Supplementary Information (SI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2024

SUPPLEMENTARY INFORMATION: The impact of indoor surfaces on indoor air chemistry following cooking and cleaning activities

Ellen Harding-Smith^{1,2}, Helen L. Davies¹, Catherine O'Leary², Ruth Winkless², Marvin Shaw³, Terry J. Dillon², Benjamin Jones⁴, and Nicola Carslaw^{1,*}

¹Department of Environment and Geography, University of York, United Kingdom ²Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, United Kingdom ³National Centre for Atmospheric Science, University of York, York, United Kingdom ⁴Department of Architecture and Built Environment, University of Nottingham, United Kingdom *Corresponding Email: nicola.carslaw@vork.ac.uk

c)

Figure S1: a) External view of experimental (Part L) pod and WACL Air Sampling Platform (WASP), b) Internal view of test pod, c) Floor plan and internal elevations of test pod. Sampling location denoted by blue circle.

1 SIFT-MS

The VOCs measured using each reagent ion in the SIFT-MS method are shown in Table S1, along with the species molecular weights, product ions, rate coefficients and branching ratios. Whether or not a particular product ion was used for quantification is also shown in the 'Included in Analysis' column.

Table S2 shows the species that were measured by SIFT-MS, their limits of detection (LOD), and whether or not the species are calibrated against a gas standard. The background concentrations of dihydromyrcenol and citral were not measured during the first two instrument calibrations of the campaign due to differences in the SIFT-MS selected ion monitoring (SIM) methods used. Therefore, the average background concentrations measured during the final four instrument calibrations for these species were assumed to be an appropriate estimation of the background concentrations at the start of the campaign and were subtracted from the data. The LODs for dihydromyrcenol and citral reported in Table S2 are an average of the final four instrument calibrations only. Lactic acid was not included in any SIM method used to perform calibration and zero air measurements throughout the campaign. Consequently, the instrument background was not corrected for this species, and no LOD was available.

Reagent ion	Compound	$\begin{array}{c} \mathrm{MM} \\ \mathrm{(g\ mol^{-1})} \end{array}$	Product ion	$\begin{array}{l} \text{Reaction rate} \\ (\times 10^{-9} \text{cm}^3 \\ \text{molecule}^{-1} \ \text{s}^{-1}) \end{array}$	Branching ratio (%)	Clean	Cook	Both	Included in analysis
H_3O^+	2,4-decadienal	153	$C_{10}H_{17}O^+$	4.9	100		\checkmark		
		171	$\rm C_{10}H_{17}O^+ \cdot H_2O$				\checkmark		
	2-phenethyl acetate	105	$C_8H_9^+$	3.5	80	\checkmark			\checkmark
	acetaldehyde	45	$C_2H_4O \cdot H^+$	3.7	100			\checkmark	\checkmark
	acetonitrile	42	$CH_3CN \cdot H^+$	5.1	100			\checkmark	\checkmark
		60	$CH_3CN \cdot H^+ \cdot H_2O$					\checkmark	
	acrylamide	72	$C_2H_3NH_2CO \cdot H^+$	2.1	100		\checkmark		\checkmark
	benzoic acid	123	$C_7H_6O_2 \cdot H^+$	3.0	100		\checkmark		\checkmark
	benzyl benzoate	151	$C_8H_7O_3^+$	3.7	60	\checkmark			
		169	$C_8H_7O_3^+ \cdot H_2O$			\checkmark			
	cinnamaldehyde	133	$C_9H_8OH^+$	2.0	100	\checkmark			
	citral	153	$C_{10}H_{17}O^+$	3.0	60	\checkmark			\checkmark
		171	$\rm C_{10}H_{17}O^+ \cdot H_2O$			\checkmark			
	decane	161	$\mathrm{H_{3}O^{+} \cdot C_{10}H_{22}}$	1.6	100		\checkmark		\checkmark
	ethanol	47	$C_2H_7O^+$	2.7	100			\checkmark	\checkmark
	formaldehyde	31	CH_3O^+	3.4	100			\checkmark	\checkmark
	heptanal	115	$C_7H_{15}O^+$	3.7	80		\checkmark		\checkmark
	hexanal	101	$C_6H_{13}O^+$	3.7	95		\checkmark		\checkmark
		119	$C_6H_{13}O^+ \cdot H_2O$				\checkmark		
	maltol	127	$C_6H_6O_3 \cdot H^+$	4.0	100		\checkmark		
		145	$C_6H_6O_3 \cdot H_3O^+$				\checkmark		
	methanol	33	CH_5O^+	2.7	100			\checkmark	\checkmark
	methyl cinnamate	163	$\mathrm{C_{10}H_{10}O_2\cdot H^+}$	3.4	100		\checkmark		\checkmark
		181	$C_{10}H_{10}O_2\cdot H^+\cdot H_2O$				\checkmark		
	n-methylpyrrole	82	$C_5H_7N \cdot H^+$	3.0	100		\checkmark		\checkmark
	nonanal	143	$C_9H_{19}O^+$	2.5	86		\checkmark		\checkmark
	octanal	129	$C_8H_{17}O^+$	3.8	85		\checkmark		\checkmark
	pinonaldehyde	107		2.0	33	\checkmark			\checkmark
	propanal	59	$C_3H_7O^+$	3.6	100		\checkmark		\checkmark
	total monoterpenes	137	$C_{10}H_{17}^{+}$	2.6	30			\checkmark	
	-	155	$\mathrm{C_{10}H_{17}\cdot H_2O^+}$				\checkmark		
	total sesquiterpenes	205	$C_{15}H_{25}^{+}$	2.5	64			\checkmark	\checkmark
NO ⁺	1,2,4-trimethylbenzene	120	$C_9H_{12}^+$	1.9	100		\checkmark		\checkmark

Table S1: The compounds measured by SIFT-MS during cooking, cleaning, or both experiments using each reagent ion, and their corresponding product ionmolecular masses (MM), chemical formulae, rate coefficients and branching ratios. Whether or not the product ion was used for quantification is also
shown in the 'included in analysis' column.

	1-propanol	59	$C_3H_7O^+$	0.6	100		\checkmark		\checkmark	
		77	$C_3H_7O \cdot H_2O'$	4.0	20		V		/	
	2,4-decadienal	151	$C_{10}H_{15}O'$	4.2	80		V		V	
	2-heptenal	111	$C_7H_{11}O$	3.9	85	,	\checkmark		\checkmark	
	2-phenethyl acetate	104	$C_8H_8^+$	2.9	85	\checkmark				
	2-tert-butylcyclohexyl	138	$C_{10}H_{18}^+$	2.8	40	\checkmark			\checkmark	
	acetate	19	$CH CO^+$	0.7	80	/				
	acetaidenyde	45 61	CH_3CO^+	0.7	80	V				
		01	CH_3CO^+ H_2O^-	0.0	100	V		/	/	
	acetic acid	90	$NO^+ C H_3 COOH$	0.9	100		/	\checkmark	V	
	acetone	88	$NO^+ \cdot C_3H_6O$	1.0	100		V		V	
	acrolein	55	C_3H_3O'	1.6	60		V		\checkmark	
	,	86	$C_3H_4O \cdot NO^+$		40		V		,	
	benzene	78	C_6H_6	1.5	55		V		\checkmark	
	benzoic acid	105	$C_7H_5O^+$	3.0	60		\checkmark			
	benzyl benzoate	180	$C_9H_{10}O_2NO^+$	2.5	45	\checkmark			\checkmark	
	cinnamaldehyde	132	$C_9H_8O^+$	2.0	100			\checkmark		
	cinnamyl acetate	176	$C_{11}H_{12}O_2^+$	3.0	100		\checkmark		\checkmark	
	citral	151	$C_{10}H_{15}O^+$	2.5	35	\checkmark				
	diallyl disulfide	146	$(C_3H_5)_2S_2^+$	2.4	100		\checkmark		\checkmark	
	dimethyl disulfide	94	$(CH_3)_2S_2^+$	2.4	100		\checkmark		\checkmark	
	ethanol	45	$C_2H_5O^+$	1.2	100	\checkmark				
		63	$C_2H_5O^+ \cdot H_2O$			\checkmark				
	eucalyptol	154	$C_{10}H_{18}O^+$	2.4	94			\checkmark	\checkmark	
	eugenol	164	$C_{10}H_{12}O_2^+$	2.4	100			\checkmark	\checkmark	
	furan	68	$C_4H_4O^+$	1.7	100		\checkmark		\checkmark	
	hexanal	99	$C_{6}H_{11}O^{+}$	2.5	100		\checkmark			
	lactic acid	120	$NO^+ \cdot C_3H_3OCOOH$	2.5	50	\checkmark			\checkmark	
	maltol	126	$C_6H_6O_3^+$	2.5	100		\checkmark		\checkmark	
	methyl cinnamate	162	$C_{10}H_{10}O_2^+$	1.4	100		1			
		163	$C_{10}H_{10}O_2 \cdot H^+$				√			
	toluene	92	$C_7H_8^+$	2.2	100				1	
	total monoterpenes	88	0,110	2.2	25	1	•		•	
	total monotorpeneo	136	$C_{10}H_{10}^+$	2.2	20 75	•		1		
	total sesquiterpenes	204	$C_{10}H_{10}^+$	2.2	38			•	v	
	undecane	155	$C_{15}H_{24}$	3.8	84		.(v		
	wylong othylbonzono	106	$C_{11}H_{23}$	2.0	100		•		(
<u> </u>	2 phonothyl agotata	100	$C \mu^+$	2.0	100		v		v	
O_2	2-phenethyl acetate	104 57	$C \Pi +$	3.U 4 5	100	v				
	2-tert-butyicycionexyl	97	$\cup_4 \Pi_9$	4.0	40	V				
		190	$C II O^+$	2.0	100			/	/	
	cinnamaidenyde	132	$C_9H_8O^+$	2.0	100		/	\checkmark	\checkmark	
	cınnamyl acetate	134	$C_9H_{10}O_2$ '	1.5	100		\checkmark			

dihydromyrcenol	59	$C_3H_7O^+$	2.9	50	\checkmark	\checkmark
	77	$C_3H_7O \cdot H_2O^+$			\checkmark	
dimethyl sulfide	47	CH_3S^+	2.2	25	\checkmark	
	62	$(CH_3)_2S^+$		60	\checkmark	\checkmark
dimethyl trisulfide	111	$\mathrm{CH_3S_3}^+$	2.2	15	\checkmark	\checkmark
eugenol	164	$C_{10}H_{12}O_2^+$	1.9	100		\checkmark
furan	68	$C_4H_4O^+$	1.6	100	\checkmark	
maltol	126	$C_6H_6O_3^+$	2.5	100	\checkmark	
nonane	99	$C_7H_{15}^+$	2.1	10	\checkmark	\checkmark
octane	85	$C_6H_{13}^+$	1.6	50	\checkmark	\checkmark
undecane	156	$C_{11}H_{24}^+$	3.2	31	\checkmark	\checkmark

Species	Average LOD (ppb)	Calibrated
1.2.4-trimethylbenzene	0.16 ± 0.1	
1-propanol	0.76 ± 0.1	
2,4-decadienal	0.07 ± 0.0	
2-heptenal	0.14 ± 0.0	
2-phenethyl acetate	0.20 ± 0.1	
2-tert-butylcyclohexyl acetate	0.25 ± 0.1	
acetaldehyde	1.41 ± 0.4	\checkmark
acetic acid	0.61 ± 0.1	
acetone	0.80 ± 0.1	\checkmark
acetonitrile	0.70 ± 0.2	\checkmark
acrolein	0.37 ± 0.1	
acrylamide	0.18 ± 0.0	
benzene	0.23 ± 0.0	
benzoic acid	0.13 ± 0.0	
benzyl benzoate	0.44 ± 0.1	
cinnamaldehyde	0.12 ± 0.0	
cinnamyl acetate	0.26 ± 0.1	
citral	0.18 ± 0.1	
decane	0.28 ± 0.1	
diallyl disulfide	0.11 ± 0.0	
dihydromyrcenol	1.70 ± 0.6	
dimethyl disulfide	0.20 ± 0.0	
dimethyl sulfide	0.46 ± 0.1	
ethanol	5.88 ± 0.7	\checkmark
eucalyptol	0.12 ± 0.0	
eugenol	0.14 ± 0.0	
formaldehyde	1.52 ± 0.3	
furan	1.04 ± 0.2	\checkmark
heptanal	0.22 ± 0.1	
hexanal	0.39 ± 0.0	
maltol	0.11 ± 0.0	
methanol	8.22 ± 1.4	\checkmark
methyl cinnamate	0.20 ± 0.0	
n-methylpyrrole	0.07 ± 0.0	
nonanal	0.31 ± 0.1	
nonane	4.98 ± 0.9	
octanal	0.22 ± 0.1	
octane	1.20 ± 0.3	
pinonaldehyde	0.34 ± 0.1	
propanal	1.85 ± 0.3	
toluene	0.52 ± 0.1	\checkmark
total monoterpenes	0.51 ± 0.2	\checkmark
total sesquiterpenes	1.50 ± 0.7	
undecane	0.40 ± 0.2	
xylenes + ethylbenzene	0.15 ± 0.0	

Table S2: Species identified by SIFT-MS, their limits of detection (average \pm standard deviation), and whether ornot their concentrations were calibrated against a gas standard

2 SIFT calibration and uncertainty

Calibration of the SIFT-MS was performed 6 times throughout the campaign using a custom-built automated gas calibration unit (AGCU). The AGCU was used to perform stepwise dilutions of calibrant gas, which were measured by the SIFT-MS to generate a multi-point calibration curve per compound. Two gas standards were used for SIFT-MS calibration: a 14-component gas standard (1 ppm certified National Physical Laboratory, UK) and a limonene only standard (1 ppm in N_2). The limonene standard was prepared in-house by injecting a controlled amount of liquid standard (Sigma Aldrich, 99.8 % purity) into an evacuated gas cylinder and subsequently pressurising the cylinder with research-grade N_2 (N6, BOC). The resulting limonene concentration was determined via GC-FID (calibrated using 1 ppm limonene in N₂ standard, NPL) after 7 days equilibration at room temperature. Each gas standard was diluted in the AGCU using zero air which was provided by a heated palladium alumina-based zero air generator. The 14-component gas standard was diluted to a concentration range of 1 to 10 ppb, while the limonene gas standard was diluted to a range of 1.8 to 18 ppb. Each concentration step was measured for 3 minutes, with the first and last 30 seconds of each step being discounted to minimise the error associated with instrument equilibration between concentration steps. The resulting data was used to generate a multi-point calibration curve, from which the calibration factor was derived by linear regression analysis. The average and standard deviation of calibration factors determined from the 6 calibration runs during the campaign are shown in Table S3.

Table S3: Mean \pm standard deviation of the SIFT-MS calibration factors obtained during the Nottingham Pod
campaign.

Species	Average calibration factor \pm
	standard deviation
acetaldehyde	1.84 ± 0.01
acetone	0.72 ± 0.01
acetonitrile	2.94 ± 0.03
ethanol	0.94 ± 0.01
furan	0.84 ± 0.00
total monoterpenes a	1.28 ± 0.02
methanol	0.85 ± 0.01
toluene	1.15 ± 0.01

 a Limonene used as calibration gas

For uncalibrated species, the SIFT-MS measurements were calculated using the ion-molecule reaction rate coefficients and branching ratios given in Table S1 (taken from Syft Technologies kinetic database). The uncertainty in these uncalibrated measurements is assumed to be \pm 35 %, as recommended in Syft training resources^{1,2}.

3 Air Change Rate

The air change rate in the test pod was measured 6 times during the campaign using methane tracer releases. The methane decays for each day is shown in Fig. S2a. The background methane concentration was subtracted from the calibrated methane concentration $(C_t - C_b)$, then the natural log was taken on the resulting concentration. After the release, the initial 10 minute mixing period was discounted, then a decay curve was fitted to the next 2 hour period, shown in Fig. S2b.

Figure S2: a) Concentration of methane over 2 hours following tracer release on 6 days during the campaign. b) Log-linear regression of the methane concentration decay, and the corresponding ACR for the 6 days.

4 VOC emission rates

The VOC emission rates input to INCHEM-Py are shown in Table S4 and S5 for the average cooking and cleaning activities occurring at 12:00 and 13:00, respectively. Emission rates were determined from SIFT-MS measurements, and calculated as the rate of increase in species concentrations during the cooking/cleaning activity. The total monoterpene emissions from the cleaning experiment were speciated using data from Harding-Smith *et al.*³ for cleaner 'SR1', while those from the cooking experiment were speciated using data from Davies *et al.*⁴. Model emissions of butyl pyruvate were used as a proxy for measured emissions of 2-tert-butylcyclohexyl acetate, with mass correction. All emission rates were corrected to account for the difference between experimental and simulated room volumes.

Table S4:	VOC emission rates determined from the averaged SIFT-MS measurements during the cooking experi-
	ment. For species where multiple gradients were observed in the emission peak, individual emission rates
	are reported as emission rates 1, 2 and 3. The time, in seconds from midnight, during which the emissions
	occurred is also shown for clarity.

Species	t_{start}	t_{end}	Emission rate	t_{start}	t_{end}	Emission rate	t_{start}	t_{end}	Emission rate
	(s)	(s)	1 (molecule	(s)	(s)	2 (molecule	(s)	(s)	3 (molecule
			${\rm cm}^{-3} {\rm s}^{-1}$)			${\rm cm}^{-3} {\rm s}^{-1}$)			${\rm cm}^{-3} {\rm s}^{-1}$)
acetaldehyde	43230	43347	1.74×10^{9}	43615	43810	1.15×10^{9}	43808	43977	2.38×10^{8}
hexanal	43227	43351	4.27×10^{8}	43602	44011	3.70×10^{7}	-	-	-
methanol	43653	43846	3.51×10^{10}	-	-	-	-	-	-
ethanol	43244	43351	1.39×10^{9}	43712	43794	6.50×10^{8}	43901	44015	8.22×10^{9}
heptanal	43271	43361	2.93×10^{8}	43729	43980	5.16×10^{7}	-	-	-
octanal	43265	43419	1.36×10^{8}	-	-	-	-	-	-
nonanal	43313	43516	3.04×10^{8}	-	-	-	-	-	-
acrolein	43220	43323	1.22×10^{9}	43595	43925	7.71×10^{7}	-	-	-
limonene	42587	42776	6.80×10^{7}	43609	43874	5.26×10^{7}	-	-	-
camphene	42587	42776	2.38×10^{8}	43609	43874	1.84×10^{8}	-	-	-
α -pinene	42587	42776	7.18×10^{7}	43609	43874	5.55×10^{7}	-	-	-
1,2,4-trimethyl	43612	43812	1.45×10^{8}	-	-	-	-	-	-
benzene									
<i>n</i> -octane	43230	43323	1.60×10^{9}	43347	43984	1.54×10^{8}	-	-	-
<i>n</i> -nonane	43213	43326	2.61×10^{9}	43650	43849	1.79×10^{9}	-	-	-
dimethyl	43216	43426	1.42×10^{8}	43622	43915	1.96×10^{8}	-	-	-
sulphide									

Table S5: VOC emission rates determined from the averaged SIFT-MS measurements during the cleaning experiment. For species where multiple gradients were observed in the emission peak, individual emission rates are reported as emission rates 1, 2 and 3. The time, in seconds from midnight, during which the emissions occurred is also shown for clarity.

Species	t_{start}	t_{end}	Emission rate	t_{start}	t_{end}	Emission rate	t_{start}	t_{end}	Emission rate
	(s)	(s)	1 (molecule	(s)	(s)	2 (molecule	(s)	(s)	3 (molecule
			$cm^{-3} s^{-1}$)			$cm^{-3} s^{-1}$)			$cm^{-3} s^{-1}$)
acetaldehyde	46839	46982	1.46×10^{8}						
methanol	46842	46956	1.34×10^{9}						
ethanol	46840	46927	3.88×10^{8}						
limonene	46806	46874	1.34×10^{7}	46874	46914	6.19×10^{7}	46874	46914	1.23×10^{7}
carene	46806	46874	3.41×10^{7}	46874	46914	1.57×10^{8}	46874	46914	3.13×10^7
camphene	46806	46874	3.66×10^{7}	46874	46914	1.69×10^{8}	46874	46914	3.35×10^{7}
terpinolene	46806	46874	1.22×10^{6}	46874	46914	5.62×10^{6}	46874	46914	1.12×10^{6}
α -pinene	46806	46874	3.54×10^{7}	46874	46914	1.63×10^{8}	46874	46914	3.24×10^{7}
α -terpinene	46806	46874	1.22×10^{6}	46874	46914	5.62×10^{6}	46874	46914	1.12×10^{6}
α-	46806	46874	1.22×10^{6}	46874	46914	5.62×10^{6}	46874	46914	1.12×10^{6}
phellandrene									
butyl pyruvate	46835	47010	1.57×10^{7}						
dihydromyrcenol	l 46789	47090	1.07×10^{8}						

5 Correlations between surface materials and surface-emitted species

Figures S3 and S4 shows the correlations between the surface areas of wooden, soft, painted and plastic surfaces surfaces, and the corresponding background concentrations of surface-emitted species with a CV > 0.2 (Table 2, main text), in each of the 20 kitchen permutations.

Figure S3: Relationship between the surface area to volume ratios of wooded, soft, painted, metal and plastic surfaces (columns) and the background concentrations (averaged between noon and midnight) of formaldehyde, acetaldehyde, propanal, butanal, pentanal and hexanal (rows), where each point is one of the 20 kitchen permutations. Pearson correlation coefficients (R) are plotted and shown when R > 0.5, and when the correlations are statistically significant (p < 0.05).

Figure S4: Relationship between the surface area to volume ratios of wooden, soft, painted, metal and plastic surfaces (columns) and the background concentrations (averaged between noon and midnight) of heptanal, acrolein, crotonaldehyde, benzaldehyde, m-tolualdehyde and 4-oxopentanal (rows), where each point is one of the 20 kitchen permutations. Pearson correlation coefficients (R) are plotted and shown when R > 0.5, and when the correlations are statistically significant (p < 0.05).

6 References

[1] Syft Technologies. (2014). Quantitation: SIFT-MS Calibration Principles. Syft Technologies Training Materials.

[2] Langford, V. S. and G. I. and M. M. J. (2014). Rapid monitoring of volatile organic compounds: a comparison between gas chromatography/mass spectrometry and selected ion flow tube mass spectrometry. Rapid Communications in Mass Spectrometry, 28(1), 10–18. https://doi.org/10.1002/rcm.6747

[3] Harding-Smith, E., Shaw, D. R., Shaw, M., Dillon, T. J., & Carslaw, N. (2024). Does green mean clean? Volatile organic emissions from regular versus green cleaning products. Environmental Science: Processes & Impacts, 26(2), 436–450. https://doi.org/10.1039/D3EM00439B

[4] Davies, H. L., O'Leary, C., Dillon, T., Shaw, D. R., Shaw, M., Mehra, A., Phillips, G., & Carslaw, N. (2023). A measurement and modelling investigation of the indoor air chemistry following cooking activities. Environmental Science: Processes & Impacts, 25(9), 1532–1548. https://doi.org/10.1039/D3EM00167A