Supplementary Information (SI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2024

1 Domestic groundwater wells in Appalachia show evidence of low-dose, complex mixtures of

- 2 legacy pollutants
- 3 Nicolette A. Bugher¹, Boya Xiong^{1,4}, Runako I. Gentles¹, Lukas D. Glist¹, Helen G. Siegel²,
- 4 Nicholaus P. Johnson³, Cassandra J. Clark³, Nicole C. Deziel³, James E. Saiers², Desiree L. Plata¹
- 5
- 6 ¹Massachusetts Institute of Technology, Department of Civil and Environmental Engineering,
- 7 Parsons Laboratory, 15 Vassar Street, Cambridge Massachusetts 02139 USA
- 8 ²Yale School of the Environment, Environmental Science Center, 21 Sachem Street, New Haven,
- 9 Connecticut 06511, USA
- 10 ³Yale School of Public Health, Department of Environmental Health Sciences, 60 College St.,
- 11 New Haven, Connecticut 06510
- ¹² ⁴University of Minnesota, Department of Civil, Environmental, and Geo-Engineering, 500

13 Pillsbury Drive S.E., Minneapolis, MN 55455

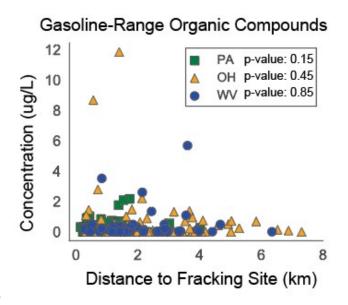
14

15 Supplemental Information

- 16
- 17 Table S1: VOC compound index, limit of detection (LOD), and applicable maximum

18 contamination levels (MCLs). Note: reported detection limits were established from the average

19 of daily individual LODs.


Index	Compound	LOD	EPA MCL
		(ug/L)	(ug/L)
1	chloromethane	4x10 ⁻³	-
2	vinyl chloride	4x10 ⁻⁵	0.002
3	bromomethane	1x10 ⁻³	-
4	chloroethane	3x10 ⁻³	-
5	trichlorofluoromethane	2x10 ⁻³	-
6	1,1 dichloroethylene and trans-1,2-	3x10 ⁻³	0.007 and 0.1
	dichloroethylene		
7	1,1-dichloroethane	1x10 ⁻²	-
8	2,2 dichloropropane and cis-1,2-	2x10 ⁻³	0.07
	dichloroethylene		
9	bromochloromethane	2x10-2	-
10	chloroform	6x10 ⁻³	0.08 ^a
11	1,1,1-trichloroethane	1x10 ⁻²	0.2
12	1,1-dichloropropene and carbon tetrachloride	2x10 ⁻²	0.005

13	1, 2-dichloroethane and benzene	4x10-4	0.005 and 0.005
14	trichloroethene	8x10 ⁻³	0.005
15	1,2-dichloropropane	2x10 ⁻³	0.005
16	dibromomethane	6x10 ⁻³	-
17	bromodichloromethane	2x10 ⁻²	0.08ª
18	cis-1,3-dichloropropene	$1x10^{0}$	-
19	toluene	1x10 ⁻⁴	1
20	trans-1,3-dichloropropene	5x10-3	-
21	1,1,2-trichloroethane	8x10 ⁻²	0.005
22	1,3-dichloropropane	7x10 ⁻³	-
23	tetrachloroethene	1x10 ⁻²	0.005
24	dibromochloromethane	6x10-2	0.08ª
25	1,2-dibromoethane (EDB)	5x10 ⁻²	-
26	chlorobenzene	1x10 ⁻³	0.1
27	1,1,1,2-tetrachloroethane	6x10-3	-
28	ethylbenzene	2x10-3	0.7
29	m-xylene and p-xylene	1x10 ⁻³	10 ^b
30	o-xylene, styrene, bromoform	2x10 ⁻³	10 ^b and 0.08 ^a
31	1,1,2,2-tetrachloroethane	9x10 ⁻²	_
32	isopropylbenzene (cumene) and n-	6x10 ⁻³	_
• -	propylbenzene		
33	bromobenzene	9x10 ⁻³	-
34	1,2,3-trichloropropane	4x10 ⁻²	-
35	1,3,5-trimethylbenzene	8x10 ⁻³	-
36	2-chlorotoluene	5x10-2	-
37	4-chlorotoluene	2x10 ⁻³	_
38	tert-butylbenzene	4x10 ⁻³	-
39	1,2,4-trimethylbenzene	5x10-3	_
40	sec-butylbenzene	5x10-2	_
41	1.3-dichlorobenzene	5x10 ⁻²	_
42	p-isopropyltoluene (p-cymene)	1x10 ⁻²	_
43	1,4-dichlorobenzene	4x10 ⁻³	0.075
44	n-butylbenzene and 1,2-dichlorobenzene	4x10 ⁻⁴	N/A and 0.6
45	1,2-dibromo-3-chloropropane	1x10 ⁻¹	0.0002
46	1,2,4-trichlorobenzene	9x10 ⁻²	0.07
47	hexachlorobutadiene	2x10 ⁻²	-
48	naphthalene	9x10 ⁻³	
49	1,2,3-trichlorobenzene	1x10 ⁻²	
50	methylene chloride (dichloromethane)	5x10 ⁻³	0.005
	al Trihalomethanes (sum of 4). ^b MCL for xyle		0.005

20 ^aMCL for Total Trihalomethanes (sum of 4). ^bMCL for xylenes (Total).

23 Quality Assurance and Quality Control Assessment of study quality involved interrogation of blank control samples (i.e., field blanks and laboratory blanks) to assess potential procedural or 24 25 analytical contamination. VOC detection frequencies were less than 10% for all compounds except dichloromethane in laboratory blanks (46%), which was interrogated further for potential 26 27 laboratory contamination bias. VOCs were detected above limits of detection (SI Table 1) in 28 field blanks in less than 10% of samples for all but five compounds (chloromethane; 16%, vinyl 29 chloride; 14%, bromomethane; 15%, dichloromethane; 53%, bromochloromethane; 29%) (SI 30 Appendix I Data file). Field blank analyte concentrations were not normally distributed. Thus, to investigate bias, non-parametric distribution-free statistical analyses were conducted for each 31 32 of the designated VOCs as outlined in Hahn and Meeker (1991) utilizing ranked sample 33 concentrations and binomial probability to determine an upper confidence limit (UCL) on VOCs with a high frequency and magnitude of field blank detections. This blank UCL allows for 34 inference on potential contamination in the population of environmental samples; i.e., the 90th-35 percentile concentration of blank samples for those with frequent VOC detections is the 36 anticipated maximum contamination based on USGS quality assurance for VOCs (Bender et al., 37 2011). Dichloromethane UCL calculated LOD was 8.13 ug/L, which far exceeded the 38 analytically determined LOD of 0.005 ug/L. This level was similar to the DCM concentration 39 distribution in environmental samples, and routinely appeared in laboratory blanks. Thus, 40 contamination bias was *not* disproven, and dichloromethane was removed from the analysis 41 42 accordingly. Vinyl chloride (OH and WV UCL adjusted LOD: 0.06 ug/L), chloromethane (WV UCL adjusted LOD: 0.08 ug/L), bromomethane (OH UCL adjusted LOD: 0.1 ug/L) and 43 bromochloromethane (OH and WV UCL adjusted LOD: 0.4 ug/L) were not detected in 44 laboratory blanks and considered free of laboratory contamination. Accordingly, we included 45 vinyl chloride, chloromethane, bromomethane and bromochloromethane detections at reported 46 LODs (SI Table 1) to accurately reflect concentrations in the water, as laboratory blanks were 47 free of contamination. 48

- 49
- 50
- 51

53 Figure SI 1: Correlation analyses of distance to hydraulic fracturing well and gasoline-range

- 54 organic compound concentrations (ug/L) for samples taken in West Virginia, Ohio and
- 55 Pennsylvania.

56

Gasoline- and Diesel Range Organic Compounds as Mixture Screening Tools. As a non-57 specific measure of total very volatile organic compound exposure, this study measured gasoline 58 range organic compound concentrations (sum of compounds eluting between characteristic 59 compounds C6 to C10) for each sample. Low levels of GRO concentrations were detected in 60 samples from Ohio and West Virginia, 0.04 ± 0.05 to 11.8 ± 0.2 ug/L and 0.01 ± 0.01 to 5.6 ± 0.8 61 ug/L, respectively. (Note that PA GRO levels from this sampling effort were 0.13 ± 0.06 to $2.2 \pm$ 62 63 0.7 ug/L, as reported in Xiong et al. 2022¹). GRO concentrations were not correlated with distance to closest hydraulic fracturing well (Spearman's Correlation; p-value > 0.05) (Figure SI 1). GRO 64 compound measurements are integrated measures to capture mixture tendencies and occurrences 65 in water samples. Samples with high GRO compound concentrations can be interrogated to 66 determine specific chemical constituents. Here, we see GRO compound concentrations linearly 67 correlated ($R^2 = 0.83$) to the sum of total VOC (tVOC) concentrations in this study (n = 50). GRO 68 compound concentrations had no linear relationship ($R^2 = 0.172$) to number of chemicals detected 69 per sample site in our target analysis. Since chemical mixture risk assessments rely on both 70 concentration of individual mixture components and number of components in a given sample, 71 both total VOC detections and individual concentrations play a vital role. This study is limited 72 73 based on the semi-target analysis of only 59 potential VOCs detected in HDHF activities and nontarget assessments characterizing all GRO VOC components would strengthen mixture risk 74 75 assessments. 76

77

, ,

78

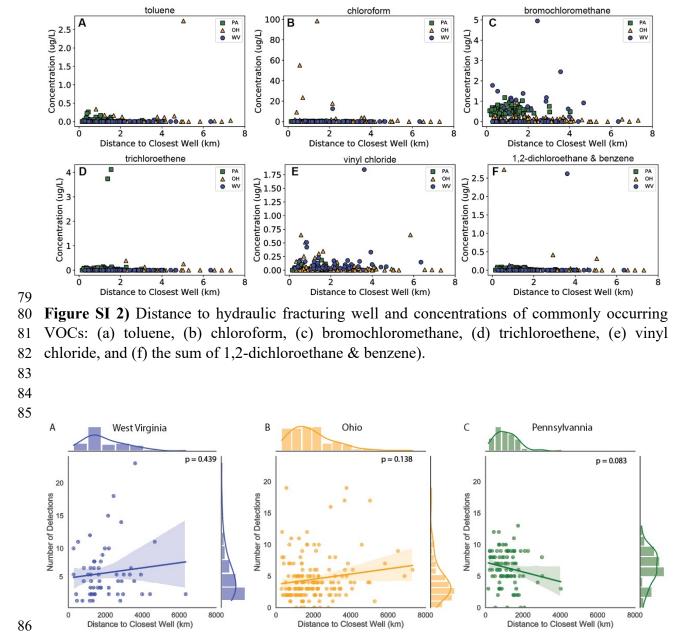


Figure SI 3) Distance to hydraulic fracturing well and number of VOC detections per sampling
site. The linear distance between the sample site location and nearest hydraulic fracturing well for
(a) West Virginia (histogram range: < 300m to 6.4 km); (b) Ohio (histogram range: < 300 to 7.4
km), and (c) Pennsylvania (histogram range: < 200m to 4.2km) are shown in the histograms above

91 each figure against distribution of number of detections for each state.

92 Spearman correlation coefficients (p-values between 0.72 and 0.95) indicate no significant linear 93 relationship between distance to closest hydraulic fracturing well site and individual VOC 94 concentrations (**Figure SI2**). In Pennsylvania, concentrations of TCE in wells within 10 km had a 95 weak negative correlation ($r^2 = 0.53$; p-value <0.05, Spearman Correlation) with distance to closest 96 well, but were not significantly elevated (p-value >0.05, Mann Whitney U) compared to 97 concentrations in wells more than 10 km away. The many potential sources of TCE in groundwater 98 may obfuscate pathways from specific contamination site. Ohio and West Virginia showed no 99 significant linear relationships between distance and individual VOCs concentrations. 100 Additionally, total VOC concentrations (VOC_{TOT}; data not shown) and number of VOC detections 101 (**Figure SI3**) were not significantly correlated in all three states (Spearman Rank Order 102 Correlation; r² between 0.16 and 0.52; p-value > 0.05), suggesting limited applicability of 103 frequency of detections of tVOCs for use as a measure of "human impact" as seen in previous 104 studies². Nevertheless, the variation in detection frequency of singular VOCs between states 105 provides evidence of local variation in water composition between sampling areas.

107

108 References

- 109
- 110 1. Xiong, B., Soriano, M. A., Gutchess, K. M., Hoffman, N., Clark, C. J., Siegel, H. G., Andrew,
- 111 G., de Vera, D., Li, Y., Brenneis, R. J., Cox, A. J., Ryan, E. C., Sumner, A. J., Deziel, N. C.,
- 112 Saiers, J. E., & Plata, D. L. (2022). Groundwaters in Northeastern Pennsylvania near intense
- hydraulic fracturing activities exhibit few organic chemical impacts †. Environmental Science
- and Technology, <u>https://doi.org/10.1039/d1em00124h</u>
- Deeds, D. A., Kulongoski, J. T., & Belitz, K. (2012). Assessing California Groundwater
 Susceptibility Using Trace Concentrations of Halogenated Volatile Organic Compounds.
 Environmental Science and Technology. https://doi.org/10.1021/es303546b
- 118 3. Hahn, G.J. and Meeker, W.Q. (1991) Statistical Intervals: A Guide for Practitioners, John Wiley &
- 119 Sons, New York. <u>http://dx.doi.org/10.1002/9780470316771</u>
- 120 4. Bender, D.A., Zogorski, J.S., Mueller, D.K., Rose, D.L., Martin, J.D., and Brenner, C.K., (2011)
- 121 Quality of volatile organic compound data from groundwater and surface water for the National
- 122 Water-Quality Assessment Program, October 1996–December 2008: U.S. Geological Survey
- 123 Scientific Investigations Report 2011–5204, 128 p.
- 124