Supplementary Material 1 Reduction of hexavalent chromium by compost-derived dissolved organic 2 matter 3 Chuanghe Miao^a, Hui Rong^a, Xiaoqing Wei^a, Jianying Shang^{a,b}, Hu Zhou^{a,b*}, Yizhong Lv^{a,b*} 4 5 ^a College of Land Science and Technology, China Agricultural University, Beijing 100193, P. R. China 6 ^b Key Laboratory of Arable Land Conservation (North China), MARA, Beijing 100193, P. R. China 7 8 **6 Figures and 3 Tables** 9 Fig. S1 FTIR spectra of DOM_C fractions (HA_C and FA_C) and soil humic matter fractions (HA_B, HA_R, FA_B, and 10 FA_R) 11 Fig. S2 UV-Vis absorbance spectra of (a) HA_C, (b) HA_B, (c) HA_R, (d) FA_C, (e) FA_B, and (f) FA_R upon the 12 addition of Cr(VI). 13 Fig. S3 Differential log-transformed UV-Vis absorbance spectra of (a) HA_C, (b) HA_B, (c) HA_C, (d) FA_C, (e) FA_B, 14 and (f) FA_R upon the addition of Cr(VI). 15 Fig. S4 Synchronous maps of (a) HA_C, (b) HA_B, (c) HA_R, (d) FA_C, (e) FA_B, and (f) FA_R upon the addition of 16 Cr(VI). The x_1 or x_2 axis represents the wavelength of the UV-Vis absorbance spectra. 17 Fig. S5 Asynchronous maps for (a) HA_C, (b) HA_B, (c) HA_R, (d) FA_C, (e) FA_B, and (f) FA_R upon the addition of Cr(VI). The x_1 or x_2 axis represents the wavelength of the UV-Vis absorbance spectra. 18 19 Fig. S6 Synchronous 2D-SFS-COS maps of the six organic matter fractions (a, HA_C; b, HA_B; c, HA_R; d. FA_C; e, 20 FA_B; f, FA_R). The x_1 or x_2 was the excitation wavelength (nm) of the SFS. 21 Fig. S7 Asynchronous 2D-SFS-COS maps of the six organic matter fractions (a, HA_C; b, HA_B; c, HA_R; d, FA_C; e, 22 FA_B; f, FA_R). The x_1 or x_2 was the excitation wavelength (nm) of the SFS. 23 24 Table S1 The content of HA and FA in the six organic matter fractions 25 Table S2 The relative abundance of the integration of the three synchronous fluorescence regions of the six 26 organic matter fractions

28 Fig. S1 FTIR spectra of DOM_C fractions (HA_C and FA_C) and soil humic matter fractions (HA_B, HA_R, FA_B,

and FA_R)

32 Fig. S2 UV-Vis absorbance spectra of (a) HA_C, (b) HA_B, (c) HA_R, (d) FA_C, (e) FA_B, and (f) FA_R upon the

³³ addition of Cr(VI).

Fig. S3 Differential log-transformed UV-Vis absorbance spectra of (a) HA_C, (b) HA_B, (c) HA_R, (d) FA_C, (e) FA_B,

36 and (f) FA_R upon the addition of Cr(VI).

39 Fig. S4 Synchronous maps of (a) HA_C , (b) HA_B , (c) HA_R , (d) FA_C , (e) FA_B , and (f) FA_R upon the addition of

42 Fig. S5 Asynchronous maps for (a) HA_C, (b) HA_B, (c) HA_R, (d) FA_C, (e) FA_B, (f) FA_R upon the addition of

46 Fig. S6 Synchronous 2D-SFS-COS maps of the six organic matter fractions (a, HA_c; b, HA_B; c, HA_R; d.

49 Fig. S6 Asynchronous 2D-SFS-COS maps of the six organic matter fractions (a, HA_C; b, HA_B; c, HA_R; d. FA_C; e,

- 50 FA_B; f, FA_R). The x_1 or x_2 was the excitation wavelength (nm) of the SFS.

Origin	HA	FA		TOC	(HA+FA)/TOC	
	(g C kg ⁻¹)	(g C kg ⁻¹)	ΠΑ/ΓΑ	(g kg ⁻¹)	(%)	
Black soil	1.24	2.11	0.59	14.91	22.47	
Red soil	0.35	1.79	0.20	6.18	34.66	
DOM _C	7.90	12.19	0.64	185.90	10.74	

53 Table S1 The content of HA and FA in the six organic matter fractions

Table S2 The relative abundance of the integration of the three synchronous fluorescence regions of the six

56 organic matter fractions

Fractions	HA _C	FAc	HA _B	FA _B	HA _R	FA _R
Protein-like substances (%)	16.33	16.07	2.81	6.84	14.65	8.56
Fulvic acid-like substances (%)	53.60	65.47	34.21	66.24	44.77	68.95
Humic acid-like substances (%)	30.07	18.46	62.99	26.93	40.58	22.50