Supporting Information

Instrumental conditions

For UPLC-MS/MS with positive ESI mode, a Zorbax SBC18 (100 mm × 3 mm, 1.8 µm particle size) column with its corresponding precolumn filter (2.1 mm, 0.2 µm) from Agilent Technologies was used for chromatographic separation. The column was kept at 40 °C and the injection volume was 5.0 µL. The mobile phases used were (A) Milli-Q water (containing 5 mmol/L ammonium acetate and 0.05 % formic acid (v/v)) and (B) methanol. The gradient program was as follows: 50 % B at 0 min, increased to 80 % B in 5 min, stepped to 90 % B in 0.5 min, and held for 5.5 min at a flow rate of 0.30 mL/min; a post run time was set at 4.5 min for column equilibration before the next injection. The whole analysis time for each sample was 15.5 min. For UPLC-MS/MS with negative ESI mode, the column brand, column temperature, and the injection volume were the same as those in positive ESI mode. The mobile phase consisted of Milli-Q water (A) and methanol (B). The gradient elution program was set as follows: 50 % B at 0 min, increased to 56 % B in 3 min, stepped to 90 % B in 1 min, and held for 4.5 min at a flow rate of 0.35 mL/min; a post run time was set at 5 min for column equilibration before the next injection. The whole analysis time for each sample was 13.5 min. The operating conditions (fragmentor voltage, collision energy (CE), precursor ion and product ions for each compound) for mass spectrometry were optimized by Optimizer (Agilent, USA), to maximize the response and increase detection sensitivity. Quantitative analysis of the target compounds was performed in multiple reaction monitoring (MRM) mode. Agilent Mass Hunter V 02.01 software was used for data acquisition.

		Water sample	
PPCPs	Recovery	LODs	RSD
	(%)	(ng/L)	(%)
BT	87.2±4.1	0.37	1.7
5-TT	90.0 ± 3.2	0.32	1.9
CBT	91.3 ± 2.3	0.27	1.4
XT	88.4 ± 3.2	0.31	1.8
MP	92.7±4.1	0.06	1.6
EP	91.5 ± 2.9	0.08	1.4
PP	87.1 ± 4.6	0.09	1.3
BP	85.9 ± 3.2	0.08	1.5
TCS	91.8 ± 3.7	0.07	1.7
TCC	91.5 ± 3.6	0.09	1.5

Table S1 Recoveries, limit of quantification (LOQ) and relative standard deviation (RSD) of target PPCPs in surface water samples.

Table S2 Recoveries, limit of quantification (LOQ) and relative standard deviation (RSD) of target PPCPs in sediment samples.

	Sediment sample					
PPCPs	Recovery	LODs	RSD			
	(%)	(ng/g)	(%)			
BT	82.1±3.7	1.19	2.7			
5-TT	84.2 ± 4.6	0.48	3.1			
CBT	85.3 ± 3.1	1.01	2.8			
XT	85.9 ± 3.2	0.53	3.6			

MP	84.3 ± 3.9	0.12	2.9
EP	83.9±4.0	0.17	3.4
PP	83.4±3.5	0.14	2.2
BP	85.7 ± 6.7	0.16	2.7
TCS	80.6 ± 5.4	0.21	2.8
TCC	82.8 ± 4.8	0.18	3.0

Sampling sites	BT	5-TT	CBT	XT	MP	EP	РР	BP	TCC	TCS
	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L
YP-L	14.90	5.39	6.61	2.13	1.86	<lod< td=""><td>1.16</td><td>0.83</td><td>1.29</td><td>49.93</td></lod<>	1.16	0.83	1.29	49.93
YP-M	32.20	8.87	9.20	2.68	2.51	<lod< td=""><td>0.98</td><td>0.83</td><td>1.05</td><td>52.06</td></lod<>	0.98	0.83	1.05	52.06
YP-R	34.78	9.58	8.18	2.77	1.97	<lod< td=""><td>0.95</td><td>0.84</td><td>0.85</td><td>46.15</td></lod<>	0.95	0.84	0.85	46.15
ZK-L	37.58	29.91	10.69	5.68	1.20	<lod< td=""><td>0.86</td><td>0.81</td><td>1.06</td><td>49.66</td></lod<>	0.86	0.81	1.06	49.66
ZK-M	33.49	35.07	10.59	5.98	1.15	<lod< td=""><td>0.76</td><td>0.81</td><td>0.85</td><td>42.19</td></lod<>	0.76	0.81	0.85	42.19
ZK-R	50.30	36.91	12.64	6.03	1.12	<lod< td=""><td>0.82</td><td>0.84</td><td>0.80</td><td>39.99</td></lod<>	0.82	0.84	0.80	39.99
QB-L	22.36	11.13	10.09	3.15	1.14	<lod< td=""><td>0.93</td><td>0.80</td><td>0.74</td><td>41.03</td></lod<>	0.93	0.80	0.74	41.03
QB-M	28.47	13.57	7.77	3.66	1.16	<lod< td=""><td>0.87</td><td>0.83</td><td>0.91</td><td>54.59</td></lod<>	0.87	0.83	0.91	54.59
QB-R	26.26	13.97	8.79	3.87	1.14	<lod< td=""><td>2.70</td><td>0.81</td><td>0.77</td><td>52.91</td></lod<>	2.70	0.81	0.77	52.91
ZTJ-L	26.70	11.97	6.95	3.49	1.20	<lod< td=""><td>0.84</td><td>0.79</td><td>0.86</td><td>35.98</td></lod<>	0.84	0.79	0.86	35.98
ZTJ-M	27.38	12.22	6.08	3.81	1.12	<lod< td=""><td>0.81</td><td>0.77</td><td>0.82</td><td>54.92</td></lod<>	0.81	0.77	0.82	54.92
ZTJ-R	22.30	12.88	5.93	3.72	1.22	<lod< td=""><td>0.84</td><td>1.02</td><td>0.32</td><td>33.03</td></lod<>	0.84	1.02	0.32	33.03

Table S3 The PPCPs concentration of water in wet season

	BT	5- TT	CBT	ХТ	МР	EP	рр	RP	тсс	TCS
Sampling sites	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L
YP-L	17.96	8.54	7.89	3.68	2.05	<lod< td=""><td>1.56</td><td>1.78</td><td>3.81</td><td>51.39</td></lod<>	1.56	1.78	3.81	51.39
YP-M	18.84	9.68	8.54	3.74	2.14	<lod< td=""><td>1.74</td><td>1.94</td><td>3.12</td><td>54.28</td></lod<>	1.74	1.94	3.12	54.28
YP-R	19.79	8.67	8.12	4.15	2.23	<lod< td=""><td>1.69</td><td>1.79</td><td>3.96</td><td>50.12</td></lod<>	1.69	1.79	3.96	50.12
ZK-L	25.28	15.66	9.21	6.71	2.41	<lod< td=""><td>1.81</td><td>1.89</td><td>4.71</td><td>57.94</td></lod<>	1.81	1.89	4.71	57.94
ZK-M	26.36	14.91	10.3	7.33	2.34	<lod< td=""><td>1.49</td><td>2.01</td><td>5.56</td><td>59.81</td></lod<>	1.49	2.01	5.56	59.81
ZK-R	31.11	17.13	10.71	6.82	2.29	<lod< td=""><td>1.56</td><td>2.09</td><td>4.92</td><td>59.67</td></lod<>	1.56	2.09	4.92	59.67
QB-L	28.79	14.85	10.44	9.57	2.17	<lod< td=""><td>1.89</td><td>2.15</td><td>6.44</td><td>60.27</td></lod<>	1.89	2.15	6.44	60.27
QB-M	29.65	16.93	10.24	9.43	2.28	<lod< td=""><td>1.78</td><td>2.34</td><td>7.04</td><td>63.12</td></lod<>	1.78	2.34	7.04	63.12
QB-R	30.32	15.57	12.51	10.11	2.26	<lod< td=""><td>1.66</td><td>2.28</td><td>6.28</td><td>61.57</td></lod<>	1.66	2.28	6.28	61.57
ZTJ-L	47.45	31.51	13.58	12.65	2.75	<lod< td=""><td>2.03</td><td>2.67</td><td>8.56</td><td>77.35</td></lod<>	2.03	2.67	8.56	77.35
ZTJ-M	46.58	29.84	14.12	12.43	2.8	<lod< td=""><td>2.11</td><td>2.45</td><td>7.89</td><td>79.21</td></lod<>	2.11	2.45	7.89	79.21
ZTJ-R	45.66	30.45	14.79	13.91	2.66	<lod< td=""><td>2.16</td><td>2.59</td><td>8.12</td><td>74.13</td></lod<>	2.16	2.59	8.12	74.13

Table S4 The PPCPs concentration of water in dry season

	Table S5 The PPCPs concentration in sediment of Qiantang river											
Sampling sites	BT	5- TT	СВТ	ХТ	МР	EP	РР	BP	TCC	TCS		
Sampning sites	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g		
	Wet season											
YP	2.59	1.95	2.02	0.97	5.31	<lod< td=""><td>0.73</td><td>0.74</td><td>4.00</td><td>60.84</td></lod<>	0.73	0.74	4.00	60.84		
ZK	2.78	3.29	2.03	0.83	2.45	<lod< td=""><td>0.74</td><td>0.73</td><td>3.57</td><td>46.82</td></lod<>	0.74	0.73	3.57	46.82		
QB	3.08	2.86	1.65	0.89	2.21	<lod< td=""><td>0.78</td><td>0.75</td><td>3.08</td><td>65.36</td></lod<>	0.78	0.75	3.08	65.36		
ZTJ	2.59	3.38	1.47	0.91	2.35	<lod< td=""><td>0.72</td><td>0.74</td><td>2.76</td><td>50.60</td></lod<>	0.72	0.74	2.76	50.60		
				Dry	y season							
YP	2.47	2.60	2.25	0.86	1.65	<lod< td=""><td>0.74</td><td>0.73</td><td>3.51</td><td>60.25</td></lod<>	0.74	0.73	3.51	60.25		
ZK	3.01	3.09	1.85	0.95	2.58	<lod< td=""><td>0.73</td><td>0.73</td><td>5.45</td><td>54.15</td></lod<>	0.73	0.73	5.45	54.15		
QB	3.24	2.62	1.82	0.82	2.30	<lod< td=""><td>0.75</td><td>0.73</td><td>3.26</td><td>58.33</td></lod<>	0.75	0.73	3.26	58.33		
ZTJ	3.08	4.15	1.24	0.88	2.41	<lod< td=""><td>0.77</td><td>0.79</td><td>4.15</td><td>57.29</td></lod<>	0.77	0.79	4.15	57.29		

Sampling sites	TOC mg/L	TP mg/L	TN mg/L	NH ₃ -N mg/L
		Wet season		
YP-L	2.34	0.03	2.27	0.325
YP-M	1.74	0.04	1.81	0.041
YP-R	2.24	0.03	1.88	0.038
ZK-L	3.02	0.06	2.15	0.046
ZK-M	3.42	0.07	2.35	0.044
ZK-R	3.65	0.11	2.22	0.044
QB-L	2.17	0.04	1.60	0.032
QB-M	2.08	0.04	1.94	0.049
QB-R	2.16	0.03	1.55	0.035
ZTJ-L	2.39	0.05	1.65	0.041
ZTJ-M	2.43	0.05	1.54	0.046
ZTJ-R	2.21	0.03	1.69	0.044
		Dry season		
YP-L	2.32	0.07	2.50	0.336
YP-M	2.34	0.08	2.41	0.327
YP-R	2.38	0.08	2.48	0.302
ZK-L	2.43	0.07	2.49	0.404
ZK-M	2.55	0.08	2.47	0.367

Table S6 The physicochemical parameters of QTR in wet and dry seasons

ZK-R	2.77	0.08	2.58	0.330
QB-L	2.49	0.07	2.15	0.247
QB-M	2.67	0.08	2.43	0.231
QB-R	2.79	0.08	2.28	0.259
 ZTJ-L	3.56	0.08	2.27	0.451
ZTJ-M	3.53	0.08	2.30	0.439
ZTJ-R	3.56	0.08	2.28	0.461

Sampling sites	TOC %(Wet season)	TOC %(Dry season)
YP	0.376	0.384
ZK	0.337	0.347
QB	0.178	0.187
ZTJ	0.242	0.245

 Table S7 The total organic carbon (TOC) content of the sediment in QTR

Correaltions in wet season								
		PPCPs concentration in water	PPCPs concentration in sediment					
	Pearson Correlation	1	.778**					
PPCPs concentration in water	Sig. (2-tailed)		.000					
	Ν	36	36					
	Pearson Correlation	.778**	1					
PPCPs concentration in sediment	Sig. (2-tailed)	.000						
	N	36	36					
	**. Correlation is significant at the 0.01 level (2-tailed)							
	Correal	ltions in dry season						
		PPCPs concentration in water	PPCPs concentration in sediment					
	Pearson Correlation	1	.858**					
PPCPs concentration in water	Sig. (2-tailed)		.000					
	N	36	36					
	Pearson Correlation	.858**	1					
PPCPs concentration in sediment	Sig. (2-tailed)	.000						
	N	36	36					
	**. Correlation is significant at the 0.01 level (2-tailed)							

Table S8 The correlation between PPCPs in water and sediment

Compound	Detected concentration	River	Country	Reference
	1 500 no/I	Jinsha River	China	Anthropogenic disturbances on distribution and sources of pharmaceuticals
rrcrs	1-300 llg/L	Basin	China	and personal care products throughout the Jinsha River Basin, China
тос	22 nala in andiment	Con Divon	Vietnem	Occurrence of pharmaceutical and personal care products in Cau River,
ICC	25 ng/g in sediment	Cau River	vietnam	Vietnam
MD	170.97~/I	I ah a nagamyain	Duozil	Occurrence of PPCPs in a Brazilian water reservoir and their removal
IVIP	1/0.8/ μg/L	Lobo reservoir	Brazii	efficiency by ecological filtration
		the wirrow Mari		Determination of parabens in surface water from Mogi Guaçu River (S~ao
MP	8μg/L	the river Mogi	Brazil	Paulo, Brazil) using dispersive liquid-liquid microextraction based on low
		Guaçu		density solvent and LC-DAD
		aarraa tuaatuu aut	India	Occurrence, seasonal variation, mass loading and fate of pharmaceuticals and
TCS	8.87-91.74 ng/L	sewage treatment plant		personal care products (PPCPs) in sewage treatment plants in cities of upper
				Ganges bank, India
TCS	09 67 ma/I	Divor Congos	India	Occurrence, seasonal variations, and ecological risk of pharmaceuticals and
105	98.02 ng/L	Kiver Ganges	India	personal care products in River Ganges at two holy cities of India
				Occurrences of microorganic pollutants in the Kumho River by a
BT	0.1-100ng/L	Kumho River	Korea	comprehensive target analysis using LC-Q/TOF-MS with sequential window
				acquisition of all theoretical fragment ion spectra (SWATH)
				Occurrences of microorganic pollutants in the Kumho River by a
XT	0.1-10ng/L	Kumho River	Korea	comprehensive target analysis using LC-Q/TOF-MS with sequential window
				acquisition of all theoretical fragment ion spectra (SWATH)
MP TCS TCS BT XT	8μg/L 8.87-91.74 ng/L 98.62 ng/L 0.1-100ng/L 0.1-10ng/L	the river Mogi Guaçu sewage treatment plant River Ganges Kumho River Kumho River	Brazil India India Korea	 Determination of parabens in surface water from Mogi Guaçu River (S~ao Paulo, Brazil) using dispersive liquid-liquid microextraction based on low density solvent and LC-DAD Occurrence, seasonal variation, mass loading and fate of pharmaceuticals and personal care products (PPCPs) in sewage treatment plants in cities of upper Ganges bank, India Occurrence, seasonal variations, and ecological risk of pharmaceuticals and personal care products in River Ganges at two holy cities of India Occurrences of microorganic pollutants in the Kumho River by a comprehensive target analysis using LC-Q/TOF-MS with sequential window acquisition of all theoretical fragment ion spectra (SWATH) Occurrencial theoretical fragment ion spectra (SWATH)

Table S9 Summary of the worldwide occurrence of PPCPs in surface water

BT	1210 ng/L	anafa an arratan	New Zeelend	The removal of metformin and other selected PPCPs from water by poly(3,4-
TCS	103 ng/L	surface water	New Zealand	ethylenedioxythiophene) photocatalyst
BT	286 ng/L			
TCS	80 ng/L			Suitability of pharmaceuticals and personal care products (PPCPs) and
CBT	31.9 ng/L	surface water	China	artificial sweeteners (ASs) as wastewater indicators in the Pearl River Delta,
TCC	20 ng/L			South China
MP	10 ng/L			
TCC	2 27 210 ma/I	Doon! Divon	China	Occurrence and ecological risk assessment of emerging organic chemicals in
ICC	2.5/-210 ng/L	Fear Kiver		urban rivers: Guangzhou as a case study in china.
TCS	25 1022 /1	Doon! Divon	China	Simulation of three ppcps existed in major pearl river with an asm model
105	55-1025 llg/L	reall Kivel	China	including a separate degrading microorganism
	3.31–55.2 ng/L in water,			
PBs	13.3–37.2 ng/g in	Yellow River		Parabens and their metabolite in surface water and sediment from the Yellow
	sediment		China	River and the Huai River in Henan Province: Spatial distribution, seasonal
лл -	15.0–164 ng/L, 16.1–	II		variation and risk assessment
ЧВS	31.6 ng/g in sediment	riual Kiver		

Fig S1 Contributions from six different sources to the total PPCPs