) hair Δ^{199} Hg (‰) versus log₁₀ hair total mercury (µg/g) (Spearman's rho: -0.36), c) hair δ^{202} Hg (‰) versus log₁₀ hair methylmercury (µg/g) (Spearman's rho: -0.62), b) hair Δ^{199} Hg (‰) versus log₁₀ hair methylmercury (µg/g) (Spearman's rho: -0.34).

Reference	Location	Sample size	Age (yr) Median (range)	Mercury exposure sources	Hair THg (µg/g) Median (range)	δ ²⁰² Hg (‰) Median (range)	Δ ¹⁹⁹ Hg (‰) Median (range)	Δ ²⁰¹ Hg (‰) (‰) Median (range)
This study	Daxin, China	265	27 (17,45)	Rice, fish	$\begin{array}{c} 0.47\\ (0.13, 1.8)\end{array}$	0.44 (-0.89, 1.8)	0.13 (-0.15, 0.66)	0.08 (-0.18, 0.47)
16	1) Wanshan, China	25	9 (5, 75)	Rice, fish	4.22 (2.27, 7.49)	-0.32 (-1.43, 0.65)	0.03 (-0.27, 0.14)	0 (-0.36, 0.13)
	2) Guiyang, China	21	9 (8, 56)	Rice, fish	0.368 (0.152, 0.992)	1.67 (0.82, 2.36)	0.38 (0.01, 0.86)	0.31 (-0.03, 0.75)
	3) Changshun, China	9	12 (7, 68)	Rice, fish	0.313 (0.204, 0.547)	0.90 (0.76, 1.35)	0.01 (-0.07, 0.03)	-0.03 (-0.08, 0.01)
17	Wanshan, China:	7	NA	Rice, fish	3.13 (0.73, 5.67)	0.69 (0.01, 0.91)	0.13 (0.04, 0.1)	0.06 (-0.004, 0.12)
2^{1}	Daxin, China	21	27 (23, 42)	Rice, fish	0.51 (0.23, 1.0)	0.45 (-0.86, 1.3)	0.10 (-0.09, 0.42)	0.08 (-0.11, 0.35)
18	Southern China (3 cities)	45	46 (5.5, 82)	Rice, fish	$ \begin{array}{c} 1.09 \\ (0.148, 6.74) \end{array} $	0.94 (-0.17, 2.1)	0.61 (0.11, 0.96)	$\begin{array}{c} 0.42 \\ (0.06, 0.84) \end{array}$
19	Sicily, Italy	21	40 (30, 40)	Fish	$ \begin{array}{c} 1.83 \\ (0.45, 5.28) \end{array} $	1.79 (1.12, 3.36)	$ \begin{array}{c} 1.17 \\ (0.73, 1.54) \end{array} $	0.99 (0.64, 1.33)
20	Faroe Islands	6	NA	Pilot whale	18.9 (10.6, 37)	3.32 (3.02, 3.61)	1.28 (1.23, 1.31)	1.04 (1.01, 1.07)
	Louisiana, USA	15	NA	Fish	$ \begin{array}{c} 1.05 \\ (0.38, 3.65) \end{array} $	1.80 (1.46, 3.22)	1.11 (0.49, 2.11)	0.9 (0.22. 1.69
21	Ghana	6	30 (18, 45)	ASGM	1.32 (0.57, 2.61)	-0.315 (-1.67, 0.77)	0.44 (0.23, 0.55)	0.385 (-0.06, 0.43)
	Indonesia	5	NA	ASGM	6.41 (2.98, 20.6)	$ 1.35 \\ (0.64, 1.65) $	0.81 (0.21, 1.32)	$\begin{array}{c} 0.67 \\ (0.04, 1.08) \end{array}$
22	USA	11	58 (44, 69)	Fish, dental amalgams	2.6 (0.69, 6.2)	2.29 (2.00, 2.93)	1.92 (1.67, 2.04)	1.56 (1.36, 1.66)
23	Bolivia	27	38 (19, 53)	Fish, rice	0.68 (0.17, 2.3)	0.93 (-0.87, 2.19)	0.45 (0.11, 1.18)	$\begin{array}{c} 0.37\\ (0.04, 0.99)\end{array}$
	France	11	26	Fish	0.54	2.19	1.14	0.89

T 11 01 04 1		• ,	• 1 1 •
Table NL Studies	renorting stable	mercury isoton	es in hiiman hair
Table S1. Studies	reporting studie	mercury isotop	co in numan nan.

			(2, 49)		(0.26, 1.9)	(1.81, 3.23)	(0.85, 1.71)	(0.67, 1.33)
24	Bolivia,	7	21	Fish, rice	19	1.17	0.18	0.13
	population A		(6, 50)		(12, 24)	(1.00, 1.27)	(0.14, 0.23)	(0.08, 0.18)
	Bolivia,	7	10	Fish, rice	8.8	1.23	0.42	0.32
	population B		(3, 45)		(6.3, 15)	(1.04, 1.42)	(0.25, 0.81)	(0.15, 0.66)

ASGM (artisanal and small scale gold mining), Hg (mercury), NA (not applicable), THg (total mercury) ¹Maternal hair samples (n=21) were also included in the present analysis

		%Recovery						
Reference	Parameter	IAEA-086 (Hair) Mean ± SD (n)	NIST 1515 (Apple Leaves) Mean ± SD (n)	NRC-TORT2 (Lobster) Mean ± SD (n)	NIST 3133 (Hg standard) Mean ± SD (n)	Matrix spikes Mean ± SD (n)	Mean ± SD (n)	
This study	Hair THg (2 nd trimester exposures)	96 ± 5.6 (33)	NA	NÁ	95 ± 2.8 (6)	NA	NA	
2	Hair THg (2 nd trimester exposures)	95 ± 2.4 (2)	NA	NA	NÁ	NA	NA	
1	Hair MeHg (3 rd trimester exposures)	78 ± 14 (52)	NA	95 ± 13 (45)	NA	98 ± 25 (69)	8.4 ± 5.9 (75)	
	Fish tissue THg	NA	91 ± 7.2 (4)	NA	NA	NA	4.2 ± 3.9 (13)	
	Rice MeHg	NA	NA	96 ± 9.5 (32)	NA	96 ± 24 (56)	7.7 ± 5.1 (56)	

Table S2. Quality assurance and quality control for total mercury and methylmercury analyses.

Hg (mercury), MeHg (methylmercury), NA (not applicable), RSD (relative standard deviation), THg (total mercury)

Table S3. Comparison of maternal biomarkers and maternal diet between households with nonfarming parents, and households where one or both parents are farmers. This table compares the same parameters as in Table S5.

	All participants	Non-farmers	Farmers	p-value
	(n=265)	(N=62, 23%)	(N=203, 77%)	
	Median	Median	Median	
	(range)	(range)	(range)	
Ν	265	62	203	
Hair THg (2nd	0.47	0.46	0.48	0.59
trimester) (µg/g)	(0.13, 1.8)	(0.13, 1.8)	(0.15, 1.5)	
Rice MeHg	2.2	2.3	2.1	0.29
(ng/g)	(0.32, 15)	(0.60, 12)	(0.32, 15)	
Rice MeHg intake	0.43	0.51	0.42	0.24
(µg/day)	(0, 5.0)	(0.021, 3.4)	(0, 5.0)	
Fish MeHg intake	0.17	0.44	0.033	<0.0001***
(µg/day)	(0, 19)	(0, 5.3)	(0, 19)	
Fish ingestion	0.23	0.63	0.23	< 0.0001***
(weekly servings)	(0, 20)	(0, 10)	(0, 20)	
Ν	263	62	201	
%MeHg intake	82	56	94	0.0004***
from rice	(0.30, 100)	(2.9, 100)	(0.30, 100)	
%MeHg intake	18	44	6.1	0.0004***
from fish	(0, 99.7)	(0, 97)	(0, 99.7)	
Ν	265	62	203	
Serum N-3	0.13	0.14	0.12	0.02*
(mg/mL)	(0.06, 0.42)	(0.06, 0.40)	(0.06, 0.42)	
Serum N-6	1.5	1.5	1.4	0.004**
(mg/mL)	(1.1, 2.4)	(1.2, 2.4)	(1.1, 2.4)	
Serum N-6/N-3	12	12	12	0.24
(unitless)	(3.5, 25)	(5.3, 24)	(3.5, 25)	
Ν	256	58	198	
% Calories	33	33	33	0.84
from fat	(13, 81)	(20, 80)	(13, 81)	
% Calories	56	53	56	0.24
from carbohydrates	(12, 75)	(12, 71)	(12, 75)	
% Calories	12	13	11	0.0002***
from protein	(5.1, 25)	(6.1, 21)	(5.1, 25)	
Total Energy Intake	2055	2241	2008	0.08
(kcal)	(549, 4438)	(585, 4065)	(549, 4438)	

* $p \le 0.05$, ** $p \le 0.01$, *** p < 0.001 p-values are for Wilcoxon rank sum test.

MeHg (methylmercury), N-3 fatty acids (docosahexaenoic acid, eicosapentaenoic acid, and alpha-linolenic acid), N-6 fatty acids (linoleic acid and arachidonic acid), THg (total mercury).

Table S4. Comparison of characteristics between mothers with and without analysis of maternal hair mercury isotopes.

	Mercury isotopes analyzed					
	All	No	Yes	p-value		
	(n=398) n (%)	(N=133, 33%) n (%)	(N=265, 67%) n (%)			
Mother's Age upon	П (70)	II (70)	II (70)			
Enrollment (years)						
Age < 20	30 (8)	10 (8)	20 (8)	0.77		
$20 \le Age < 30$	225 (57)	72 (54)	153 (58)			
$30 \leq Age < 45$	143 (36)	51 (38)	92 (35)			
Mother's Ethnicity						
Zhuang	339 (85)	109 (82)	230 (87)	0.38		
Han	50 (13)	21 (16)	29 (11)			
Other	9 (2)	3 (2)	6 (2)			
Mother's Education Completed						
< High School	321 (98)	114 (86)	207 (78)	0.07		
High School	49 (12)	11 (8)	38 (14)			
Some University	18 (5)	3 (2)	15 (6)			
Missing	10 (3)	5 (3)	5 (2)			
Father's Education Completed						
< High School	310 (78)	109 (82)	201 (76)	0.08		
High School	58 (15)	13 (10)	45 (17)			
Some University	20 (5)	4 (3)	16 (6)			
Missing	10 (3)	7 (5)	3 (1)			
Mother's Occupation						
Farmer	302 (76)	111 (83)	191 (72)	0.03*		
Worker ^a	32 (8)	6 (5)	26 (10)			
Unemployed	44 (11)	12 (9)	32 (12)			
Other	13 (3)	1 (<1)	12 (5)			
Missing	7 (2)	3 (2)	4 (2)			
Father's Occupation						
Farmer	292 (73)	104 (78)	188 (71)	0.09		
Worker ^a	54 (14)	13 (10)	41 (15)			
Unemployed	26 (7)	8 (6)	18 (7)			
Other	17 (4)	2 (2)	15 (6)			
Missing	9 (2)	6 (5)	3 (1)			
Mother or Father is a Farmer						
No	78 (20)	17 (13)	61 (23)	0.02*		
Yes	314 (79)	113 (85)	201 (76)			
Missing	6 (2)	3 (2)	3 (1)			

Household Monthly Income (RMB) ^b				
Income < 2000	233 (59)	69 (52)	164 (62)	0.15
2000 ≤ Income < 5000	110 (28)	43 (32)	67 (25)	
Income ≥ 5000	20 (5)	8 (6)	12 (5)	
Missing	35 (9)	13 (10)	22 (8)	
Maternal Pre-Pregnancy BMI (kg/m ²) ^c				
Underweight	94 (23)	27 (20)	67 (25)	0.25
Normal Weight	233 (59)	81 (61)	152 (57)	
Overweight	61 (15)	24 (18)	37 (14)	
Obese	9 (2.3)	1 (<1)	8 (3)	
Missing	1 (<1)	0 (0)	1 (<1)	
Maternal Smoking During Pregnancy				
No	384 (96)	123 (92)	261 (98)	0.004**
Yes	5 (1)	5 (3)	0 (0)	
Missing	9 (2)	5 (3)	4 (2)	
2nd-Hand Smoke Exposure During Pregnancy				
No	218 (55)	70 (53)	148 (56)	0.83
Yes	165 (41)	55 (41)	110 (42)	
Missing	15 (4)	8 (6)	7 (3)	
Alcohol During Pregnancy				
No	386 (97)	127 (95)	259 (98)	1.0
Yes	4 (1)	1 (<1)	3 (1)	
Missing	8 (2)	5 (3)	3 (1)	
Anemia During Pregnancy				
No	384 (96)	129 (97)	255 (96)	0.56
Yes	13 (3)	3 (2)	10 (4)	
Missing	1 (<1)	1 (<1)	0 (0)	
Primipara				
No	189 (47)	69 (52)	120 (45)	0.16
Yes	193 (49)	57 (43)	136 (51)	
Missing	16 (4.1)	7 (5)	9 (3)	
Maternal Rice Consumption				
< Daily	49 (12)	16 (12)	33 (12)	1.0
≥Daily	327 (82)	111 (83)	216 (82)	
Missing	22 (6)	6 (5)	16 (6)	
Maternal Fish Consumption (servings/week)				
0 servings/week	172 (43)	62 (47)	110 (42)	0.38

0 < servings/week < 2	181 (45)	54 (41)	127 (48)	
\geq 2 servings/week	45 (11)	17 (13)	28 (11)	

 $p \le 0.05$, $p \le 0.01$, p-values are for chi-squared test or Fisher's exact test between non-missing categories. BMI (body mass intake), RMB (ren min bi = Chinese currency)

^aWorkers include: civil servant, white-collar worker, skilled worker, unskilled worker, and shopkeeper. ^bBetween 2013-2014, 2000 RMB = US\$324, 5000 RMB = US\$810

^eBMI for Asian populations: underweight (BMI < 18.5 kg/m²), normal weight (18.5 kg/m² \leq BMI < 23 kg/m²), overweight (23 kg/m² \leq BMI < 27.5 kg/m²), and obese (BMI \geq 27.5 kg/m²).²⁵

Table S5. Comparison of maternal biomarkers and maternal diet between mothers with and without analysis of hair mercury isotopes.

		Hg isotopes analyzed					
	All (n=398) Median	No (N=133, 33%) Median	Yes (N=265, 67%) Median	p-value			
	(range)	(range)	(range)				
Ν	398	133	265				
Hair THg (2nd	NA	NA	0.47	NA			
trimester) (µg/g)			(0.13, 1.8)				
Rice MeHg	2.2	2.2	2.2	0.80			
(ng/g)	(0.32, 15)	(0.53, 9.7)	(0.32, 15)				
Rice MeHg intake	0.44	0.45	0.43	0.61			
(µg/day)	(0, 5.0)	(0, 3.0)	(0, 5.0)				
Fish MeHg intake	0.15	0.03	0.17	0.23			
(µg/day)	(0, 19)	(0, 5.8)	(0, 19)				
Ν	396	133	263				
%MeHg intake	87	90	82	0.28			
from rice	(0, 100)	(0, 100)	(0.30, 100)				
%MeHg intake	13	9.6	18	0.28			
from fish	(0. 100)	(0, 100)	(0, 99.7)				
Ν	397	132	265				
Serum N-3	0.13	0.13	0.13	0.32			
(mg/mL)	(0.06, 0.42)	(0.06, 0.28)	(0.06, 0.42)				
Serum N-6	1.5	1.5	1.5	0.48			
(mg/mL)	(0.95, 2.4)	(0.95, 2.1)	(1.1, 2.4)				
Serum N-6/N-3	12	12	12	0.48			
(unitless)	(3.5, 25)	(5.3, 24)	(3.5, 25)				
N	383	127	256				
% Calories	33	33	33	0.46			
from fat	(13, 81)	(16, 80)	(13, 81)				
% Calories	56	57	56	0.93			
from carbohydrates	(12, 78)	(14, 78)	(12, 75)				
% Calories	11	10	12	0.0007***			
from protein	(5.1, 25)	(5.2, 18)	(5.1, 25)				
Total Energy Intake	2000	1838	2055	0.014*			
(kcal)	(515, 4637)	(515, 4637)	(549, 4438)				

* $p \le 0.05$, ** $p \le 0.01$, *** p < 0.001 p-values are for Wilcoxon rank sum test. MeHg (methylmercury), N-3 fatty acids (docosahexaenoic acid, eicosapentaenoic acid, and alpha-linolenic acid), N-6 fatty acids (linoleic acid and arachidonic acid), THg (total mercury).

Table S6. Multivariable regression results relating maternal hair isotopes with %methylmercury intake from rice (Model A) (n=62

mothers). Same as Table 1 excluding households where one or both parents were rice farmers.

		Hair Δ ¹⁹⁹ Hg (‰)			Hair δ ²⁰² Hg (‰)	
	Beta	(95% Confidence Interval)	p-value	Beta	(95% Confidence Interval)	p-value
Unadjusted						
Fish weekly servings						
Never or rarely	(referent)			(referent)		
$0 < \text{servings/weekly} \le 2$	0.011	(-0.087, 0.11)	0.82	-0.31	(-0.72, 0.10)	0.14
\geq 2 servings/weekly	0.084	(-0.035, 0.20)	0.16	-0.14	(-0.63, 0.35)	0.57
Daily rice ingestion (Yes)	0.046	(-0.069, 0.16)	0.43	0.055	(-0.43, 0.54)	0.82
Adjusted						
Fish weekly servings						
Never or rarely	(referent)			(referent)		
$0 < \text{servings/weekly} \le 2$	0.055	(-0.060, 0.17)	0.34	0.047	(-0.35, 0.44)	0.82
≥ 2 servings/weekly	0.13	(-0.023, 0.28)	0.096	0.020	(-0.50, 0.54)	0.94
Daily rice ingestion (Yes)	0.041	(-0.095, 0.18)	0.55	0.042	(-0.42, 0.51)	0.86
Log_{10} hair THg (µg/g)	-0.16	(-0.36, 0.047)	0.13	-1.8	(-2.5, -1.1)	<0.001***
Maternal age (years)	0.0018	(-0.0076, 0.011)	0.70	0.026	(-0.0061, 0.058)	0.11
Pre-pregnancy BMI (kg/m ²)						
Underweight	(referent)			(referent)		
Normal weight	0.020	(-0.082, 0.12)	0.70	-0.18	(-0.52, 0.17)	0.32
Overweight or obese	0.000024	(-0.12, 0.12)	1.0	-0.21	(-0.62, 0.19)	0.30
Mother or father is a farmer (Yes)	N/A			N/A		
Log ₁₀ Maternal energy intake (kcal)	-0.016	(-0.37, 0.34)	0.93	-0.47	(-1.7, 0.75)	0.44
Maternal %calories from protein	-0.0027	(-0.026, 0.020)	0.81	0.033	(-0.045, 0.11)	0.40

***p < 0.001 p-value is for the Beta coefficient

BMI (body mass index), Hg (mercury), N/A (not applicable), THg (total mercury)

Table S7. Multivariable regression results relating maternal hair isotopes with %methylmercury intake from rice (Model B) (n=62

		Hair ∆ ¹⁹⁹ Hg (‰)			Hair δ ²⁰² Hg (‰)			
	Beta	(95% Confidence Interval)	p-value	Beta	(95% Confidence Interval)	p-value		
Unadjusted		, , , , , , , , , , , , , , , , , , , ,						
%MeHg intake from rice	-0.00026	(-0.0014, 0.00089)	0.65	0.00048	(-0.0043, 0.0053)	0.84		
Adjusted								
%MeHg intake from rice	-0.00053	(-0.0020, 0.00098)	0.49	-0.0014	(-0.0064, 0.0036)	0.59		
Log_{10} hair THg (µg/g)	-0.14	(-0.34, 0.052)	0.15	-1.8	(-2.5, -1.2)	<0.001***		
Maternal age (years)	0.0016	(-0.0077, 0.011)	0.73	0.025	(-0.0056, 0.057)	0.11		
Pre-pregnancy BMI (kg/m ²)								
Underweight	(referent)							
Normal weight	0.029	(-0.074, 0.13)	0.58	-0.15	(-0.49, 0.19)	0.38		
Overweight or obese	0.010	(-0.11, 0.13)	0.87	-0.19	(-0.59, 0.21)	0.34		
Mother or father is a farmer (Yes)	N/A			N/A				
Log ₁₀ Maternal energy intake (kcal)	0.039	(-0.29, 0.37)	0.82	-0.30	(-1.4, 0.81)	0.59		
Maternal %calories from protein	0.0017	(-0.021, 0.024)	0.88	0.020	(-0.053, 0.095)	0.59		

mothers). Same as Table 2 excluding households where one or both parents were rice farmers.

***p≤0.001 p-value is for the Beta coefficient

Table S8. Multivariable regression results relating maternal hair isotopes with rice methylmercury intake and fish methylmercury

intake (Model C) (n=62 mothers). Sar	ne as Table 3 excluding households v	where one or both parents were rice farmers.

		Hair Δ ¹⁹⁹ Hg (‰)			Hair δ ²⁰² Hg (‰)		
	Beta	(95% Confidence	p-value	Beta	(95% Confidence	p-value	
		Interval)			Interval)		
Unadjusted							
Log_{10} Rice MeHg intake (µg/day)	0.021	(-0.071, 0.11)	0.64	-0.39	(-0.75, -0.021)	0.04*	
Log_{10} Fish MeHg intake (µg/day)	0.022	(-0.023, 0.067)	0.34	-0.13	(-0.31, 0.052)	0.16	
Adjusted							
Log ₁₀ Rice MeHg intake (µg/day)	0.039	(-0.082, 0.16)	0.52	-0.29	(-0.70, 0.11)	0.15	
Log ₁₀ Fish MeHg intake (µg/day)	0.039	(-0.017, 0.096)	0.17	-0.022	(-0.21, 0.17)	0.82	
Log_{10} hair THg (µg/g)	-0.19	(-0.39, 0.014)	0.07	-1.7	(-2.3, -0.99)	<0.001***	
Maternal age (years)	0.0021	(-0.0072, 0.011)	0.66	0.025	(-0.0058, 0.056)	0.11	
Pre-pregnancy BMI (kg/m ²)							
Underweight	(referent)						
Normal weight	0.019	(-0.085, 0.12)	0.71	-0.11	(-0.46, 0.24)	0.53	
Overweight or obese	-0.0038	(-0.12, 0.12)	0.95	-0.15	(-0.55, 0.25)	0.45	
Mother or father is a farmer (Yes)	N/A			N/A			
Log ₁₀ Maternal energy intake (kcal)	-0.052	(-0.44, 0.33)	0.79	0.13	(-1.2, 1.4)	0.85	
Maternal %calories from protein	0.0024	(-0.020, 0.025)	0.83	0.016	(0.057, 0.090)	0.66	

*p<0.05 ***p≤0.001 p-value is for the Beta coefficient

Table S9. Multivariable regression results relating maternal hair isotopes with serum omega-3 fatty acids and serum omega-6 fatty

		Hair ∆ ¹⁹⁹ Hg (‰)			Hair δ ²⁰² Hg (‰)		
	Beta	(95% Confidence	p-value	Beta	(95% Confidence	p-value	
		Interval)			Interval)		
Unadjusted							
Log ₁₀ Serum N-3 Fatty Acids (mg/mL)	0.48	(0.23, 0.73)	<0.001***	1.0	(-0.085, 2.1)	0.07	
Log ₁₀ Serum N-6 Fatty Acids (mg/mL)	-0.35	(-1.0, 0.35)	0.32	0.62	(-2.5, 3.7)	0.69	
Adjusted							
Log ₁₀ Serum N-3 Fatty Acids (mg/mL)	0.51	(0.24, 0.79)	<0.001***	0.83	(-0.17, 1.8)	0.10	
Log ₁₀ Serum N-6 Fatty Acids (mg/mL)	-0.33	(-1.1, 0.43)	0.39	0.31	(-2.4, 3.0)	0.82	
Log_{10} hair THg (µg/g)	-0.091	(-0.26, 0.081)	0.29	-1.7	(-2.3, -1.1)	<0.001***	
Maternal age (years)	0.0027	(-0.0058, 0.011)	0.53	0.027	(0.0039, 0.057)	0.09	
Pre-pregnancy BMI (kg/m ²)							
Underweight	(referent)						
Normal weight	0.035	(-0.056, 0.13)	0.44	-0.13	(-0.46, 0.20)	0.43	
Overweight or obese	-0.015	(-0.12, 0.093)	0.79	-0.25	(-0.64, 0.14)	0.21	
Mother or father is a farmer (Yes)	N/A			N/A			
Log ₁₀ Maternal energy intake (kcal)	-0.014	(-0.30, 0.27)	0.92	-0.45	(-1.5, 0.58)	0.38	
Maternal %calories from protein	-0.0011	(-0.019, 0.017)	0.91	0.023	(-0.041, 0.088)	0.47	

acids (Model D) (n=62 mothers). Same as Table 4 excluding households where one or both parents were rice farmers.

*p<0.05 **p<0.01 ***p≤0.001 p-value is for the Beta coefficient

BMI (body mass index), Hg (mercury), N-3 fatty acids (docosahexaenoic acid, eicosapentaenoic acid, and alpha-linolenic acid), N-6 fatty acids (linoleic acid and arachidonic acid), THg (total mercury)

Table S10. Multivariable regression results relating maternal hair isotopes with fish weekly servings and daily rice ingestion (Model A)

(n=236 mothers). Same as Table 1 excluding mothers with imputed values.

		Hair ∆ ¹⁹⁹ Hg (‰)			Hair δ ²⁰² Hg (‰)	
	Beta	(95% Confidence Interval)	p-value	Beta	(95% Confidence Interval)	p-value
Unadjusted						
Fish weekly servings						
Never or rarely	(referent)			(referent)		
$0 < \text{servings/weekly} \le 2$	0.022	(-0.015, 0.060)	0.24	-0.031	(-0.19, 0.12)	0.69
\geq 2 servings/weekly	0.087	(0.027, 0.15)	0.005**	0.032	(-0.22, 0.28)	0.80
Daily rice ingestion (Yes)	-0.0029	(-0.057, 0.051)	0.92	0.046	(-0.18, 0.27)	0.69
Adjusted						
Fish weekly servings						
Never or rarely	(referent)			(referent)		
$0 < \text{servings/weekly} \le 2$	0.0056	(-0.033, 0.044)	0.77	-0.038	(-0.18, 0.10)	0.59
\geq 2 servings/weekly	0.048	(-0.021, 0.12)	0.17	0.10	(-0.14, 0.35)	0.41
Daily rice ingestion (Yes)	-0.016	(-0.084, 0.051)	0.63	0.038	(-0.21, 0.28)	0.76
Log ₁₀ hair THg (µg/g)	-0.13	(-0.21, -0.041)	0.004**	-1.4	(-1.7, -1.1)	<0.001***
Maternal age (years)	0.00056	(-0.0026, 0.0037)	0.73	0.018	(0.0062, 0.029)	0.003**
Pre-pregnancy BMI (kg/m ²)						
Underweight	(referent)			(referent)		
Normal weight	0.000038	(-0.043, 0.043)	1.0	0.046	(-0.11, 0.20)	0.55
Overweight or obese	0.012	(-0.042, 0.066)	0.67	0.11	(-0.084, 0.31)	0.26
Mother or father is a farmer (Yes)	-0.058	(-0.10, -0.015)	0.008**	-0.12	(-0.27, 0.037)	0.13
Log ₁₀ Maternal energy intake (kcal)	0.023	(-0.13, 0.18)	0.78	-0.067	(-0.63, 0.49)	0.81
Maternal %calories from protein	0.0038	(-0.0041, 0.012)	0.34	-0.011	(-0.040, 0.017)	0.44

p≤0.01 *p≤0.001 p-value is for the Beta coefficient

Table S11. Multivariable regression results relating maternal hair isotopes with %methylmercury intake from rice (Model B) (n=235

mothers). ¹ Same as	Table 2 excluding mothers	with imputed values.
,	8	1

	Hair ∆ ¹⁹⁹ Hg (‰)				Hair δ ²⁰² Hg (‰)	
	Beta	(95% Confidence Interval)	p-value	Beta	(95% Confidence Interval)	p-value
Unadjusted						
%MeHg intake from rice	-0.00062	(-0.0011, -0.00010)	0.02*	0.00019	(-0.0020, 0.0023)	0.86
Adjusted						
%MeHg intake from rice	-0.00028	(-0.00086, 0.00029)	0.33	-0.00004	(-0.0021, 0.0020)	0.97
Log ₁₀ hair THg (µg/g)	-0.12	(-0.21, -0.040)	0.004**	-1.4	(-1.7, -1.1)	<0.001***
Maternal age (years)	0.00075	(-0.0024, 0.0039)	0.64	0.018	(0.0065, 0.029)	0.002**
Pre-pregnancy BMI (kg/m ²)						
Underweight	(referent)					
Normal weight	0.0053	(-0.047, 0.037)	0.80	0.042	(-0.11, 0.19)	0.58
Overweight or obese	0.0088	(-0.045, 0.063)	0.75	0.11	(-0.086, 0.30)	0.27
Mother or father is a farmer (Yes)	-0.062	(-0.10, -0.019)	0.005**	-0.11	(-0.27, 0.041)	0.15
Log ₁₀ Maternal energy intake (kcal)	0.024	(-0.097, 0.15)	0.70	-0.075	(-0.51, 0.36)	0.74
Maternal %calories from protein	0.0037	(-0.0042, 0.011)	0.36	-0.0045	(-0.033, 0.024)	0.75

*p<0.05 **p≤0.01 ***p≤0.001 p-value is for the Beta coefficient

BMI (body mass index), Hg (mercury), THg (total mercury) ¹One mothers did not eat rice or fish, reducing the sample size from 236 to 235.

Table S12. Multivariable regression results relating maternal hair isotopes with rice methylmercury intake and fish methylmercury

	Hair Δ ¹⁹⁹ Hg (‰)				Hair δ ²⁰² Hg (‰)		
	Beta	(95% Confidence	p-value	Beta	(95% Confidence	p-value	
		Interval)			Interval)		
Unadjusted							
Log ₁₀ Rice MeHg intake (µg/day)	-0.024	(-0.059, 0.012)	0.19	-0.10	(-0.25, 0.043)	0.17	
Log ₁₀ Fish MeHg intake (µg/day)	0.026	(0.0069, 0.045)	0.008**	-0.026	(-0.10, 0.052)	0.51	
Adjusted							
	0.026	(0.069, 0.017)	0.22	0.042	(0.20, 0.11)	0.50	
Log ₁₀ Rice MeHg intake (µg/day)	-0.026	(-0.068, 0.017)	0.23	-0.043	(-0.20, 0.11)	0.59	
Log ₁₀ Fish MeHg intake (µg/day)	0.013	(-0.0084, 0.034)	0.23	-0.013	(-0.090, 0.065)	0.75	
Log_{10} hair THg (µg/g)	-0.12	(-0.20, -0.030)	0.008**	-1.4	(-1.7, -1.1)	<0.001***	
Maternal age (years)	0.00064	(-0.0025, 0.0038)	0.69	0.018	(0.0064, 0.029)	0.002**	
Pre-pregnancy BMI (kg/m ²)							
Underweight	(referent)						
Normal weight	0.0021	(-0.044, 0.040)	0.92	0.039	(-0.11, 0.19)	0.61	
Overweight or obese	0.012	(-0.042, 0.066)	0.66	0.11	(-0.085, 0.30)	0.27	
Mother or father is a farmer (Yes)	-0.059	(-0.10, -0.016)	0.007**	-0.12	(-0.28, 0.032)	0.12	
Log ₁₀ Maternal energy intake (kcal)	0.045	(-0.10, 0.19)	0.54	0.062	(-0.47, 0.59)	0.82	
Maternal %calories from protein	0.0032	(-0.0047, 0.011)	0.42	-0.0087	(-0.037, 0.020)	0.55	

intake (Model C) (n=236 mothers). Same as Table 3 excluding mothers with imputed values.

*p<0.05 **p<0.01 ***p≤0.001 p-value is for the Beta coefficient

Table S13. Multivariable regression results relating maternal hair isotopes with serum omega-3 fatty acids and serum omega-6 fatty

		Hair ∆ ¹⁹⁹ Hg (‰)		Hair δ ²⁰² Hg (‰)		
	Beta	(95% Confidence Interval)	p-value	Beta	(95% Confidence Interval)	p-value
Unadjusted						
Log ₁₀ Serum N-3 Fatty Acids (mg/mL)	0.27	(0.13, 0.41)	<0.001***	-0.073	(-0.65, 0.51)	0.62
Log ₁₀ Serum N-6 Fatty Acids (mg/mL)	0.040	(-0.28, 0.36)	0.80	0.19	(-1.2, 1.5)	0.78
Adjusted						
Log ₁₀ Serum N-3 Fatty Acids (mg/mL)	0.28	(0.15, 0.41)	<0.001***	0.20	(-0.30, 0.70)	0.43
Log ₁₀ Serum N-6 Fatty Acids (mg/mL)	-0.072	(-0.38, 0.24)	0.65	-0.44	(-1.6, 0.72)	0.46
Log_{10} hair THg (µg/g)	-0.14	(-0.22, -0.061)	0.001***	-1.4	(-1.7, -1.1)	<0.001***
Maternal age (years)	0.0010	(-0.0020, 0.0041)	0.50	0.018	(0.0070, 0.030)	0.002**
Pre-pregnancy BMI (kg/m ²)						
Underweight	(referent)					
Normal weight	-0.013	(-0.054, 0.027)	0.52	0.035	(-0.12, 0.19)	0.65
Overweight or obese	0.0034	(-0.049, 0.055)	0.90	0.11	(-0.089, 0.30)	0.29
Mother or father is a farmer (Yes)	-0.048	(-0.090, -0.0058)	0.03*	-0.12	(-0.28, 0.038)	0.14
Log ₁₀ Maternal energy intake (kcal)	-0.013	(-0.10, 0.13)	0.83	-0.041	(-0.47, 0.39)	0.85
Maternal %calories from protein	0.0053	(-0.0016, 0.012)	0.13	-0.0070	(-0.033, 0.019)	0.59

acids (Model D) (n=236 mothers). Same as Table 4 excluding mothers with imputed values.

p<0.01 *p≤0.001 p-value is for the Beta coefficient

BMI (body mass index), Hg (mercury), N-3 fatty acids (docosahexaenoic acid, eicosapentaenoic acid, and alpha-linolenic acid), N-6 fatty acids (linoleic acid and arachidonic acid), THg (total mercury)

Table S14. Multivariable regression results relating maternal hair isotopes with fish weekly servings and daily rice ingestion (Model A)

(n=252 mothers). Same as Table 1, excluding 13 participants with hair isotopes corresponding to exposures during more than one

trimester.

		Hair Δ ¹⁹⁹ Hg (‰)			Hair δ ²⁰² Hg (‰)	
	Beta	(95% Confidence Interval)	p-value	Beta	(95% Confidence Interval)	p-value
Unadjusted						
Fish weekly servings						
Never or rarely	(referent)			(referent)		
$0 < \text{servings/weekly} \le 2$	0.018	(-0.019, 0.055)	0.33	-0.053	(-0.21, 0.10)	0.50
\geq 2 servings/weekly	0.082	(0.023, 0.14)	0.007**	-0.0011	(-0.25, 0.25)	0.99
Daily rice ingestion (Yes)	0.00084	(-0.050, 0.051)	0.97	-0.011	(-0.22, 0.20)	0.92
Adjusted						
Fish weekly servings						
Never or rarely	(referent)			(referent)		
$0 < \text{servings/weekly} \le 2$	0.0047	(-0.033, 0.043)	0.81	-0.038	(-0.18, 0.10)	0.59
\geq 2 servings/weekly	0.050	(-0.020, 0.12)	0.16	0.10	(-0.15, 0.35)	0.43
Daily rice ingestion (Yes)	-0.0056	(-0.069, 0.058)	0.86	0.0059	(-0.23, 0.24)	0.96
Log_{10} hair THg (µg/g)	-0.12	(-0.20, -0.030)	0.008**	-1.4	(-1.8, -1.1)	<0.001***
Maternal age (years)	0.00082	(-0.0023, 0.0040)	0.61	0.017	(0.0051, 0.028)	0.005**
Pre-pregnancy BMI (kg/m ²)						
Underweight	(referent)			(referent)		
Normal weight	0.0051	(-0.036, 0.047)	0.81	0.050	(-0.10, 0.20)	0.52
Overweight or obese	0.0020	(-0.053, 0.057)	0.94	0.12	(-0.076, 0.33)	0.22
Mother or father is a farmer (Yes)	-0.055	(-0.098, -0.013)	0.011*	-0.098	(-0.25, 0.058)	0.22
Log ₁₀ Maternal energy intake (kcal)	0.0014	(-0.15, 0.15)	0.99	-0.047	(-0.60, 0.51)	0.87
Maternal %calories from protein	0.0034	(-0.0049, 0.012)	0.42	-0.016	(-0.046, 0.014)	0.29

*p < 0.05 ** $p \le 0.01$ *** $p \le 0.001$ p-value is for the Beta coefficient

Table S15. Multivariable regression results relating maternal hair isotopes with %methylmercury intake from rice (Model B) (n=250

mothers) ¹ . Same as Table 2, e	excluding 13 participants	with hair isotopes corresponding	to exposures during more	than one trimester.
, , , , , , , , , , , , , , , , , , , ,	\mathcal{O} - 1 1		1 8	

	Hair Δ ¹⁹⁹ Hg (‰)				Hair δ ²⁰² Hg (‰)			
	Beta	(95% Confidence Interval)	p-value	Beta	(95% Confidence Interval)	p-value		
Unadjusted		·						
%MeHg intake from rice	-0.00058	(-0.0011, -0.000071)	0.03*	0.00050	(-0.0017, 0.0027)	0.65		
Adjusted								
%MeHg intake from rice	-0.00030	(-0.00087, 0.00028)	0.31	-0.00016	(-0.0023, 0.0020)	0.88		
Log_{10} hair THg (µg/g)	-0.12	(-0.20, -0.037)	0.005**	-1.4	(-1.8, -1.1)	<0.001***		
Maternal age (years)	0.00075	(-0.0023, 0.0038)	0.63	0.017	(0.0052, 0.028)	0.005**		
Pre-pregnancy BMI (kg/m ²)								
Underweight	(referent)							
Normal weight	0.0011	(-0.041, 0.039)	0.96	0.042	(-0.11, 0.19)	0.58		
Overweight or obese	0.00080	(-0.053, 0.054)	0.98	0.12	(-0.077, 0.32)	0.22		
Mother or father is a farmer (Yes)	-0.060	(-0.10, -0.019)	0.005**	-0.093	(-0.25, 0.061)	0.23		
Log ₁₀ Maternal energy intake (kcal)	0.023	(-0.095, 0.14)	0.70	-0.095	(-0.54, 0.35)	0.68		
Maternal %calories from protein	0.0033	(-0.0048, 0.011)	0.42	-0.0084	(-0.039, 0.022)	0.59		

*p<0.05 **p≤0.01 ***p≤0.001 p-value is for the Beta coefficient BMI (body mass index), Hg (mercury), THg (total mercury) ¹Two mothers did not eat rice or fish, reducing the sample size from 252 to 250.

Table S16. Multivariable regression results relating maternal hair isotopes with rice methylmercury intake and fish methylmercury intake (Model C) (n=252 mothers). Same as Table 3, excluding 13 participants with hair isotopes corresponding to exposures during more than one trimester.

		Hair Δ ¹⁹⁹ Hg (‰)			Hair δ ²⁰² Hg (‰)			
	Beta	(95% Confidence Interval)	p-value	Beta	(95% Confidence Interval)	p-value		
Unadjusted								
Log ₁₀ Rice MeHg intake (µg/day)	-0.033	(-0.066, -0.00029)	0.048*	-0.14	(-0.28, 0.00043)	0.051		
Log ₁₀ Fish MeHg intake (µg/day)	0.024	(0.0057, 0.043)	0.011*	-0.038	(-0.12, 0.039)	0.33		
Adjusted								
Log ₁₀ Rice MeHg intake (µg/day)	-0.043	(-0.082, -0.0047)	0.03*	-0.098	(-0.24, 0.045)	0.18		
Log_{10} Fish MeHg intake (µg/day)	0.012	(-0.0087, 0.034)	0.25	-0.014	(-0.093, 0.063)	0.72		
Log_{10} hair THg (µg/g)	-0.10	(-0.19, -0.019)	0.02*	-1.4	(-1.7, -1.1)	<0.001***		
Maternal age (years)	0.00074	(-0.0024, 0.0039)	0.64	0.017	(0.0051, 0.028)	0.005**		
Pre-pregnancy BMI (kg/m ²)								
Underweight	(referent)							
Normal weight	0.0033	(-0.037, 0.044)	0.87	0.042	(-0.11, 0.19)	0.58		
Overweight or obese	0.0031	(-0.051, 0.057)	0.91	0.13	(-0.074, 0.33)	0.22		
Mother or father is a farmer (Yes)	-0.060	(-0.10, -0.018)	0.006**	-0.11	(-0.27, 0.043)	0.15		
Log ₁₀ Maternal energy intake (kcal)	0.070	(-0.070, 0.21)	0.32	0.13	(-0.39, 0.65)	0.62		
Maternal %calories from protein	0.0018	(-0.0063, 0.0099)	0.67	-0.015	(-0.044, 0.015)	0.34		

*p<0.05 **p<0.01 ***p≤0.001 p-value is for the Beta coefficient

Table S17. Multivariable regression results relating maternal hair isotopes with serum omega-3 fatty acids and serum omega-6 fatty acids (Model D) (n=252 mothers) Same as Table 4, excluding 13 participants with hair isotopes corresponding to exposures during more than one trimester.

		Hair Δ ¹⁹⁹ Hg (‰)			Hair δ ²⁰² Hg (‰)				
	Beta	(95% Confidence Interval)	p-value	Beta	(95% Confidence Interval)	p-value			
Unadjusted									
Log ₁₀ Serum N-3 Fatty Acids (mg/mL)	0.27	(0.13, 0.40)	<0.001***	-0.070	(-0.65, 0.51)	0.81			
Log ₁₀ Serum N-6 Fatty Acids (mg/mL)	0.13	(-0.17, 0.44)	0.39	0.12	(-1.2, 1.5)	0.86			
Adjusted									
Log ₁₀ Serum N-3 Fatty Acids (mg/mL)	0.27	(0.14, 0.41)	<0.001***	0.16	(-0.34, 0.66)	0.54			
Log ₁₀ Serum N-6 Fatty Acids (mg/mL)	0.030	(-0.28, 0.34)	0.85	-0.51	(-1.7, 0.66)	0.39			
Log_{10} hair THg (µg/g)	-0.13	(-0.21, -0.047)	0.002**	-1.5	(-1.8, -1.1)	<0.001***			
Maternal age (years)	0.00062	(-0.0024, 0.0037)	0.69	0.018	(0.0058, 0.029)	0.003**			
Pre-pregnancy BMI (kg/m ²)									
Underweight	(referent)								
Normal weight	-0.0031	(-0.043, 0.036)	0.88	0.040	(-0.11, 0.19)	0.60			
Overweight or obese	0.0041	(-0.057, 0.049)	0.88	0.12	(-0.081, 0.32)	0.24			
Mother or father is a farmer (Yes)	-0.046	(-0.087, -0.0051)	0.03*	-0.10	(-0.26, 0.053)	0.19			
Log ₁₀ Maternal energy intake (kcal)	-0.0043	(-0.12, 0.11)	0.94	-0.081	(-0.52, 0.36)	0.72			
Maternal %calories from protein	0.0053	(-0.0018, 0.012)	0.14	-0.0098	(-0.037, 0.017)	0.48			

*p<0.05 **p<0.01 ***p≤0.001 p-value is for the Beta coefficient

BMI (body mass index), Hg (mercury), N-3 fatty acids (docosahexaenoic acid, eicosapentaenoic acid, and alpha-linolenic acid), N-6 fatty acids (linoleic acid and arachidonic acid), THg (total mercury)

Table S18. Multivariable regression results relating maternal hair isotopes with fish weekly servings and daily rice ingestion (Model A)

(n=244 mothers). Same as Table 1, excluding 21 maternal hair samples from a previous analysis (Rothenberg et al., 2017).

		Hair ∆ ¹⁹⁹ Hg (‰)			Hair δ ²⁰² Hg (‰)					
	Beta (95% Confidence Interval)		p-value	Beta	(95% Confidence Interval)	p-value				
Unadjusted										
Fish weekly servings										
Never or rarely	(referent)			(referent)						
$0 < \text{servings/weekly} \le 2$	0.020	(-0.016, 0.056)	0.28	-0.057	(-0.21, 0.099)	0.47				
\geq 2 servings/weekly	0.062	(0.0010, 0.12)	0.046*	-0.0026	(-0.26, 0.26)	0.99				
Daily rice ingestion (Yes)	0.0098	(-0.040, 0.060)	0.70	-0.018	(-0.23, 0.20)	0.87				
Adjusted										
Fish weekly servings										
Never or rarely	(referent)			(referent)						
$0 < \text{servings/weekly} \le 2$	0.0064	(-0.032, 0.045)	0.74	-0.027	(-0.17, 0.11)	0.71				
\geq 2 servings/weekly	0.035	(-0.036, 0.10)	0.33	0.13	(-0.13, 0.38)	0.33				
Daily rice ingestion (Yes)	-0.0059	(-0.069, 0.057)	0.85	0.028	(-0.20, 0.25)	0.81				
Log_{10} hair THg (µg/g)	-0.088	(-0.17, -0.0056)	0.04*	-1.5	(-1.8, -1.2)	<0.001***				
Maternal age (years)	0.00037	(-0.0027, 0.0034)	0.81	0.016	(0.0053, 0.028)	0.004**				
Pre-pregnancy BMI (kg/m ²)										
Underweight	(referent)			(referent)						
Normal weight	0.0069	(-0.035, 0.048)	0.75	0.061	(-0.090, 0.21)	0.43				
Overweight or obese	0.011	(-0.044, 0.065)	0.70	0.14	(-0.056, 0.34)	0.16				
Mother or father is a farmer (Yes)	-0.046	(-0.089, -0.0037)	0.03*	-0.13	(-0.29, 0.023)	0.09				
Log ₁₀ Maternal energy intake (kcal)	0.049	(-0.10, 0.20)	0.53	-0.15	(-0.71, 0.41)	0.60				
Maternal %calories from protein	0.0018	(-0.0062, 0.097)	0.67	-0.013	(-0.042, 0.016)	0.39				

*p<0.05 **p≤0.01 ***p≤0.001 p-value is for the Beta coefficient

Table S19. Multivariable regression results relating maternal Δ^{199} Hg hair isotopes with %methylmercury intake from rice (Model B)

		Hair Δ ¹⁹⁹ Hg (‰)			Hair δ ²⁰² Hg (‰)				
	Beta (95% Confidence p-val Interval)		p-value	Beta	(95% Confidence Interval)	p-value			
Unadjusted									
%MeHg intake from rice	-0.00042	(-0.00092, -0.000069)	0.09	0.00061	(-0.0015, 0.0028)	0.58			
Adjusted									
%MeHg intake from rice	-0.00018	(-0.00073, 0.00038)	0.53	0.000042	(-0.0020, 0.0021)	0.97			
Log_{10} hair THg (µg/g)	-0.092	(-0.17, -0.012)	0.03*	-1.5	(-1.8, -1.2)	<0.001***			
Maternal age (years)	0.00033	(-0.0026, 0.0033)	0.83	0.017	(0.0058, 0.028)	0.003**			
Pre-pregnancy BMI (kg/m ²)									
Underweight	(referent)								
Normal weight	0.0012	(-0.039, 0.041)	0.95	0.052	(-0.098, 0.20)	0.50			
Overweight or obese	0.010	(-0.043, 0.063)	0.71	0.14	(-0.057, 0.34)	0.16			
Mother or father is a farmer (Yes)	-0.050	(-0.091, -0.0086)	0.02*	-0.13	(-0.28, 0.026)	0.10			
Log ₁₀ Maternal energy intake (kcal)	0.075	(-0.044, 0.19)	0.22	-0.16	(-0.60, 0.29)	0.49			
Maternal %calories from protein	0.0014	(-0.0063, 0.0092)	0.72	-0.0043	(-0.033, 0.024)	0.77			

(n=242 mothers).¹ Same as Table 2, excluding 21 maternal hair samples from a previous analysis (Rothenberg et al., 2017).

*p<0.05 **p≤0.01 ***p<0.001 p-value is for the Beta coefficient

BMI (body mass index), Hg (mercury), THg (total mercury)

¹Two mothers did not eat rice or fish, reducing the sample size from 244 to 242.

Table S20. Multivariable regression results relating maternal hair isotopes with rice methylmercury intake and fish methylmercury intake (Model C) (n=244 mothers). Same as Table 3, excluding 21 maternal hair samples from a previous analysis (Rothenberg et al., 2017).

		Hair Δ ¹⁹⁹ Hg (‰)		Hair δ ²⁰² Hg (‰)		
	Beta	(95% Confidence Interval)	p-value	Beta	(95% Confidence Interval)	p-value
Unadjusted						
Log ₁₀ Rice MeHg intake (µg/day)	-0.015	(-0.049, 0.019)	0.39	-0.14	(-0.29, -0.0033)	0.055
Log ₁₀ Fish MeHg intake (µg/day)	0.020	(0.0019, 0.039)	0.03*	-0.046	(-0.12, 0.032)	0.25
Adjusted						
Log ₁₀ Rice MeHg intake (µg/day)	-0.029	(-0.070, 0.012)	0.16	-0.085	(-0.23, 0.064)	0.26
Log_{10} Fish MeHg intake (µg/day)	0.011	(-0.010, 0.032)	0.32	-0.017	(-0.094, 0.059)	0.66
Log_{10} hair THg (µg/g)	-0.079	(-0.16, 0.0039)	0.06	-1.5	(-1.8, -1.1)	<0.001***
Maternal age (years)	0.00026	(-0.0028, 0.0033)	0.87	0.016	(0.0051, 0.027)	0.004**
Pre-pregnancy BMI (kg/m ²)						
Underweight	(referent)					
Normal weight	0.0070	(-0.034, 0.048)	0.74	0.055	(-0.094, 0.20)	0.47
Overweight or obese	0.013	(-0.041, 0.067)	0.64	0.15	(-0.051, 0.34)	0.15
Mother or father is a farmer (Yes)	-0.049	(-0.091, -0.0061)	0.03*	-0.14	(-0.30, 0.0098)	0.07
Log ₁₀ Maternal energy intake (kcal)	0.091	(-0.051, 0.23)	0.21	0.048	(-0.47, 0.57)	0.86
Maternal %calories from protein	0.00041	(-0.0075, 0.0083)	0.92	-0.011	(-0.040, 0.018)	0.45

*p<0.05 **p<0.01 ***p<0.001 p-value is for the Beta coefficient

Table S21. Multivariable regression results relating maternal hair isotopes with serum omega-3 fatty acids and serum omega-6 fatty acids (Model D) (n=244 mothers). Same as Table 4, excluding 21 maternal hair samples from a previous analysis (Rothenberg et al., 2017).

		Hair Δ ¹⁹⁹ Hg (‰)				Hair δ ²⁰² Hg (‰)	
	Beta	(95% Confidence Interval)	p-value	E	Beta	(95% Confidence Interval)	p-value
Unadjusted		Intervar)				Intervar)	
Log ₁₀ Serum N-3 Fatty Acids (mg/mL)	0.29	(0.16, 0.42)	<0.001***	-0	.043	(-0.61, 0.53)	0.88
Log ₁₀ Serum N-6 Fatty Acids (mg/mL)	0.046	(-0.26, 0.35)	0.77	-0.	0015	(-1.4, 1.4)	1.0
Adjusted							
Log ₁₀ Serum N-3 Fatty Acids (mg/mL)	0.30	(0.17, 0.42)	<0.001***	().16	(-0.31, 0.64)	0.50
Log ₁₀ Serum N-6 Fatty Acids (mg/mL)	-0.020	(-0.33, 0.29)	0.90	-().51	(-1.7, 0.67)	0.40
Log_{10} hair THg (µg/g)	-0.10	(-0.18, -0.023)	0.011*	-	1.5	(-1.8, -1.2)	<0.001***
Maternal age (years)	0.00054	(-0.0024, 0.0035)	0.71	0	.017	(0.0063, 0.029)	0.002**
Pre-pregnancy BMI (kg/m ²)							
Underweight	(referent)						
Normal weight	-0.0013	(-0.040, 0.038)	0.95	0	.051	(-0.098, 0.20)	0.50
Overweight or obese	0.0063	(-0.045, 0.058)	0.81	0).14	(-0.059, 0.33)	0.17
Mother or father is a farmer (Yes)	-0.035	(-0.076, 0.0052)	0.09	-(0.14	(-0.29, 0.018)	0.08
Log ₁₀ Maternal energy intake (kcal)	0.056	(-0.058, 0.17)	0.34	-().13	(-0.57, 0.31)	0.56
Maternal %calories from protein	0.0026	(-0.0043, 0.0094)	0.46	-0.	0073	(-0.033, 0.019)	0.58

*p<0.05 **p<0.01 ***p≤0.001 p-value is for the Beta coefficient

BMI (body mass index), Hg (mercury), N-3 fatty acids (docosahexaenoic acid, eicosapentaenoic acid, and alpha-linolenic acid), N-6 fatty acids (linoleic acid and arachidonic acid), total mercury (THg)

	Hair Δ ¹⁹⁹ Hg (‰)	Hair δ ²⁰² Hg (‰)	%MeHg intake from rice ¹	Rice MeHg intake (µg/day)	Fish MeHg intake (µg/day)	Serum N-3 Fatty Acids (mg/mL)	Serum N-6 Fatty Acids (mg/mL)	Hair THg (µg/g)	Maternal age (years)	Maternal energy intake (kcal)	Maternal %calories from protein
Hair Δ ¹⁹⁹ Hg (‰)	1										
Hair δ ²⁰² Hg (‰)	0.25	1									
%MeHg intake from rice ¹	-0.17	0.03	1								
Rice MeHg intake (µg/day)	-0.07	-0.16	0.15	1							
Fish MeHg intake (µg/day)	0.17	-0.07	-0.96	0.05	1						
Serum N-3 Fatty Acids (mg/mL)	0.25	-0.02	-0.14	-0.03	0.15	1					
Serum N-6 Fatty Acids (mg/mL)	0.15	-0.02	-0.08	-0.03	0.07	0.46	1				
Hair THg (µg/g)	-0.18	-0.54	-0.03	-0.18	0.06	0.11	-0.002	1			
Maternal age (years)	-0.05	0.11	0.04	-0.04	-0.04	0.02	0.06	0.08	1		
Maternal energy intake (kcal)	0.09	-0.09	-0.26	0.40	0.34	0.07	0.02	0.09	-0.008	1	
Maternal %calories from protein	0.17	-0.08	-0.47	0.08	0.49	0.07	0.10	0.01	-0.08	0.61	1

Table S22. Spearman's correlation for continuous variables in regression models (n=265 mothers).

BMI (body mass index), Hg (mercury), MeHg (methylmercury), N-3 fatty acids (docosahexaenoic acid, eicosapentaenoic acid, and alpha-linolenic acid), N-6 fatty acids (linoleic acid and arachidonic acid), THg (total mercury)

¹n=263

	Hair ∆ ¹⁹⁹ Hg (‰) Median (range)	p- value	Hair δ ²⁰² Hg (‰) Median (range)	p- value	%MeHg intake from rice ¹ Median (range)	p- value	Rice MeHg intake (µg/day) Median (range)	p- value	Fish MeHg intake (µg/day) Median (range)	p- value		
Fish consumption												
0 meals/weekly	0.11 (-0.15, 0.63)	0.006 **	0.50 (-0.89, 1.8)	0.79	100 (100, 100)	0.0001 ***	0.40 (0. 3.2)	0.29	$\begin{matrix} 0 \\ (0,0) \end{matrix}$	0.0001 ***		
0 <meals td="" weekly<2<=""><td>0.13</td><td></td><td>0.39</td><td></td><td>54</td><td></td><td>0.44</td><td></td><td>0.43</td><td></td><td></td><td></td></meals>	0.13		0.39		54		0.44		0.43			
meals/weekly	(-0.09, 0.66)		(-0.69, 1.8)		(0.37, 97)		(0.004, 5.0)		(0.03, 1.3)			
≥2 meals/weekly	0.20 (-0.06, 0.61)		0.44 (-0.82, 1.8)		15 (0.30, 74)		0.55 (0.006, 2.1)		2.1 (0.36, 19)			
Daily rice												
ingestion												
No	0.12 (-0.05, 0.53)	0.79	0.52 (-0.51, 1.6)	0.70	$ \begin{array}{c} 100 \\ (0.30, 100) \end{array} $	0.84	0.09 (0, 0.90)	<0.0001 ***	$0 \\ (0, 4.6)$	0.17		
Yes	0.13		0.43		0.81		0.47		0.17			
	(-0.15, 0.06)		(-0.89, 1.8)		(3.6, 100)		(0.05, 5.0)		(0, 19)			
Mother or father is a farmer												
No	0.19 (-0.02, 0.62)	0.002	0.36 (-0.59, 1.7)	0.57	56 (2.9, 100)	0.0004	0.51 (0.02, 3.4)	0.24	0.44 (0, 5.3)	<0.0001 ***		
Yes	0.12 (-0.15, 0.66)		0.44 (-0.89, 1.8)		94 (0.30, 100)		0.42 (0, 5.0)		0.03 (0, 19)			
Pre-pregnancy BMI			· ·									
Underweight	0.15 (-0.05, 0.61)	0.71	0.25 (-0.82, 1.8)	0.09	70 (0.30, 100)	0.32	0.37 (0.006, 5.0)	0.70	0.17 (0, 13)	0.32		
Normal weight	0.12		0.44		86		0.43		0.17			
	(-0.09, 0.63)		(-0.89, 1.8)		(2.4, 100)		(0, 4.1)		(0, 19)			
Overweight or	0.15		0.64		91		0.53		0.03			
Obese	(-0.15, 0.66)		(-0.46, 1.7)		(0.37, 100)		(0.004, 3.2)		(0, 15)			
	Serum N-3 Fatty Acids (mg/mL) Median (range)	p- value	Serum N-6 Fatty Acids (mg/mL) Median (renge)	p- value	Hair THg (µg/g) Median (range)	p- value	Maternal age (yrs) Median (range)	p- value	Maternal energy intake (kcal) Median (renge)	p- value	Maternal %calories from protein Median (range)	p- value
Fish consumption	(range)		(range)				(range)		(range)		(range)	
0 meals/weekly	0.12	0.03*	1.5	0.20	0.44	0.78	28	0.91	1780	0.0001	9.9	0.0001
-	(0.07, 0.42)	0.05	(1.1, 2.4)	0.20	(0.13, 1.4)	0.70	(18, 42)	0.71	(549, 4480)	***	(5.1, 19)	***
0 <meals td="" weekly<2<=""><td>0.13</td><td></td><td>1.5</td><td></td><td>0.48</td><td></td><td>28</td><td></td><td>2150</td><td></td><td>12</td><td></td></meals>	0.13		1.5		0.48		28		2150		12	

Table S23. Associations between categorical and continuous variables in regression models (n=265 mothers).

meals/weekly	(0.06, 0.28)		(1.1, 2.4)		(0.15, 1.8)		(17, 42)		(602, 4440)		(6.8, 19)	
≥2 meals/weekly	0.14		1.5		0.52		26		2670		15	
	(0.06, 0.40)		(1.2, 1.7)		(0.21, 0.89)		(17, 45)		(1540, 4210)		(12, 25)	
Daily rice												
ingestion												
No	0.12	0.71	1.5	0.53	0.47	0.77	28	0.48	1150	< 0.0001	9.9	0.011*
	(0.06, 0.28)		(1.2, 2.0)		(0.24, 1.8)		(17, 42)		(549, 2210)	***	(5.1, 19)	
Yes	0.13		1.5		0.48		27		2163		12	
	(0.06, 0.42)		(1.1, 2.4)		(0.13, 1.5)		(17, 45)		(842, 4480)		(5.7, 25)	
Mother or father												
is a farmer												
No	0.14	0.02*	1.5	0.004**	0.46	0.59	26	0.06	2270	0.02*	13	< 0.0001
	(0.06, 0.40)		(1.2, 2.4)		(0.13, 1.8)		(17, 37)		(585, 4070)		(6.1, 21)	***
Yes	0.12		1.4		0.48		28		1990		11	
	(0.06, 0.42)		(1.1, 2.4)		(0.15, 1.5)		(17, 45)		(549, 4480)		(5.1, 25)	
Pre-pregnancy BMI												
Underweight	0.12	0.45	1.4	0.53	0.50	0.09	26	0.07	2210	0.22	12	0.04*
_	(0.07, 0.40)		(1.2, 2.1)		(0.18, 1.5)		(17, 43)		(606, 4480)		(6.3, 25)	
Normal weight	0.13		1.5		0.48		28		1984		11	
	(0.06, 0.42)		(1.1, 2.4)		(0.13, 1.5)		(17, 45)		(548, 4212)		(5.1, 19)	
Overweight or	0.13		1.5		0.43		27		1990		12	
Obese	(0.06, 0.26)		(1.1, 2.4)		(0.19, 1.8)		(17, 38)		(602, 4440)		(5.7, 22)	

*p<0.05, **p<0.01, ***p<0.001 p-value is for Wilcoxon rank sum test or Kruskal-Wallis test BMI (body mass index), Hg (mercury), MeHg (methylmercury), N-3 fatty acids (docosahexaenoic acid, eicosapentaenoic acid, and alpha-linolenic acid), N-6 fatty acids (linoleic acid and arachidonic acid), THg (total mercury)

¹n=263

LEGEND FOR DATASET S1

DATASET S1. Worksheet A. Hair total mercury (THg) concentrations and hair mercury (Hg) isotopes (n=265).

DATASET S1. Worksheet B. Quality assurance and quality control for isotopes

SUPPORTING INFORMATION REFERENCES

1. C. Hong, X. Yu, J. Liu, Y. Cheng and S.E. Rothenberg. Low-level methylmercury exposure through rice ingestion in a cohort of pregnant mothers in rural China. *Environ. Res.*, 2016, **150**, 519-527.

2. S.E. Rothenberg, R. Yin, J.P. Hurley, D.P. Krabbenhoft, Y. Ismawati, C. Hong and A. Donohue. Stable mercury isotopes in polished rice (*Oryza sativa* L.) and hair from rice consumers. *Environ. Sci. Technol.*, 2017, **51**, 6480-6488.

S.E. Rothenberg, X. Yu, J. Liu, F.J. Biasini, C. Hong, X. Jiang, Y. Nong, Y. Cheng and S.A. Korrick. Maternal methylmercury exposure through rice ingestion and offspring neurodevelopment: a prospective cohort study. *Int. J. Hyg. Environ. Health*, 2016, **219**, 832-842.

4. S.E. Rothenberg, S.A. Korrick, J. Liu, Y. Nong, H. Nong, C. Hong, E.P. Trinh, X. Jiang and F.J. Biasini, F. Ouyang. Maternal methylmercury exposure through rice ingestion and child neurodevelopment in the first three years: a prospective cohort study in rural China. *Environ. Health.* 2021, DOI: 10.1186/s12940-021-00732-z.

5. Y. Cheng, M.J. Dibley, X. Zhang, L. Zeng and H. Yan. Assessment of dietary intake among pregnant women in a rural area of western China. *BMC Public Health.*, 2009; DOI: 10.1186/1471-2458-9-222.

6. U.S. Food and Drug Administration. Consumer Advisory: An Important Message for Pregnant Women of Childbearing Age Who May Become Pregnant and the Risks of Mercury in Fish.
2001. www.rst2.org/ties/mercury/University/pdfs/me35.pdf Accessed 27 July 2024.

7. N.S. Bloom. On the chemical form of mercury in edible fish and marine invertebrate tissue. *Can. J. Fish Aquat. Sci.*, 1992, **49**, 1010-1017.

8. T.W. Clarkson and L. Magos. The toxicology of mercury and its chemical compounds. *Crit. Rev. Toxicol.*, 2006, **36**, 609-662.

9. G. Loussouarn, C. El Rawadi and G. Genain. Diversity of hair growth profiles. *Int. J. Dermatol.*, 2005, **44**, 6-9.

 U.S. Environmental Protection Agency. Method 1631, Revision E: Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry. Washington, DC. 2002. <u>www.epa.gov/sites/default/files/2015-08/documents/method_1631e_2002.pdf</u>. Accessed 27 July 2024.

11. L. Liang, M. Horvat, E. Cernichiari, B. Gelein, S. Balogh. Simple solvent extraction technique for elimination of matrix interferences in the determination of methylmercury in environmental and biological samples by ethylation-gas chromatography-cold vapor atomic fluorescence spectrometry. *Talanta*, 1996, **43**, 1883-1888.

 U.S. Environmental Protection Agency. Method 1630, Methyl Mercury in Water by Distillation, Aqueous Ethylation, Purge and Trap, and Cold Vapor Atomic Spectrometry. Environmental Protection Agency, Washington, DC. 2001.

www.epa.gov/sites/default/files/2015-08/documents/method_1630_1998.pdf Accessed 27 July 2024.

13. U.S. Environmental Protection Agency. Method 7473, Mercury in Solids and Solutions by Thermal Decomposition, Amalgamation and Atomic Absorption Spectrophotometry.Environmental Protection Agency, Washington, DC. 2007.

www.epa.gov/sites/default/files/2015-07/documents/epa-7473.pdf Accessed 27 July 2024.

14. S.E. Janssen, R.F. Lepak, M.T. Tate, J.M. Ogorek, J.F. DeWild, C.L. Babiarz, J.P. Hurley and D.P. Krabbenhoft. Rapid pre-concentration of mercury in solids and water for isotopic analysis. *Anal. Chim. Acta*, 2019, **1054**, 95-103.

15. R. Yin, D.P. Krabbenhoft, B.A. Bergquist, W. Zheng, R.F. Lepak and J.P. Hurley. Effects of mercury and thallium concentrations on high precision determination of mercury isotope composition by Neptune Plus multiple collector inductively coupled plasma mass spectrometry. *J. Anal. At. Spectrom.*, 2016, **31**, 2060-2068.

16. B. Du, X. Feng, P. Li, R. Yin, B. Yu, J.E. Sonke, B. Guinot, C.W.N. Anderson and L.Maurice. Use of mercury isotopes to quantify mercury exposure sources in inland populations,China. *Environ. Sci. Technol.* 2018, **52**, 5407-5416.

17. P. Li, B. Du, L. Maurice, L. Laffont, C. Lagane, D. Point, J.E. Sonke, R. Yin, C. Lin and X. Feng. Mercury isotope signatures of methylmercury in rice samples from the Wanshan mercury mining area, China: environmental implications. *Environ Sci Technol.*, 2017, **51**, 12321-12328.

18. S. Yang, B. Wang, C. Qin, R. Yin, P. Li, J. Liu, D. Point, L. Maurice, J.E. Sonke, L. Zhang and X. Feng. Compound-specific stable isotope analysis provides new insights for tracking human monomethylmercury exposure sources. *Environ Sci Technol.*, 2021, **55**, 12493-12503.

19. M. Bonsignore, S. Tamburrino, E. Oliveri, A. Marchetti, C. Durante, A. Berni, E. Quinci and M. Sprovieri. Tracing mercury pathways in Augusta Bay (southern Italy) by total concentration and isotope determination. *Environ. Pollut.* 2015, **205**, 178-185.

20. M. Li, L.S. Sherman, J.D. Blum, P. Grandjean, B. Mikkelsen, P. Weihe, E.M. Sunderland and J.P. Shine. Assessing sources of human methylmercury exposure using stable mercury isotopes. *Environ Sci Technol.*, 2014, **48**, 8800-8806.

21. L.S. Sherman, J.D. Blum, N. Basu, M. Rajaee, D.C. Evers, D.G. Buck, J. Petrik and J. DiGangi. Assessment of mercury exposure among small-scale gold miners using mercury stable isotopes. *Environ. Res.* 2015, **137**, 226-234.

22. L.S. Sherman, J.D. Blum, A. Franzblau and N. Basu. New insight into biomarkers of human mercury exposure using naturally occurring mercury stable isotopes. *Environ Sci Technol.*, 2013;
47, 3403-3409.

23. L. Laffont, J.E. Sonke, L. Maurice, S.L. Monrroy, J. Chincheros, D. Amouroux and P. Behra. Hg speciation and stable isotope signatures in human hair as a tracer for dietary and occupational exposure to mercury. *Environ. Sci. Technol.*, 2011, **45**, 9910-9916.

24. L. Laffont, J.E. Sonke, L. Maurice, H. Hintelmann, M. Pouilly, Y.S. Bacarreza, T. Perez andP. Behra. Anomalous mercury isotopic compositions of fish and human hair in the BolivianAmazon. *Environ. Sci. Technol.* 2009, 43, 8985-8990.

25. World Health Organization (WHO) Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. *Lancet*, 2004, **363**, 157-163.