Supplementary Information (SI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2024

Supplementary material

Plasticizers: Distribution and Impact in Aquatic and Terrestrial

Environments

Danushika C. Manatunga^{1,2}, Madushika Sewwandi³, Kalani Imalka Perera³, Methmini Dilhara

Jayarathna³, Dinusha L. Peramune¹, Rohan S. Dassanayake¹, Sammani Ramanayaka^{3,4},

Meththika Vithanage^{3*}

¹Department of Biosystems Technology, Faculty of Technology, University of Sri

Jayewardenepura, Pitipana, Homagama, 10206, Sri Lanka

²School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N

1AX, United Kingdom

³Ecosphere Resilience Research Center, University of Sri Jayewardenepura, Nugegoda, 10250,

Sri Lanka

⁴Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YW, United

Kingdom

Chemical type	Examples	Category as in primary function	Applications	Reference
Phthalate esters	DEHP, DINP, DIDP, DPHP, DTDP, DUP, L11P	GP plasticizers	PVC products	1, 2
Terephthalate	DEHTP	Specialty plasticizers, GP plasticizers	PVC products	3
Dibasic acid esters	DEHA, DINA, DEHZ, DIDA, DEHS	Low temperature plasticizers, Fast fusing plasticizers, Stain resistant plasticizers	Food coatings, Flexible PVC	2, 4, 5
Epoxy plasticizers	ESO, TEHTM, Butyl, hexyl, and 2-ethyl hexyl esters of epoxidized stearic acid,	GP plasticizLow- temperatureers	PVC films, Medical equipment, Packaging, Lubricants, Laminate materials	6, 7
Benzoate esters	Dipropylene glycol dibenzoate	Fast fusing plasticizer, Stain resistant plasticizer, Low temperature plasticizers	Water-based adhesives, Latex caulks, Polyurethanes, Injection mold, Urethane resin, Sealants, Cosmetics such as sun tan lotions	8, 9
Cyclohexanoate esters	DC8CH, DC9CH	GP plasticizers	Phthalate alternative in toys and food contact products, Medical equipment	10
Polymeric plasticizers	Polyesters	Low volatility plasticizers	Vinyl decals, Vinyl electrical tape, Gaskets for refrigerators, Extraction resistant hose, Nonmigrating inks, PVC roofing membranes, PVC geomembranes	11
Phosphate esters	Di-2-ethylhexyl phosphate, Tri-2-ethylexyl phosphate, Tri- 2-ethylhexyl-trimellitate	Flame retardant plasticizers	Data cables, Plenum cables, Electronic devices, Transportation fabrics, Wall hangings	12

Table S1.	Classification	of plasticizers	according to their	chemical type,	examples and	l applications
		1	\mathcal{O}		1	11

Citrate esters	ATBC	Fast fusing plasticizers	Food grade plastics, Medical equipment, Toys	13
----------------	------	--------------------------	--	----

*Note: DEHP- Di-2-ethylhexyl phthalate, ATBC- Acetylated tributyl citrate, TEHTM- Tri-2-ethylhexyl trimellitate, DINP-Diisononyl phthalate, DIDP-Diisodecyl phthalate, DPHP- Di-2-propylheptyl phthalate, DTDP- Ditridecyl phthalate, DUP- Di-n-undecyl phthalate, DEHTP- Di-2-ethylhexyl terephthalate, DEHA- Di-2-ethylhexyl adipate, DINA- Diisononyl adipate, DEHZ- Di-2-ethylhexyl azelate, DIDA- Diisodecyl adipate, DEHS- di-2-ethylhexyl succinate, ESO- Epoxidized soybean oil, DC8CH- Di-2-ethylhexyl cyclohexanedicarboxylic acid ester, DC9CH- Cyclo- hexanedicarboxylic acid ester of isononyl alcohol, GP- general purpose.

Figure S1: Chemical structures of plasticizers from main chemical types.

Figure S2: Sources of bio-based plasticizers.

Parameter	DEHP	DEHTP	DC8CH	DEHA	ESO	DPGDB	DEH phosphate	ATBC
Molecular weight (g/mol)	390	390	42	370	926	342	210	402
Odour	Odourless	Odourless	N/E	Odourless	Pungent odour	Faint odour	Odourless	Mild sweet odour
Appearance	Colourless oily liquid	Colourless liquid	N/E	Colourless liquid	Pale yellow liquid	Straw colour liquid	Clear or pale- yellow liquid	Colourless liquid
Viscosity (at 20 °C)	80	65	60	15	325	215	35	43
Density (at 20 °C, g/cm ³)	0.986	0.984	0.948	0.927	0.990	1.130	0.975	1.050
Efficiency factor (versus DEHP)	1.00	1.04	1.09	0.94	N/E	0.96	N/E	0.97
Final gelation temperature (°C)	71	82	83	70	N/E	61	N/E	61
Low-temperature flexibility (Clash Berg T/ °C)	-25	-28	-29	-53	N/E	-7	N/E	-18
Weight loss (%) after heating 1 week at 100 °C	10.6	5.5	7.5	27.5	N/E	15.1	N/E	>30

Table S2. Physicochemical properties of some selected plasticizers

*Note: DEHP- Di-2-ethylhexyl phthalate, DEHTP- Di-2-ethylhexyl terephthalate, DC8CH- Di-2-ethylhexyl, cyclohexanedicarboxylic acid ester DEHA- Di-2-ethylhexyl adipate, ESO- Epoxidized soybean, ATBC- Acetylated tributyl citrate, DPGDB- Dipropylene glycol dibenzoate, DEH phosphate- Di-2-ethylhexyl phosphate, N/E- No evidence.

Country/ region/ Location	Sample Type	Identification method	Plasticizers	Abundance (ng/L)	Reference	
An urban			DRP	1170 -15460		
river in	River water	GC-MS	DEHP	1170 -15460	14	
Northern China			DIBP	1170 -15460		
			TBOEP	1.2 ± 0.6		
	Ton water		TCIPP	15.4 ± 6.4		
	Tap water		TCEP	1.6 ± 1		
			TPPO	22.2 ± 46.2		
	Bottled	_	EHDPP	0.8 ± 1.4		
	water		TPPO	2.7 ± 3.6		
		LC-MS/MS	DCP	20.9 ± 30.7	15	
			EHDPP	2738 ± 1665	15	
			IDPP	6.9 ± 6		
			TBOEP	2.5 ± 2.7		
	Decular		TCIPP	7.2 ± 6.9		
Barcelona	Regular		ТСР	2.2 ± 3.3		
(Spain)	cola		TDCIPP	3.5 ± 4.8		
			TEHP	5.1 ± 5.1		
			TNBP	2.5 ± 3.9		
			TPHP	39.8 ± 28.2		
			TPPO	45.5 ± 52.2		
		_	EHDPP	9.9 ± 16.8		
	Sugar free		TBOEP	0.6 ± 0.6		
	Sugar-free		TCIPP	8.7 ± 14.3		
	cola driffiks		TNBP	5 ± 6.3		
			ТРРО	79.9 ± 81.2		
	Juice		EHDPP	513 ± 1250		

Table S3: Global concentrations of plasticizers in water and their characteristics (To simplify the presentation of data, the reported values from previous studies have been rounded in this table)

			TBOEP	14.1 ± 27.7	
			TCIPP	9.4 ± 15.7	
			TNBP	14 ± 42	
			TPHP	157 ± 497	
			TPPO	43.8 ± 47.4	
		_	EHDPP	26.2 ± 29.2	
			TBOEP	3.2 ± 1.9	
	XX 7'		TCP	5 ± 7.6	
	Wine		TNBP	4.4 ± 3.1	
			TPHP	2.3 ± 2.6	
			TPPO	7.3 ± 5.8	
		_	TDCIPP	20.4 ± 50.9	
	T		TNBP	32.9 ± 62.1	
	lea		TPHP	5.1 ± 10.7	
			TPPO	6.8 ± 10.4	
		_	DCP	1.2 ± 0.8	
			ТСР	6.1 ± 6.1	
	Coffee		TNBP	19.5 ± 19.2	
			TPHP	3.2 ± 5.4	
			TPPO	8.4 ± 7.8	
Bengawan					
Solo River			BPA	ND-1070	
(Indonesia)	D . (16
Brantas river	- River water	GC/MS			16
(Indonesia)			BPA	ND-556	
			BBP	ND -1780	
Classic			DEHP	ND -< MDL	
Chania	Stormwater	HPLC	DEP	ND -5600	17
(Greece)			DMP	ND -7900	
			DNOP	ND -< MDL	
Curonian	G (DEHP		
Lagoon	Surface	GC-MS	DiBP	ND-490	18
(Lithuania)	water		DnBP		
· · · · · · · · · · · · · · · · · · ·					

Lithuania,			DEHP			
Curonian	Wastewater		DiBP	110-6170		
Lagoon	ennuent		DnBP			
Nemunas Surface	Courfs a s	-	DEHP			
River	Surface		DiBP	ND-1800		
(Lithuania)	water		DnBP			
			BBP	3 ± 2		
			BMPP	7 ± 8		
			DBEP	30 ± 30		
			DBP	90 ± 94		
			DCHP	22 ± 26		
			DEEP	6 ± 4		
Donovono			DEHP	4± 5		
Dongyang Diwar fram	Surface		DEP	184 ± 157		
Kiver Irom Vivus China	water		DIBP	176 ± 167		
r Iwu, China.			DMEP	9 ± 7		
			DMP	54 ± 46		
			DNHP	4690 ± 5370		
				DNOP	8 ± 4	10
		GC–MS	DNP	7 ± 10	19	
			DPhP	21 ± 14	1919	
		_	DPP	2±1		
			BBP	1±1		
			BMPP	12 ± 5		
Westewater			DBEP	178 ± 163		
wastewater			DBP	692 ± 719		
nlanta along	Influent		DCHP	96 ± 81		
the Dongueng	minuem		DEEP	5 ± 4		
River from	water		DEHP	98 ± 73		
			DEP	$2452{\pm}1885$		
i iwu, Ciiiila			DIBP	485 ± 323		
			DMEP	14 ± 22		
			DMP	948± 889		

			DNHP	3050 ± 25500	
			DNOP	5 ± 5	
			DNP	2 ± 3	
			DPhP	24 ± 18	
			DPP	3 ± 2	
		_	BBP	1±2	
			BMPP	7± 5	
			DBEP	36 ± 52	
			DBP	19 ± 18	
			DCHP	24 ± 30	
Wastewater			DEEP	7 ± 6	
treatment			DEHP	95 ± 32	
plants along	Effluent		DEP	167 ± 126	
the Dongyang	water		DIBP	82 ± 59	
River from			DMEP	21 ± 16	
Yiwu, China		DMP	$17 \pm 7.$		
			DNHP	3740 ± 5180	
			DNOP	10± 7	
			DNP	5± 2	
			DPhP	29 ± 24	
			DPP	3± 5	
			TBEP	30.2	
			TDCPP	7.7	
$\Gamma \rightarrow C1$			TmCP	19.9	
East China			TnBP	2.1	
Sea (China)			ToCP	<mdl< td=""><td></td></mdl<>	
	~		TpCP	36	• •
	Seawater	er GC-MS	TPhP	<mdl< td=""><td>20</td></mdl<>	20
	-		TBEP	34.5	
V. 11 G			TDCPP	<mdl< td=""><td></td></mdl<>	
Y ellow Sea			TmCP	60.7	
(China)			TnBP	2.6	
			ToCP	<mdl< td=""><td></td></mdl<>	

			ТрСР	135.4	
			TPhP	<mdl< td=""><td></td></mdl<>	
			4-NP	89.9	
			BADGE	353.7	
			BPA	458.6	
			BPAF	387.2	
T4 - 1	Drinking	HPLC, UV-Visible Detector,	BPB	43.5	21
Italy	Water	Fluorescence Detector (FLD)	BPF	55.3	
			BPS	30740	
			DEHP	46190	
			TCB	64070	
			TCS	151080	
			BBP	3768±13600	
			DBEP	88 ± 500	
			DBP	32220 ± 37200	
			DCHP	986 ± 1300	
			DEHP	4059 ± 5930	
Kaveri River			DEP	1522 ± 1310	
(India)			DiBP	10530 ± 11300	
			DMP	24 ± 50	
			DNHP	206 ± 1040	
	Director	CC MS	DnOP	657 ± 2660	22
	River water	GC-MS	DNP	257 ± 1370	22
			DPP	47 ± 260	
	_		DBP	1983 ± 1930	
			DCHP	711 ± 720	
			DEHP	$444{\pm}~750$	
Thamiraparan			DEP	354 ± 240	
i River (India)			DiBP	1465 ± 1220	
			DMP	8 ± 10	
			DnOP	0 ± 1	
			DNP	<u>8±10</u>	

			DBP	28210 ± 34300	
			DCHP	10060 ± 23600	
Vellar River			DEHP	4544 ± 6460	
(India)			DEP	287 ± 190	
()			DiBP	4345 ± 3040	
			DMP	4 ± 10	
Maharashtra	Coastal		BPA		
coast (India)	water	GC-MS, LC-MS/MS	BPS	75.3 - 101	23
			DBP	ND - (271000 ± 7000)	
Mar Menor			DEHA	ND - (31000± 2000)	
lagoon (SE	Seawater	GC-MS	DEHP	ND - (22000 ± 2000)	24
Spain)			DEP	$(85000 \pm 4000) - (173000 \pm 6000)$	
1 /			DIBP	$(13000 \pm 1000) - (175000 \pm 4000)$	
			DBP	56.2	
	Bottled Water		DEHA	39.3	
			DEHP	153.3	
			DEP	17.3	
Montreal			DIDA	15.5	
			DINCH	156.6	
			DINP	175.5	
			MEHP	4.9	
		— • • • • • • • • • • • • • • • •	DBP	66.9	
		Liquid chromatography – high	DEHA	31.3	
		resolution mass spectrometry	DEHP	133.4	25
	Drinking	(LC-HRMS)	DEP	25.3	
Montreal	Water		DIDA	8	
			DINCH	175	
			DINP	105.2	
			MEHP	6.4	
			DBP	16.4	
Pretoria			DEHA	32.8	
(South Africa)			DEHP	6.9	
· · · ·			DEP	33	

			DIDA	21.8	
			DINCH	36.6	
			DINP	<loq< td=""><td></td></loq<>	
			MEHP	6	
		_	DBP	27.3	
			DEHA	44.8	
			DEHP	8.1	
Vhembe			DEP	38.9	
(South Africa)			DIDA	36.1	
			DINCH	21.7	
			DINP	<loq< td=""><td></td></loq<>	
			MEHP	5.8	
Putrajaya, Malaysia	Drinking water	LC-MS/MS	BPA	17.6	26
				Dry Season	
			DBP	~370	
			DEHP	~2010	
			DEP	~114	
			DIBP	~2470	
			DMP	~541	
				Normal Season	
Quanzhou			DBP	~1110	
(Southeast	Top water	CC MS	DEHP	~3350	27
China)	Tap water	00-1015	DEP	~98	
			DIBP	~3310	
			DMP	~80.8	
				Wet Season	
			DBP	~1950	
			DEHP	2890	
			DEP	107	
			DIBP	4630	
			DMP	236	

River catchments: R. Liffey (Ireland), R. Thames (UK), R. Ter (Spain)	River water	Solid-phase extraction liquid chromatography-mass spectrometry (SPE-LC-MS/MS)	BPA BPF BPS	<loq <loq 79.00</loq </loq 	28
Rur River water samples (North Rhine- Westphalia, Germany)	River water	GC-MS	ATBC BBP DEHP DEP DIBP DMP DnBP TA TA TBP TCEP TCPP TEC TEP TXIB	ND-340 ND -40 230-1400 50-2200 30-460 100-70 700-12000 3000- 118000 ND -20 ND -10 <5.00-110 <5.00-120 ND-220 10-70	29
Sewage treatment plants in Tamil Nadu, India	Influent Water Effluent Water	GC-MS	BBP DBP DEHP DEP DMP DnOP BBP DBP DEHP DEP DEP DMP DnOP	<lod-3418 <lod-8169 <lod-11311 <lod-3552 23–84. <lod-38 21-8885 <lod-10171 <lod-17618 32-7834 4–85 <lod-30< td=""><td>30</td></lod-30<></lod-17618 </lod-10171 </lod-38 </lod-3552 </lod-11311 </lod-8169 </lod-3418 	30

		CC MS	BBP	33.4	
			DBP	49.9	
South Florida	Top water		DEHP	81.5	31
South Fiorida	Tap water	0C-M5	DEP	31.4	51
			DMP	34.9	
			DOP	85.4	
Sri Lanka	Refilled PET bottled drinking water	GC-MS	DEHP	60000 - 85000	32
			BBP	1620-12570	
			DBP	70-1820	
Urban rivers			DEHA	1570-16590	
of Bangladesh	Disconstant	ater GC-MS	DEHP	1780-17080	33
(Savar region)			DEP	2040 - 4730	
			DMP	700-2770	
			DNOP	510 - 9510	
	- River water		BBP	2370 - 14090	
TT.1			DBP	2200-30520	
Urban rivers			DEHA	1790-5560	
of Bangladesh			DEHP	110-5390	
(longi Decier)			DEP	4240-101900	
Region)			DMP	2520-480720	
			DNOP	2230-18990	
			TBOEP	0.8	
			TBP	1.4	
		Ultra-performance liquid	TCEP	7.1	
Wyshan China	Tan watan	chromatography coupled with a	TCIPP	9.5	24
wunan, China	Tap water	tandem mass spectrometry	TDCIPP	0.6	34
		system	TEP	5.7	
			TMP	4.3	
			TPhP	0.7	

	River water		
	in monsoon	ВВРН 2920	
Yamuna	months	DPH 62890	25
River, Delhi,	River water GC-M	5	55
India	in non-	BBPH 5560	
	monsoon	DPH 1140	
	months		

Note: MDL- The method detection limits, LOQ- limit of quantification, LOD- limit of detection, ND- Not Detected, GC-MS- Gas chromatography/mass spectrometry, HPLC- High-performance liquid chromatography, LC-MS/MS- Liquid chromatography-tandem mass spectrometry

BBPH/BBP- Benzyl Butyl Phthalate, BPAF- Bisphenol AF, BPA- Bisphenol A, BPF- Bisphenol F, BPB- Bisphenol B, BPS- Bisphenol S, BMPP- Bis(4-Methyl-2-pentyl) Phthalate, BADGE- bisphenol A diglycidyl ether, DEHP- Di(2- ethylhexyl) phthalate, DEHA- Di(2- ethylhexyl) adipate, DMP- Dimethyl Phthalate, DEP- Diethyl Phthalate, DIBP- Di-iso-butyl Phthalate, DBP- Dibutyl Phthalate, DPhP- Diphenyl Phthalate, DNOP- Dioctyl Phthalate, DNP- Dinonyl Phthalate, DOP- Dioctyl Phthalate, DCP- Dicyclohexyl phthalate, DINCH- Di(isononyl) cyclohexane-1,2-dicarboxylate, DIDA- Diisodecyl Adipate, DINP- Diisononyl phthalate, DCHP- Dimethoxyethyl phthalate, DEEP- Bis-2-ethoxyethyl ester, DNHP- Di-n-hexyl phthalate, DBEP- Bis-2-butoxyethyl phthalate, DCHP- Dicyclohexyl phthalate, DCHP- Dicyclohexyl phthalate, DCHP- Tris(2-chloroethyl) phosphate, TCP- Tris(2-butoxyethyl phthalate, TA- Triacetin, TCPP/TCIPP- tris (1-chloro-2-propyl) phosphate, TCEP- Tris(2-chloroethyl) phosphate, TCP- Tricresyl Phosphate, TCP- Tris(1,3-dichloro-2-propyl)phosphate, TCP- Tris(2-ethylhexyl)phosphate, TCP- Tricresyl Phosphate, TDCPP/TDCIPP- Tris(1,3-dichloro-2-propyl)phosphate, TMP- Trimethyl Phosphate, TBP- Tributyl phosphate, TBP- Tributyl phosphate, TCP- Tri-n-butyl phosphate, TBP- Tributyl phosphate, TCP- Tri-ortho-cresyl phosphate, TMP- Trimethyl Phosphate, TBP- Tributyl phosphate, TCB- Triclosan, TPPO- triphenylphosphate, TMP- 2-ethylhexyl diphenyl phosphate, TCB- 1,2,4,5-tetrachlorobenzene, TCS- Triclosan, TPPO- triphenylphosphine oxide, EHDPP- 2-ethylhexyl diphenyl phosphate, MEHP- Mono(2-ethylhexyl)phthalate, ATBC- Acetyl Tributyl Citrate, IDPP- Isodecyl diphenyl phosphate, 4-NP- 4-Nonylphenol

Table S4: Global concentrations of plasticizers in soil/sediments and their characteristics (To simplify the presentation of data, the reported values from previous studies have been rounded in this table)

Country/ region/ Location	Identification method	Plasticizers	Abundance (ng/g)	Reference
Dongting Lake (China)	Ultra-high-performance liquid chromatography (UHPLC) coupled with an Agilent 6460A triple quadrupole mass spectrometry (MS/MS)	BPA	ND-194	36
		TBEP	<mdl< td=""><td></td></mdl<>	
		TDCPP	1.3	
East China Saa (China)		TmCP	4.4	
East China Sea (China)		TnBP	5.3	
		ToCP	<mdl< td=""><td></td></mdl<>	
		ТрСР	2.9	
		TPhP	1.6	
	_	TBEP	<mdl< td=""><td>-</td></mdl<>	-
	CC MS	TDCPP	1.6	
Yellow Sea (China)	0C-W5	TmCP	4.6	20
		TnBP	9	
		ToCP	<mdl< td=""><td></td></mdl<>	
		ТрСР	2.9	
		TPhP	1.7	
		EHDPP	2.5	
		TBEP	5	
		TCEP	14	
Rivers around Taihu Lake (China)		ТСР	8	
	GC-MS	ТСРР	18	27
		TnBP	21.8	5/
		TPhP	3	

		EHDPP	23	
		TBEP	32.8	
		TCEP	14.9	
		ТСРР	40.2	
Taihu Lake (China)		ТЕНР	13.9	
		TEP	14	
		TnBP	19.62	
		TPhP	2	
		BBP	4 4	
		DEHP	2207	
		DEP	7	
		DHP	2.7	
		DiBP	4.9	
Salt River (Taiwan)	GC-MS	DiDP	574	38
		DiNP	1238	
		DMP	11.8	
		DnBP	23	
		DnOP	139	
		ATBC	14±3	
		BBP	40 ± 26	
		DBP	90 ± 32	
Southern Finland	GC-MS	DEHA	56 ± 10	39
		DEP	45 ± 10	
		DMP	<lod< td=""><td></td></lod<>	
		DNOP	<lod< td=""><td></td></lod<>	
		BBP	0-8.5	
		DBP	16.3–99.1	
		DEEP	0-8.5	
Vanatza Divar (China)	CC MS	DEHP	25–161.3	40
f angize River (China)	GC-MS	DEP	0-8.5	40
		DIBP	10.7–55.8	
		DMEP	0-8.5	
		DMP	0-8.5	

DnHP	0-8.5
DNOP	0-8.5
DNP	0-8.5
DPhP	0-8.5
DPP	0-8.5

*Note: MDL- The method detection limits, LOQ- limit of quantification, LOD- limit of detection, ND- Not Detected, GC-MS- Gas chromatography/mass spectrometry, HPLC- High-performance liquid chromatography, LC-MS/MS- Liquid chromatography-tandem mass spectrometry

BBPH/BBP-Benzyl Butyl Phthalate, BPAF- Bisphenol AF, BPA- Bisphenol A, BPF- Bisphenol F, BPB- Bisphenol B, BPS- Bisphenol S, BMPP- Bis(4-Methyl-2-pentyl) Phthalate, BADGE- bisphenol A diglycidyl ether, DEHP- Di(2- ethylhexyl) phthalate, DEHA- Di(2- ethylhexyl) adipate, DMP-Dimethyl Phthalate, DEP-Diethyl Phthalate, DIBP-Di-iso-butyl Phthalate, DBP-Dibutyl Phthalate, DPhP-Diphenyl Phthalate, DNOP- Dioctyl Phthalate, DNP- Dinonyl Phthalate, DOP- Dioctyl Phthalate, DCP-Dicyclohexyl phthalate, DINCH- Di(isononyl) cyclohexane-1,2-dicarboxylate, DIDA- Diisodecyl Adipate, DINP- Diisononyl phthalate, DCHP-Diethyl phthalate, DEEP- Bis-2-ethoxyethyl ester, DNHP- Di-n-hexyl phthalate, DBEP- Bis-2-butoxyethyl phthalate, DCHP-Dicyclohexyl phthalate, DCHP-Dicyclohexyl phthalate, DNP- di-n-butyl phthalate, DHP- Di-n-hexyl Phthalate, DIDP- Diisodecyl phthalate, DPH- Diethyl Phthalate, TA- Triacetin, TCPP/TCIPP- tris (1-chloro-2-propyl) phosphate, TCEP- Tris(2-chloroethyl) phosphate, TCP- Tricresyl Phosphate, TCC- Triethylcitrate, TPHP/TPhP- Triphenyl phosphate, TEHP- Tris(2-ethylhexyl)phosphate, TCP- Tricresyl Phosphate, TDCPP/TDCIPP- Tris(1,3-dichloro-2-propyl)phosphate, TNBP/TnBP- Tri-n-butyl phosphate, TCP- Tricresyl Phosphate, TDCPP/TDCIPP- Tris(1,3-dichloro-2-propyl)phosphate, TMP- Trimethyl Phosphate, TBP- Tributyl phosphate, TCP- Tricresyl phosphate, TCP- T

Table S5: Recently discovered novel approaches on reducing the impact of plasticizers on the environment (To simplify the presentation of data, the reported values from previous studies have been rounded in this table)

Medium	Plasticizer	Removal method	Special parameters	Removal mechanism	Removal capacity/ efficiency	Reference
Water	BPS	Metal-organic framework (MOF) MIL-101 (Chromium terephthalate metal– organic framework) with or without – NH ₂ functionality	Adsorption of BPS was carried out over a wide pH range MOF was recyclable after simple ethanol washing	Hydrogen bonding between -S(=O)2 and NH ₂ of MIL-101-NH ₂ H-bonding between -NH ₂ of the MOF and -OH of BPS might also be possible	MIL- 101-NH ₂ showed the highest adsorption capacity for BPS (513 mg/g, at pH 7)	41
Water	PAEs (DEP and DBP)	Nitrogen-doped biochar (NBs) prepared from <i>Pistia</i> <i>stratiotes</i>	NBs pyrolyzed at 700 °C	Intra-particle diffusion, multiple pore filling, and partitioning dominated the process	PAE:161.7 mg/g DBP: 85.4 mg/g	42
Water	BPA	Ni metal and Ni ₃ ZnC _{0.7} alloy nanoparticle catalyst encapsulated in N- doped graphite (NiZn@N-G-900)	N-doped graphite layer, Adjusts the surface charge distribution of the catalysts Improves the charge transfer ability between the catalyst and the adsorbate Lastly activates the	Mineralization followed by oxidation and β- scission	NiZn@N-G-900/PMS system had strong inorganic anion resistance, high selectivity and satisfactory practical application	43

		Multi-wall carbon nanotubes (MWCNTs) and magnetic (Fe ₃ O ₄) MWCNTs	Adsorption processes were endothermic	Electrostatic interaction of DMP with (MWCNTs) and Fe ₃ O ₄ MWCNTs	Removal capacity:	
Water	DMP		Second-order kinetic model and the		At 303 K, 196.9 mg/g for MWCNTs	44
			Freundlich isotherm model were well fit with the experimental data		137 mg/g for Fe ₃ O ₄ /MWCNTs)	
Water	Tri-ethyl citrate	Char-fortified filter beds	NR	Hydrophobicity- driven sorption	More than 50%	45
Water	BPA High-rate algal ponds (HRAPs)	High-rate algal	With different hydraulic retention	Biodegradation and photodegradation are the most important removal	Removal efficiency ranged from negligible removal to more than 90%	46
		4 and 8 days	pathways (volatilization and sorption were solely achieved)	Removal efficiencies were enhanced during the warm season		

PMS

Water	BPA	Use of •OH radicals, which are formed from water radiolysis by irradiation with γ- rays		A detailed mechanism of radical reactions involving •OH radicals and superoxide radical anions (O ₂ • ⁻) was proposed leading to the formation of decomposition products	Gamma-radiolytic decomposition of BPA is much more efficient than numerous other advanced oxidation processes	47
Water	DBP DEP	Marine-, freshwater-, and terrestrial-derived fungal strains	1-DS-2013-S2 and 1-DS-2013-S4 strains were isolated from sand containing algal debris from the alluvial zone and algae growing on breakwater groins, respectively	Cytochrome P450- dependent monohydroxylatio ns of DBP and DEP Oxidation of related metabolites, de- esterification via either hydrolytic cleavage or cytochrome P450- dependent oxidative O- dealkylation, transesterification, and demethylation	NR	48
				Finally yielding phthalic acid as a		

central intermediate in all pathways

Water	BPA	FeCl ₃ -activated seaweed carbon/MCM- 41/alginate hydrogel composite (ECAC/MCM-41/ ALG) cross-linked with calcium chloride (2% CaCl ₂)	NR	Bio sorption via monolayer coverage Bio sorption renewability could be achieved with five cycles up to 80% via and an ethanol elution	222.3 mg/g at 50 °C	49
Water	BPA DEHP	Supercritical water degradation (SCWD) and supercritical water partial oxidation (SCWPO) treatments	Long-chain alkenes were favorably removed via SCWD treatment, while long-chain alkanes were favorably removed through SCWPO treatment DEHP and BPA	DEHP decomposed to 2- ethyl-1-hexanol and acetophenone BPA decomposed to 4-tert- butylphenol, alkylated derivatives of	The maximum conversion could reach 98.1%	50

			could be decomposed more thoroughly by SCWPO treatment than SCWD treatment	benzene, and phenol		
Water	DBP	Electrocatalytic oxidation (EO) technique Anode: Electrocatalytic electrode of iridium- tantalum/titanium (IrO ₂ -Ta ₂ O ₅ /Ti) Cathode: Graphite as the cathode	Under a voltage gradient of 10 V/cm for 60 min Removal efficiency of DBP remained about 90% and the surface structure of the IrO ₂ -Ta ₂ O ₅ /Ti electrode was stable after using the IrO ₂ - Ta ₂ O ₅ /Ti electrode three times	Production of hydroxyl radical (•OH) in the electrocatalytic electrode played a key role for decomposing the DBP	Removal efficiency: 90%	51
Water	DEHP	Hybrid removal process: 250 mg/L toluene + sewage sludge biochar + <i>Pseudomonas</i> sp. (<i>Acinetobacter</i>)	Required time: 2 days for the bioremoval of DEHP	Both DEHP and Acinetobacter sp. sorbed/ attached onto the tire surface Isolated bacteria used the adsorbed DEHP as carbon and energy source for growth and	Removal efficiency: 94.9 ± 0.2% Adsorption capacity: 10.3 mg/g	52

				colonize the tire surface		
Water		Activated sludge	At a mixed liquor suspended solid (MLSS) concentration range of 3461-4972 mg/L	Biodegradation of	Overall removal	52
	DEHP	process	DEHP removal showed an increasing trend at higher oxygen uptake rate and sludge retention time	DEHP	capacity: 23.9 (mg DEHP /g MLSS.d)	55
				Reactive species: •OH and SO ₄ •-		
Water	BPS	Hydroxylamine enhanced zero- valent copper (Cu ⁰) catalyzed peroxymonosulfate system	Highly efficient in the pH range of 3.0- 7.0	Hydroxylamine addition accelerated the reduction of Cu^{2+} to Cu^+ as well as the corrosion of Cu^0	Degradation efficiency: 87%– 19.74%	54
				N_2 was the main product of hydroxylamine		
Water	BPA	Hybrid material, Fe ₂ O ₃ -graphene oxide (GO) hybrid containing 22.8% of	Fe ₂ O ₃ -GO exhibited a greater solid/liquid separation performance,	Lewis acid-base (AB) interactions between the active sites on Fe_2O_3 and	Adsorption capacity: 3293.9 mg/g	55

		GO	thermal stability, and a better anti-fouling performance	BPA anions		
			Lowered GO content of the hybrid saved 77.2% of the adsorbent cost			
Water	2-CP PE DMP m-DCB DEP	Electrochemical system: Electro peroxone with a solid polymer electrolyte (EP-SPE)	Electrolysis energy consumption of 170 kWh·kg ⁻¹ ·TOC ⁻ Dissolved organic pollutants weaken the mineralization of plasticizers	Degradation occurs through reactive oxidizing species (O_3 , •OH, and O_2 •-)	Removal efficiency: 50% of degradation and mineralization within 10 min	56
Water	BPA	Adsorbent: Acid-leached carbon black waste (LCBW), a carbonaceous residue from petroleum refineries	Spiked BPA concentration:10 ppm	Internal diffusion through the pores of the adsorbent Surface adsorption through π - π interactions Overall: Combination of diffusion and adsorption	90-99% removal of BPA >85% of the adsorption occurred within 1 h of contact time	57

Water	BPA	Series of cross- linked β- cyclodextrin polymers (β-CDPs) with hierarchically micro-mesoporous structure	Easily regenerated by simple ethanol cleaning and kept high removal ability over 5 cycles	Open diffusion pathway and fast mass transfer offered by under the synergic effect of micropores and mesopores.	Maximum adsorption capacity: 502 mg/g	58
Water	DEP	Correction 3D-QSAR model and typical plasticizer-degrading bacteria (Burkholderia cepacia, Archaeoglobus fulgidus, Pseudomonas aeruginosa)	Degradative Phthalate dioxygenase reductase from <i>Burkholderia</i> <i>cepacia</i> Esterase from <i>Archaeoglobus</i> <i>fulgidus</i> Carboxylesterase from <i>Pseudomonas</i> <i>aeruginosa</i> Phthalate derivatives: DEP-27, DEP-28, and DEP-29	DEP hydrolyzed under the action of the plasticizer- degrading enzymes	NR	59

			For DEHP removal: MAB dose: 3.6 g/L Temperature: 49 °C Adsorption time: 454 min			
Water	DEHP DBP	Magnetic-activated biochar made from rice bran	For DBP removal: MAB dose: 3.7 g/L Temperature: 36 °C Adsorption time: 312 min Ethanol was used to remove the adsorbed	Monolayer adsorption	Adsorption capacity: DEHP:13.2–16.4 mg/g DBP: 3.6–5.7 mg/g	60
Water	DMP	High frequency discharge plasma system driven by a high-frequency electric source (CTP-2000 K)	DMP removal performance increased with increase in pH	Hydrated electrons, \bullet OH, $^{1}O_{2}$, and $\bullet O_{2}^{-}$ supports the oxidative removal of DMP	80.4% of TOC was removed after 30 min of treatment	61
Water	TBBPA	Dielectric barrier discharge (DBD) plasma	Time duration for the oxidation treatment: 15 minutes Removal process depends on the discharge voltage, initial TBBPA concentration, and solution pH	Decomposition of TBBPA in the presence of oxidative species: \cdot OH, $^{1}O_{2}$, and \cdot O ₂ ⁻	Removal efficiency: 74.9%: at 12 kV 96.7% : at 18 kV 97%: at pH 7 98%: at pH 9 99%: at pH 9 99%: at pH 11 100% :at 50 mg/L (TBBPA) 53% : at 200 mg/L	62

(TBBPA)

Water	DMP	Photoelectrocatalytic (PEC) process with 3D (001)TiO2/Ti photoelectrode	Removal efficiency depends on: Distance between 3D TiO2/Ti photoelectrode the light source Coexisting ions pH Light intensity	Free radicals (•OH and $\cdot O_2^-$) greatly participate to the PEC oxidation and removal of DMP	Degradation efficiency: nearly 100% TOC removal efficiency: 89.4 % Removal rate after 8 cycles: 97.7%	63
Water	Phthalates	Indigenously developed CuO/TiO2 coated ceramic ultrafiltration membrane	Removal efficiency was increased with time and constant after introducing 5 bar pressure to the filtration process	Surface adsorption to the membrane Shift in FTIR peak for Cu-O bond reveals its involvement in adsorption process.	Removal efficiency of >99%.	64
Water	BPA	Macro-porous membranes doped with micro- mesoporous β- cyclodextrin	β-CDP membranes could be easily regenerated by simple ethanol filtration	Formation of hydrophobic interaction and intermolecular hydrogen bonding	Removal efficiency: >99.9% Dynamic adsorption capacity of the	65

		polymers (β- CDP), named β-CDP membranes			membrane was equal to the static maximum adsorption capacity Removal efficiency depends on the medacula size and	
					chemical functionality	
Water	o-phthalates	Denitrifying Betaproteobacteria (Aromatoleum aromaticum)	Phthaloyl-CoA decarboxylase and Succinyl-CoA: <i>o</i> - phthalate CoA- transferase generate phthaloyl-CoA enzymes co-evolve for the degradation	Anaerobic mineralization, decarboxylation, and ester hydrolysis	NR	66
Water	DBP DEHP ATBC	Two newly isolated bacteria (i.e. Mycobacterium sp. DBP42 and Halomonas sp. ATBC28)	Microbes which are able to grow using a range of plasticizers were enriched and isolated from marine plastic debris	Different mechanisms used for ester side-chain removal from the different plasticizers (esterases and enzymes involved in the β -oxidation pathway)	NR	67
Water	BPA	β-cyclodextrin (β- CD) modified graphene oxide (CDGO) membrane	CDGO membranes can be regenerated easily by washing with ethanol	β-CD molecules can form stable complexes with BPA molecules through host-guest recognition	Removal efficiency: about 100%	68

Water	BPA	Polymer inclusion membrane (PIM) containing derivatives of calix[4]resorcinaren e as the carrier, cellulose triacetate (CTA) as the base polymer, and 2- nitrophenyloctylethe r (2-NPOE) as a plasticizer has been used	Stirring speed: 600 rpm pH of feed phase: pH 4 Initial concentration of, BPA: 100 mg/dm3 Carrier content: 400 mg/g Plasticizer: 3 mL/g CTA Removal depends on: Concentration of the carrier pH of the aqueous feed phase Thickness of the membrane	Mass transfer of BPA from the source phase to the receiving phase through a PIM system through hydrogen bonds between the hydroxyl group of calix and hydroxyl group of BPA, cation $-\pi$, and π - π interactions	90% removal efficient in 5 days	69
			Ultrasonic waves, which have oxidative properties over a wide range of pH value	Oxidative	Pamoval officianay:	
Water	DBP	Ultrasonic technology	Ultrasonic methods did not influence on chemical oxygen demand, total organic carbon, total nitrogen, ammonium nitrogen (N-NH4 ⁺), and total phosphorus	degradation through hydroxyl- radical scavengers (•OH)	33.4%: 15 min 37.6%: 30 min 54.6%: 60 min	70

			removal			
			Ultrasonic degradation was found to depend on the amplitude of the wave			
Water	BPA	Activated sludge (AS) and horizontal subsurface flow (HSSF) constructed	AS system had the best removal performance	AS system: Microbial processes (biodegradation) and adsorption onto sludge flocs	Removal efficiency: AS system: 87% HSSF system: 55%	71
	wetland		HSSF system: Anaerobic degradation			
Water	Phthalic acid Iso-phthalic	Basic anion exchange resin Finex AS510GC	Sorption of phthalic acid onto anion exchange resin is feasible, spontaneous and exothermic	Sorption of IPA and OPA onto ion exchange resin is more of monolayer sorption rather than sorption on a	Adsorption capacity: Phthalic acid: 397.8 mg/g Isophthalic acid 331.3	72
	acid		Resin can be regenerated using 1.0 M HCl	surface having heterogeneous energy distribution	mg/g	

Water	OPEs: TCIPP TCEP TNBP TBOEP	Advanced drinking water treatment plants (DWTPs) ozonation and GAC filtration treatments		Degradation through direct oxidation by molecular O ₃ and in- direct oxidation by •OH radicals generated in chain reactions between ozone and hydroxide ions	GAC filtration and ozonation together removed around 50% of the total OPE concentrations Removal efficiency: From ozonation treatment: TNBP: 43.1% TBOEP: 40.9% TPHP: 46.5% TEP: 7.77%	73
					From GAC filtration: TCIPP: 84% TCEP: 49%	
		Amino- functionalized polypropylene nonwoyen/graphene	Flow rate: 40	GO surface formed hydrogen bonds with the BPA carrying water molecules		
Water	BPA	oxide (GO) hybrid material (PP-g- DMAEMA/GO) with dual-scale channels structure	mL/min Contact time: 3.4 s	Later on, BPA molecules are collided with GO surface and interact effectively with GO through π - π interactions	Removal efficiency: >80%	74

Water	DMP	Intermittently- aerated subsurface flow constructed wetlands	CWs can purify DMP efficiently within a certain concentration range	DMP was degraded into some smaller molecular fractions by the microbial degradation DMP degradation intermediates mainly including MMP and PA, which might provide a potential carbon source for the denitrification processes in CWs	Removal efficiency: 88.5-97.8%	75
Water	DBP DIBP DEHP	In this study, supercritical fluid extraction (SFE) was performed to remove phthalates in spores of <i>Ganoderma</i> <i>lucidum</i>	No significant differences in polysaccharides content and fatty acid composition were observed between SFE and control spores SFE is a potential approach to remove phthalate from food related products	Hydrolysis and oxidation	Removal efficiency: 100%	76

Water	PAEs (DEHP, DBP, DOTP)	Waste water treatment plant Primary clarifier, Secondary clarifier (anaerobic, first- anoxic, first-aerobic, second-anoxic, and second-aerobic systems) Tertiary treatment system (hyper- filtration, ozonation, and ultraviolet processes)	Biological treatment and ozonation played a limited role in the removal of DBP and DOTP	Biological oxidation Photo oxidation Degradation through free radicals	From whole process: About 82% of DHEP From Biological treatment: DEHP: 77% DBP: -43% DOTP: -82%	77
Water	Plasticizers in waste water	Ozone micro-bubble oxidation	Reaction time: 45 Pressure: 0.150 MPa Ozone concentration: 100% Flow: 0.7 L/min When pH value increased from 3.23 to 7.54, dissolved oxygen of the wastewater increased from 3.8 to 4.5mg/L	Ozone micro- bubble technology can generate high hydroxyl radicals	COD removal rate reached up to 94.1%.	78
Soil	DOP	Halotolerant bacterial consortium (LF)	Enriched temperature 30°C, pH	Biodegradation	Removal efficiency: 96.3%	79

		6.0, inoculum size >5%, and salt content <3%.		Removal capacity: 100 mg/kg Removal efficiency: 89.3%	
DIAP and DEHP	An aerobic slurry- phase reactor using indigenous and acclimated microorganisms from the sludge of a wastewater treatment plant of the plasticizers industry	Duration: 120days	Acid hydrolysis of esters The consortia of microorganisms was essential to the biodegradation	Removal efficiencies: > 61%	80
BEHA DOP DOTP	<i>Rhodococcus</i> <i>rhodochrous</i> was grown with hexadecane as a co- substrate	Reaction intermediates were 2-ethylhexanol and 2-ethylhexanoicacid	All three plasticizers involving hydrolysis of the ester bonds followed by oxidation releasing alcohol	BEHA was completely degraded DOP was degraded slightly About half of the DOTP was degraded	81
DEHP and DEHA	In the presence of miicroorganisms (<i>Rhodococcus</i> <i>rhodochrous</i>)	Two metabolites; 2- ethylhexanal and 2- ethylhexanol which are able to further degrade undergoing mineralization in the gas phase were produced	Enzymatic hydrolysis followed by oxidation of the released alcohol to eventually yield 2- ethylhexanoic acid	NR	82

DEP	Bacterial isolates namely Achromobacter sp. strain DEPA3, Pseudomonas sp. strain DEPB3, and Enterobacter sp. strain DEPC1	Three bacterial isolates individually and as a consortium were effective in degrading DEP	DEP was converted completely to CO_2 and H_2O Monomethyl phthalate are the intermediates	81.2–92.4% degradation occurred within 30 days of inoculation	83
 DOP	<i>Gordonia</i> sp. (Lff) was used	Degradation capacity is not enough to remove DOP from the contaminated soil within a short time	NR	DOP concentration decreased from 100.0 mg/kg to 35.2 (DEG-3) and 38.6 (DEG-4) mg/kg, respectively, after 5-d incubation	84

*Note: BPS- Bisphenol S, BPA- Bisphenol A, DMP- Dimethyl phthalate, DBP- Di-n-butyl phthalate, DIBP- Di-iso-butyl phthalate, DEP- Diethyl phthalate, DEHP- Di-(2-ethylhexyl) phthalate, 2-CP- o-chlorophenol, PE- Phenol, m-DCB- 1,3-dichlorobenzene, DOP- Di-n-octyl phthalate, TBBPA- Tetrabromobisphenol A, ATBC- Acetyl tributyl citrate, OPEs- organophosphate esters, TEP- Triethyl phosphate, TCEP- Tris(2-chloroethyl)phosphate, TCIPP- Tris(1- chloro-2-propyl)phosphate, TNBP- Tri-n-butyl phosphate, TBOEP- Tris(2-butoxyethyl) phosphate, TPHP- Triphenyl phosphate, MMP- Monomethyl phthalate (MMP), PA- Phthalate, DOTP- bis(2-ethylhexyl) ester, PAEs- Phthalate esters, DIAP- Diisoamyl phthalate, DEHA- di-2-ethylhexyl adipate, BEHA- bis 2-ethylhexyl adipate, DOTP- dioctyl terephthalate, NR- Not reported.

References

- M. A. Babich, C. Bevington and M. A. Dreyfus, Plasticizer migration from children's toys, child care articles, art materials, and school supplies, *Regul. Toxicol. Pharmacol.*, 2020, 111, 104574. <u>https://doi.org/10.1016/j.yrtph.2019.104574</u>
- 2. A. D. Godwin, in *Applied plastics engineering handbook (Second Edition)*, ed. M. Kutz, William Andrew Publishing, 2017, pp. 533-553. <u>https://doi.org/10.1016/B978-0-323-39040-8.00025-0</u>
- 3. F. Lessmann, L. Correia-Sá, C. Calhau, V. F. Domingues, T. Weiss, T. Brüning and H. M. Koch, Exposure to the plasticizer di(2-ethylhexyl) terephthalate (DEHTP) in Portuguese children Urinary metabolite levels and estimated daily intakes, *Environ. Int.*, 2017, **104**, 25-32. https://doi.org/10.1016/j.envint.2017.03.028
- 4. S. Pan, D. Hou, J. Chang, Z. Xu, S. Wang, S. Yan, Q. Zeng, Z. Wang and Y. Chen, A potentially general approach to aliphatic ester-derived PVC plasticizers with suppressed migration as sustainable alternatives to DEHP, *Green Chem.*, 2019, **21**, 6430-6440. https://doi.org/10.1039/C9GC03077H
- A. Stuart, D. J. LeCaptain, C. Y. Lee and D. K. Mohanty, Poly(vinyl chloride) plasticized with mixtures of succinate di-esters – synthesis and characterization, *Eur. Polym. J.*, 2013, 49, 2785-2791. <u>https://doi.org/10.1016/j.eurpolymj.2013.06.023</u>
- S. Buddhiranon, T. Chang, K. Tang and T. Kyu, Stabilization of epoxidized soybean oilplasticized poly(vinyl chloride) blends via thermal curing with genistein, *J. Appl. Polym. Sci.*, 2018, 135, 46472. <u>https://doi.org/10.1002/app.46472</u>
- 7. J. He, J. Li, L. Ma, N. Wu, Y. Zhang and Z. Niu, Large-scale distribution of organophosphate esters (flame retardants and plasticizers) in soil from residential area across China: Implications for current level, *Sci. Total Environ.*, 2019, **697**, 133997. <u>https://doi.org/10.1016/j.scitotenv.2019.133997</u>
- 8. H. C. Erythropel, A. Börmann, J. A. Nicell, R. L. Leask and M. Maric, Designing preen Plasticizers: Linear alkyl diol dibenzoate plasticizers and a thermally reversible plasticizer, *Polymers*, 2018, **10**. <u>https://doi.org/10.3390/polym10060646</u>
- C. Okoro, Z. Mohammed, S. Jeelani and V. Rangari, Plasticizing effect of biodegradable dipropylene glycol bibenzoate and epoxidized linseed oil on diglycidyl ether of bisphenol A based epoxy resin, J. Appl. Polym. Sci., 2021, 138, 50661. <u>https://doi.org/10.1002/app.50661</u>
- 10. B. J. Hughes, K. Cox and V. Bhat, Derivation of an oral reference dose (RfD) for di 2ethylhexyl cyclohexan-1,4-dicarboxylate (DEHCH), an alternative to phthalate plasticizers, *Regul. Toxicol. Pharmacol.*, 2018, **92**, 128-137. https://doi.org/10.1016/j.yrtph.2017.11.010
- A. K. Mazitova, I. N. Vikhareva, G. K. Aminova and J. N. Savicheva, Application of zinc oxide to obtain and modify properties of adipate plasticizer of polyvinyl chloride. *Journal*, 2020, 12. <u>https://doi.org/10.3390/polym12081728</u>
- 12. A.-M. Saillenfait, S. Ndaw, A. Robert and J.-P. Sabaté, Recent biomonitoring reports on phosphate ester flame retardants: a short review, *Arch. Toxicol.*, 2018, **92**, 2749-2778. https://doi.org/10.1007/s00204-018-2275-z
- 13. Y. Wang, C. Zhou, Y. Xiao, S. Zhou, C. Wang, X. Chen, K. Hu, X. Fu and J. Lei, Preparation and evaluation of acetylated mixture of citrate ester plasticizers for poly(vinyl chloride), *Iran. Polym. J.*, 2018, **27**, 423-432. <u>https://doi.org/10.1007/s13726-018-0620-y</u>

- 14. Y. Liu, Y. Tang, Y. He, H. Liu, S. Tao and W. Liu, Riverine inputs, spatiotemporal variations, and potential sources of phthalate esters transported into the Bohai Sea from an urban river in northern China, *Sci. Total Environ.*, 2023, **878**, 163253. https://doi.org/10.1016/j.scitotenv.2023.163253
- 15. J. Fernández-Arribas, T. Moreno and E. Eljarrat, Human exposure to organophosphate esters in water and packed beverages, *Environ. Int.*, 2023, **175**, 107936. https://doi.org/10.1016/j.envint.2023.107936
- A. Ismanto, T. Hadibarata, R. A. Kristanti, L. Maslukah, N. Safinatunnajah and P. Sathishkumar, The abundance of endocrine-disrupting chemicals (EDCs) in downstream of the Bengawan Solo and Brantas rivers located in Indonesia, *Chemosphere*, 2022, 297, 134151. <u>https://doi.org/10.1016/j.chemosphere.2022.134151</u>
- 17. M. Kotti, A. Papafilippaki and G. Stavroulakis, Simultaneous determination of selected pharmaceuticals and plasticisers in urban stormwater in Chania (Greece), *Int. J. Environ. Anal. Chem.*, 2023, **103**, 3790-3800. <u>https://doi.org/10.1080/03067319.2021.1913583</u>
- E. Lorre, F. Bianchi, I. Vybernaite-Lubiene, J. Mėžinė and M. Zilius, Phthalate esters delivery to the largest European lagoon: Sources, partitioning and seasonal variations, *Environ. Res.*, 2023, 235, 116667. <u>https://doi.org/10.1016/j.envres.2023.116667</u>
- C. Wang, J. Wang, W. Gao, X. Ning, S. Xu, X. Wang, J. Chu, S. Ma, Z. Bai and G. Yue, The fate of phthalate acid esters in wastewater treatment plants and their impact on receiving waters, *Sci. Total Environ.*, 2023, **873**, 162201. https://doi.org/10.1016/j.scitotenv.2023.162201
- 20. L. Fang, A. Liu, M. Zheng, L. Wang, Y. Hua, X. Pan, H. Xu, X. Chen and Y. Lin, Occurrence and distribution of organophosphate flame retardants in seawater and sediment from coastal areas of the East China and Yellow Seas, *Environ. Pollut.*, 2022, **302**, 119017. <u>https://doi.org/10.1016/j.envpol.2022.119017</u>
- 21. G. Russo, S. Laneri, R. Di Lorenzo, I. Neri, I. Dini, R. Ciampaglia and L. Grumetto, Monitoring of pollutants content in bottled and tap drinking water in Italy, *Molecules*, 2022, **27**, 3990. <u>https://doi.org/10.3390/molecules27133990</u>
- A. Elaiyaraja, M. Mayilsamy, K. Vimalkumar, N. P. Nikhil, P. M. Noorani, V. Bommuraj, N. Thajuddin, M. Mkandawire and R. B. Rajendran, Aquatic and human health risk assessment of humanogenic emerging contaminants (HECs), phthalate esters from the Indian Rivers, *Chemosphere*, 2022, **306**, 135624. https://doi.org/10.1016/j.chemosphere.2022.135624
- 23. P. Kumkar, C. R. Verma, Š. Hýsek, M. Pise, S. Źółtowska, S. M. Gosavi, F. Mercl, M. Božik, L. Praus and K. Hanková, Contaminants and their ecological risk assessment in beach sediments and water along the Maharashtra coast of India: A comprehensive approach using microplastics, heavy metal (loid) s, pharmaceuticals, personal care products and plasticizers, *Sci. Total Environ.*, 2023, 164712. https://doi.org/10.1016/j.scitotenv.2023.164712
- R. Peñalver, A. Ortiz, N. Arroyo-Manzanares, N. Campillo, I. López-García and P. Viñas, Non-targeted analysis by DLLME-GC-MS for the monitoring of pollutants in the Mar Menor lagoon, *Chemosphere*, 2022, 286, 131588. <u>https://doi.org/10.1016/j.chemosphere.2021.131588</u>
- 25. L. Struzina, M. A. P. Castro, C. Kubwabo, S. Siddique, G. Zhang, X. Fan, L. Tian, S. Bayen, N. Aneck-Hahn and R. Bornman, Occurrence of legacy and replacement plasticizers, bisphenols, and flame retardants in potable water in Montreal and South

 Africa,
 Sci.
 Total
 Environ.,
 2022,
 840,
 156581.

 https://doi.org/10.1016/j.scitotenv.2022.156581
 2022,
 840,
 156581.

- S. Y. Wee, N. A. H. Ismail, D. E. M. Haron, F. M. Yusoff, S. M. Praveena and A. Z. Aris, Pharmaceuticals, hormones, plasticizers, and pesticides in drinking water, *J. Hazard. Mater.*, 2022, 424, 127327. <u>https://doi.org/10.1016/j.jhazmat.2021.127327</u>
- 27. L. Wang, J. Li, J. Zheng, J. Liang, R. Li and Z. Gong, Source tracing and health risk assessment of phthalate esters in household tap-water: A case study of the urban area of Quanzhou, Southeast China, *Ecotoxicol. Environ. Saf.*, 2022, **248**, 114277. https://doi.org/10.1016/j.ecoenv.2022.114277
- 28. H. Rapp-Wright, S. Rodríguez-Mozaz, D. Álvarez-Muñoz, D. Barceló, F. Regan, L. P. Barron and B. White, International comparison, risk assessment, and prioritisation of 26 endocrine disrupting compounds in three european river catchments in the UK, Ireland, and Spain, *Molecules*, 2023, **28**, 5994. <u>https://doi.org/10.3390/molecules28165994</u>
- 29. C. A. Schwanen and J. Schwarzbauer, Structural diversity of organic contaminants in a meso-scaled river system, *Water, Air, Soil Pollut.*, 2022, **233**, 33. https://doi.org/10.1007/s11270-022-05503-1
- K. Vimalkumar, M. Mayilsamy, E. Arun, B. Gobinath, S. Prasanth, P. N. Nikhil, S. Krishna-Kumar, S. Srimurali, M. Mkandawire and R. Babu-Rajendran, Screening of antimicrobials, fragrances, UV stabilizers, plasticizers and preservatives in sewage treatment plants (STPs) and their risk assessment in India, *Chemosphere*, 2022, 308, 136452. https://doi.org/10.1016/j.chemosphere.2022.136452
- 31. D. Cui, M. Ricardo and N. Quinete, A novel report on phthalates levels in Biscayne Bay surface waters and drinking water from South Florida, *Mar. Pollut. Bull.*, 2022, **180**, 113802. <u>https://doi.org/10.1016/j.marpolbul.2022.113802</u>
- M. Jayaweera, H. Perera, N. Bandara, G. Danushika, B. Gunawardana, C. Somaratne, J. Manatunge, K. Zoysa and T. Thathsara, Migration of phthalates from PET water bottle in events of repeated uses and associated risk assessment, *Environ. Sci. Pollut. Res.*, 2020, 27, 39149-39163. <u>https://doi.org/10.1007/s11356-020-09925-4</u>
- 33. M. A. Urmi, M. A. Akbor, S. Sarker, A. Nahar, M. A. A. Shaikh, M. A. B. Siddique, S. Ahmed, A. J. Meghna, G. Malafaia and M. M. Rahman, A pioneering study on endocrine disruptors (phthalates esters) in urban rivers of Bangladesh: An appraisal of possible risk assessment to ecology and human health, *J. Hazard. Mater. Adv.*, 2023, **12**, 100369. https://doi.org/10.1016/j.hazadv.2023.100369
- 34. Q. Huang, X. Mao, F. Pan, X. Hu, Z. He, Y. Wang and Y. Wan, Organophosphate esters in source, finished, and tap water in Wuhan, China, *Chemosphere*, 2023, **325**, 138288. https://doi.org/10.1016/j.chemosphere.2023.138288
- 35. S. Mishra, P. Kumar, I. Mehrotra and M. Kumar, Prevalence of organic micropollutants in the Yamuna River, Delhi, India: seasonal variations and governing factors, *Sci. Total Environ.*, 2023, **858**, 159684. <u>https://doi.org/10.1016/j.scitotenv.2022.159684</u>
- 36. X. Xu, Y. Xu, N. Xu, B. Pan and J. Ni, Pharmaceuticals and personal care products (PPCPs) in water, sediment and freshwater mollusks of the Dongting Lake downstream the Three Gorges Dam, *Chemosphere*, 2022, **301**, 134721. https://doi.org/10.1016/j.chemosphere.2022.134721
- W. Zhang, C. Guo, J. Lv, X. Li and J. Xu, Organophosphate esters in sediment from Taihu Lake, China: Bridging the gap between riverine sources and lake sinks, *Front. Environ. Sci. Eng.*, 2022, 16, 1-13. <u>https://doi.org/10.1007/s11783-021-1464-9</u>

- 38. C.-F. Chen, Y.-R. Ju, Y. C. Lim, M.-H. Wang, A. K. Patel, R. R. Singhania, C.-W. Chen and C.-D. Dong, The effect of heavy rainfall on the exposure risks of sedimentary phthalate esters to aquatic organisms, *Chemosphere*, 2022, **290**, 133204. https://doi.org/10.1016/j.chemosphere.2021.133204
- C. Scopetani, S. Selonen, A. Cincinelli and J. Pellinen, Chemical leaching from polyethylene mulching films to soil in strawberry farming, *Front. Environ. Sci.*, 2023, 11, 250. <u>https://doi.org/10.3389/fenvs.2023.1129336</u>
- 40. Y. Chen, Y. Wang, Y. Tan, C. Jiang, T. Li, Y. Yang and Z. Zhang, Phthalate esters in the Largest River of Asia: An exploration as indicators of microplastics, *Sci. Total Environ.*, 2023, **902**, 166058. <u>https://doi.org/10.1016/j.scitotenv.2023.166058</u>
- 41. J. M. Park and S. H. Jhung, A remarkable adsorbent for removal of bisphenol S from water: Aminated metal-organic framework, MIL-101-NH2, *J. Chem. Eng.*, 2020, **396**, 125224. https://doi.org/10.1016/j.cej.2020.125224
- 42. L. Zhang, H. Cheng, D. Pan, Y. Wu, R. Ji, W. Li, X. Jiang and J. Han, One-pot pyrolysis of a typical invasive plant into nitrogen-doped biochars for efficient sorption of phthalate esters from aqueous solution, *Chemosphere*, 2021, **280**, 130712. https://doi.org/10.1016/j.chemosphere.2021.130712
- 43. J. You, C. Zhang, Z. Wu, Z. Ao, W. Sun, Z. Xiong, S. Su, G. Yao and B. Lai, N-doped graphite encapsulated metal nanoparticles catalyst for removal of Bisphenol A via activation of peroxymonosulfate: A singlet oxygen-dominated oxidation process, *J. Chem. Eng.*, 2021, **415**, 128890. <u>https://doi.org/10.1016/j.cej.2021.128890</u>
- 44. S. Zhuang, X. Zhu and J. Wang, Adsorptive removal of plasticizer (dimethyl phthalate) and antibiotic (sulfamethazine) from municipal wastewater by magnetic carbon nanotubes, *J. Mol. Liq.*, 2020, **319**, 114267. <u>https://doi.org/10.1016/j.molliq.2020.114267</u>
- 45. K. M. Blum, C. Gallampois, P. L. Andersson, G. Renman, A. Renman and P. Haglund, Comprehensive assessment of organic contaminant removal from on-site sewage treatment facility effluent by char-fortified filter beds, *J. Hazard. Mater.*, 2019, **361**, 111-122. https://doi.org/10.1016/j.jhazmat.2018.08.009
- 46. V. Matamoros, R. Gutiérrez, I. Ferrer, J. García and J. M. Bayona, Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: A pilot-scale study, *J. Hazard. Mater.*, 2015, **288**, 34-42. <u>https://doi.org/10.1016/j.jhazmat.2015.02.002</u>
- M. Trojanowicz, A. Bojanowska-Czajka, T. Szreder, S. Męczyńska-Wielgosz, K. Bobrowski, E. Fornal and H. Nichipor, Application of ionizing radiation for removal of endocrine disruptor bisphenol A from waters and wastewaters, *J. Chem. Eng.*, 2021, 403, 126169. <u>https://doi.org/10.1016/j.cej.2020.126169</u>
- 48. L. Carstens, A. R. Cowan, B. Seiwert and D. Schlosser, Biotransformation of phthalate plasticizers and bisphenol A by marine-derived, freshwater, and terrestrial fungi, 2020, **11**. https://doi.org/10.3389/fmicb.2020.00317
- 49. F. Marrakchi, F. Fazeli Zafar, M. Wei and S. Wang, Cross-linked FeCl3-activated seaweed carbon/MCM-41/alginate hydrogel composite for effective biosorption of bisphenol A plasticizer and basic dye from aqueous solution, *Bioresour. Technol.*, 2021, **331**, 125046. https://doi.org/10.1016/j.biortech.2021.125046
- 50. Z. Song, F.-R. Xiu and Y. Qi, Degradation and partial oxidation of waste plastic express packaging bags in supercritical water: Resources transformation and pollutants removal, *J. Hazard. Mater.*, 2022, **423**, 127018. <u>https://doi.org/10.1016/j.jhazmat.2021.127018</u>

- 51. J.-M. Xu, S.-H. Chou, Y. Zhang, M. Kumar and S.-Y. Shen, Degradation of dibutyl phthalate plasticizer in hater by High-performance Iro2-Ta2O5/Ti electrocatalytic electrode, *Catalysts*, 2021, **11**. <u>https://doi.org/10.3390/catal11111368</u>
- 52. R. A. de Toledo, U. Hin Chao, T. Shen, Q. Lu, X. Li and H. Shim, Development of hybrid processes for the removal of volatile organic compounds, plasticizer, and pharmaceutically active compound using sewage sludge, waste scrap tires, and wood chips as sorbents and microbial immobilization matrices, *Environ. Sci. Pollut. Res.*, 2019, **26**, 11591-11604. https://doi.org/10.1007/s11356-018-2877-2
- 53. K. M. Gani, F. Bux and A. A. Kazmi, Diethylhexyl phthalate removal in full scale activated sludge plants: Effect of operational parameters, *Chemosphere*, 2019, **234**, 885-892. https://doi.org/10.1016/j.chemosphere.2019.06.130
- 54. H. Chi, X. He, J. Zhang and J. Ma, Efficient degradation of refractory organic contaminants by zero-valent copper/hydroxylamine/peroxymonosulfate process, *Chemosphere*, 2019, 237, 124431. <u>https://doi.org/10.1016/j.chemosphere.2019.124431</u>
- 55. Y. Wang, X. Wei, Y. Qi and H. Huang, Efficient removal of bisphenol-A from water and wastewater by Fe2O3-modified graphene oxide, *Chemosphere*, 2021, **263**, 127563. https://doi.org/10.1016/j.chemosphere.2020.127563
- 56. Q. Xiang, W. Cheng, S. Wen, B. Wu, J. Sun and S. Wang, Electro-peroxone with solid polymer electrolytes: A novel system for degradation of plasticizers in natural effluents, *Water Res.*, 2022, 118302. https://doi.org/10.1016/j.watres.2022.118302
- 57. D. Mitra, C. Zhou, M. H. Bin Hashim, T. M. Hang, K. Y.-H. Gin, C.-H. Wang and K. G. Neoh, Emerging pharmaceutical and organic contaminants removal using carbonaceous waste from oil refineries, *Chemosphere*, 2021, **271**, 129542. https://doi.org/10.1016/j.chemosphere.2021.129542
- 58. Z. Wang, F. Cui, Y. Pan, L. Hou, B. Zhang, Y. Li and L. Zhu, Hierarchically micromesoporous β-cyclodextrin polymers used for ultrafast removal of micropollutants from water, *Carbohydr. Polym.*, 2019, 213, 352-360. <u>https://doi.org/10.1016/j.carbpol.2019.03.021</u>
- 59. H. Zhang, C. Zhao and H. Na, Enhanced biodegradation of phthalic acid esters' derivatives by plasticizer-degrading bacteria (Burkholderia cepacia, Archaeoglobus fulgidus, Pseudomonas aeruginosa) using a correction 3D-QSAR model, *Int. J. Environ. Res. Public Health*, 2020, **17**. <u>https://doi.org/10.3390/ijerph17155299</u>
- 60. C.-M. Ma, T.-J. Yu, C.-H. Yang and G.-B. Hong, Enhancement of plasticizer adsorption by utilizing a rice bran-derived adsorbent, *Ecotoxicol. Environ. Saf.*, 2021, **228**, 112972. https://doi.org/10.1016/j.ecoenv.2021.112972
- 61. H. Kan, T. Wang, Z. Yang, R. Wu, J. Shen, G. Qu and H. Jia, High frequency discharge plasma induced plasticizer elimination in water: Removal performance and residual toxicity, *J. Hazard. Mater.*, 2020, **383**, 121185. https://doi.org/10.1016/j.jhazmat.2019.121185
- 62. Q. Wang, T. Wang, G. Qu, Y. Zhang, Q. Sun, X. Guo and H. Jia, High-efficient removal of tetrabromobisphenol A in aqueous by dielectric barrier discharge: Performance and degradation pathways, *Sep. Purif. Technol.*, 2020, **240**, 116615. <u>https://doi.org/10.1016/j.seppur.2020.116615</u>
- 63. Y. Hu, Q. Niu, Y. Wang, Y.-n. Zhang and G. Zhao, Highly efficient removal mechanism of dimethyl phthalate over an economical 3D {001}TiO2/Ti photoelectrode with enhanced

photoelectrocatalytic activity and long service life, *Appl. Catal. B: Environ*, 2021, **285**, 119812. <u>https://doi.org/10.1016/j.apcatb.2020.119812</u>

- 64. P. Bhattacharya, D. Mukherjee, N. Deb, S. Swarnakar and S. Banerjee, Indigenously developed CuO/TiO2 coated ceramic ultrafiltration membrane for removal of emerging contaminants like phthalates and parabens: Toxicity evaluation in PA-1 cell line, *Mater. Chem. Phys.*, 2021, **258**, 123920. <u>https://doi.org/10.1016/j.matchemphys.2020.123920</u>
- 65. Z. Wang, B. Zhang, C. Fang, Z. Liu, J. Fang and L. Zhu, Macroporous membranes doped with micro-mesoporous β-cyclodextrin polymers for ultrafast removal of organic micropollutants from water, *Carbohydr. Polym.*, 2019, **222**, 114970. https://doi.org/10.1016/j.carbpol.2019.114970
- 66. R. G. Sawers, o-Phthalate derived from plastics' plasticizers and a bacterium's solution to its anaerobic degradation, *Mol. Microbiol.*, 2018, **108**, 595-600. https://doi.org/10.1111/mmi.13975
- 67. R. J. Wright, R. Bosch, M. I. Gibson and J. A. Christie-Oleza, Plasticizer degradation by marine bacterial isolates: A proteogenomic and metabolomic characterization, *Environ. Sci. Technol.*, 2020, **54**, 2244-2256. <u>https://doi.org/10.1021/acs.est.9b05228</u>
- Z.-H. Chen, Z. Liu, J.-Q. Hu, Q.-W. Cai, X.-Y. Li, W. Wang, Y. Faraj, X.-J. Ju, R. Xie and L.-Y. Chu, β-Cyclodextrin-modified graphene oxide membranes with large adsorption capacity and high flux for efficient removal of bisphenol A from water, *J. Membr. Sci.*, 2020, **595**, 117510. <u>https://doi.org/10.1016/j.memsci.2019.117510</u>
- 69. A. M. Balahouanea, N. Benosmanea, B. Boutemeura, S. M. Hamdic and M. Hamdia, Removal of Bisphenol A from synthetic wastewater solutions using a polymer inclusion membrane, *Desalin. Water Treat.*, 2020, **208**, 367-376. https://doi.org/10.5004/dwt.2020.26470
- 70. S. Ziembowicz, M. Kida and P. Koszelnik, Removal of dibutyl phthalate (DBP) from landfill leachate using an ultrasonic field, *Desalin. Water Treat.*, 2018, **4**, 13. https://doi.org/10.5004/dwt.2018.21961
- 71. C. Reyes Contreras, D. López, A. M. Leiva, C. Domínguez, J. M. Bayona and G. Vidal, Removal of organic micropollutants in wastewater treated by activated sludge and constructed wetlands: A comparative study, *Water*, 2019, 11. https://doi.org/10.3390/w11122515
- 72. M. Duran, Ö. Arar and M. Arda, Removal of phthalic acid and isophthalic acid from aqueous solution by anion exchange resin, *J. Chil. Chem. Soc.*, 2019, **64**, 4399-4403. http://dx.doi.org/10.4067/s0717-97072019000104399
- 73. G. Choo and J.-E. Oh, Seasonal occurrence and removal of organophosphate esters in conventional and advanced drinking water treatment plants, *Water Res.*, 2020, **186**, 116359. <u>https://doi.org/10.1016/j.watres.2020.116359</u>
- 74. J. Tian, J. Wei, H. Zhang, Z. Kong, Y. Zhu and Z. Qin, Graphene oxide-functionalized dual-scale channels architecture for high-throughput removal of organic pollutants from water, *J. Chem. Eng.*, 2019, **359**, 852-862. <u>https://doi.org/10.1016/j.cej.2018.12.048</u>
- 75. X. Zhao, R. Wang, L. Dong, W. Li, M. Li and H. Wu, Simultaneous removal of nitrogen and dimethyl phthalate from low-carbon wastewaters by using intermittently-aerated constructed wetlands, *J. Hazard. Mater.*, 2021, **404**, 124130. https://doi.org/10.1016/j.jhazmat.2020.124130

- 76. P. Li, Z.-h. Liang, Z. Jiang, Z. Qiu, B. Du, Y.-b. Liu, W.-z. Li and L.-h. Tan, Supercritical fluid extraction effectively removes phthalate plasticizers in spores of Ganoderma lucidum, *Food Sci. Biotechnol.*, 2018, 27, 1857-1864. <u>https://doi.org/10.1007/s10068-018-0404-3</u>
- 77. Y. Wang, W. Gao, Y. Wang and G. Jiang, Suspect screening analysis of the occurrence and removal of micropollutants by GC-QTOF MS during wastewater treatment processes, J. Hazard. Mater., 2019, 376, 153-159. <u>https://doi.org/10.1016/j.jhazmat.2019.05.031</u>
- X. Wan, L. Zhang, Z. Sun, W. Yu and H. Xie, Treatment of high concentration pcid Plasticizer wastewater by ozone microbubble oxidation, *Water, Air, Soil Pollut.*, 2020, 231, 367. <u>https://doi.org/10.1007/s11270-020-04735-3</u>
- 79. Y. Wang, W. Zhan, Y. Liu, S. Cheng, C. Zhang, J. Ma and R. Chen, Di-n-octyl phthalate degradation by a halotolerant bacterial consortium LF and its application in soil, *Environ. Technol.*, 2021, 42, 2749-2756. <u>https://doi.org/10.1080/09593330.2020.1713903</u>
- 80. I. Ferreira and D. Morita, Ex-situ bioremediation of Brazilian soil contaminated with plasticizers process wastes, *Braz. J. Chem. Eng.*, 2012, **29**, 77-86. https://doi.org/10.1590/S0104-66322012000100009
- 81. S. Nalli, D. G. Cooper and J. A. Nicell, Biodegradation of plasticizers by Rhodococcus rhodochrous, *Biodegradation*, 2002, **13**, 343-352. https://doi.org/10.1023/A:1022313810852
- 82. S. Nalli, D. G. Cooper and J. A. Nicell, Metabolites from the biodegradation of di-ester plasticizers by Rhodococcus rhodochrous, *Sci. Total Environ.*, 2006, **366**, 286-294. https://doi.org/10.1016/j.scitotenv.2005.06.020
- 83. D. Kumar, L. Shukla, S. B. Singh, L. Nain and S. Singh, Bacterial consortium for efficient degradation of di-ethyl phthalate in soil microcosm, *Environ. Sustain.*, 2021, **4**, 797-804. https://doi.org/10.1007/s42398-021-00199-1
- 84. Y. Wang, Q. Ren, W. Zhan, K. Zheng, Q. Liao, Z. Yang, Y. Wang and X. Ruan, Biodegradation of di-n-octyl phthalate by Gordonia sp. Lff and its application in soil, *Environ. Technol.*, 2021, 1-8. <u>https://doi.org/10.1080/09593330.2021.1890839</u>