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S1 Definitions

S1.1 Chemical Abstracts Service Registry Number (CAS RN™)

CAS RN™ have been introduced as unique and unambiguous identifiers for chemical sub-

stances by the Chemical Abstracts Service1. A CAS RN™ is a distinct numeric identifier

that represents a single substance and does not carry any chemical significance. CAS RN™

are assigned to substances as they enter the CAS Registry database. CAS RN™ typically

consist of up to ten digits, divided into three parts by hyphens1. For example, the CAS

RN™ of 7-Aminocephalosporanic acid is 957-68-6.

CAS RN™ have proven helpful in tracking and managing substances. They have the

advantage that they are unique, easy to validate, and internationally accepted1. However,

even though CAS RN™ are unique, more than one CAS RN™ can exist for a given substance

because multiple CAS RN™ were assigned to a substance or due to deprecated CAS RN™. For

example, 7-Aminocephalosporanic acid is also linked to the deprecated CAS RN™856652-38-

5, 856652-39-6, 13256-42-3, 23241-25-0, 70035-93-7, and 26328-10-9. Even though all these

CAS RN™ are unique for 7-Aminocephalosporanic acid, the fact that multiple CAS RN™

exist for substances can lead to issues if this is not considered. These deprecated CAS RN™

can often still be found in online references2.

S1.2 Simplified Molecular Input Line Entry Specification (SMILES)

The SMILES representation was introduced by Weininger 3 and has since then become the

most widely used line notation3–6. It is obtained by assigning a distinct number to each atom

in the molecule and then traversing the molecular graph using that specific order. However,

due to multiple possible atom numberings for a given molecule, different SMILES notations

can be generated while maintaining the same graph traversal algorithm. Therefore, SMILES
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are not unique6.

SMILES can be described as isomeric and canonical. Isomeric SMILES allow for the spec-

ification of isotopism and stereochemistry. Canonical SMILES are supposed to ensure that

the same SMILES is generated for a given molecule. However, various algorithms have been

developed to generate canonical SMILES. Therefore, multiple different canonical SMILES

can exist for a substance7. The canonical SMILES of 7-Aminocephalosporanic acid is

CC(=O)OCC1=C(N2C(C(C2=O)N)SC1)C(=O)O and the isomeric SMILES is CC(=O)OCC1=C(N2[C@@H]

([C@@H](C2=O)N)SC1)C(=O)O according to PubChem2. Furthermore, SMILES notation en-

counters challenges in describing certain complex structures that cannot be easily represented

using molecular graphs, including organometallic compounds and ionic salts6.

S1.3 International Chemical Identifier (InChI™)

The InChI™ string is a standardized, machine-readable string of symbols used to represent

chemical compounds in an unambiguous manner8. It is a unique and automatically gen-

erated representation of a compound’s molecular structure8,9. The InChI adopts a layered

format to encompass all relevant structural information for compound identification. Each

layer contains specific types of structural details, with successive layers adding additional

information. The layered design allows for the inclusion of various structural levels. The

layers in the InChI string are separated by slashes followed by lower-case letters, arranged

in a predefined order8. Table S1 shows the structure of an example InChI™ and its layers

and segments. The main layer of the InChI™ provides information about the core parent

structure, including its chemical formula, atom connectivity (non-hydrogen), and hydrogen

atom connectivity10. In addition to the full InChI™ strings, the InChI™-main-layer was

be used to identify substances with the same parent structure, independent of charge and

stereochemistry.

It is important to note that any ambiguities or uncertainties in the original structure

representation persist in the InChI8. Furthermore, unlike SMILES notation, InChI™ do not
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offer a guarantee of reversibility to reconstruct the original molecular graphs from which

they originate6.

Table S1: The structure of an InChI™ string and the meaning of each layer. The example
InChI™ represents the substance 7-Aminocephalosporanic acid.

Inchi layer Letter Inchi segment

Main layer
InChI version number
chemical formula

c atom connectivity
h hydrogen atom connectivity

Charge layer
q charge
p proton balance

Stereochemical
layer

b double bonds
t tetrahedral parity
m parity inverted to obtain relative stereo (1=inverted,

0=not inverted)
s stereo type (1=absolute, 2=relative, 3=racemic)

Isotopic layer i isotopic enrichment

InChI=1S/C10H12N2O5S/c1-4(13)17-2-5-3-18-9-6(11)8(14)12(9)7(5)10(15)16/h6,9H,2-

3,11H2,1H3,(H,15,16) /p-1/t6-,9-/m1/s1

S1.4 Label

In the context of supervised machine learning (ML), labels are the target variable that the

ML model is trying to predict. The label is the ground truth or the correct answer of each

data point in the training and test set.

The data points used here to train a classifier to predict whether a substance was ready

biodegradable or not were labeled with a 0 or 1. The label 0 indicates that the substance

was not readily biodegradable (NRB), and the label 1 indicates that the substance is readily

biodegradable (RB) according to the experimental study results.
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S1.5 Feature

In order to train machine learning models, the data needs to be prepared in a format that

the ML model can use for training and testing. The data is given to the ML model in form

of features. Features are individual characteristics of the input data and represent the infor-

mation that the model analyzes to learn patterns, relationships, and structures within the

data. Features can be either categorical, for example, gender or nationality, or numerical11.

The quality and relevance of the features can significantly impact the performance of a ML

model. Therefore, properly selecting, engineering, and managing features is a fundamental

aspect of the ML process12.

S1.6 Data leakage

In ML, models are typically evaluated on test data that the model has not seen during

training. This provides a reliable indication of how well the model will perform when de-

ployed in real-world scenarios and helps detect potential issues such as overfitting or lack of

generalization. If data appears both in the train and the test set, it is called data leakage.

Data leakage can lead to overly optimistic model performance or invalid assessments of the

model’s generalization ability13.

S1.7 Molecular descriptors: Molecular Access System key (MACCS

key)

Molecular descriptors can be categorized into two main classes: structural keys and hashed

fingerprints (FPs). Structural keys are represented as bit strings, encoding the presence (1)

or absence (0) of specific chemical groups. In contrast, chemical FPs are vectors containing

indexed elements that encode various physicochemical or structural properties. The distinc-

tive characteristic of hashed FPs is that each element is generated from the molecule itself,

while in structural keys, predefined patterns are used6.

S7



A widely used example of a key-based molecular descriptor is the MACCS key. In the

MACCS keys, each bit corresponds to the presence or absence of a specific structural frag-

ment. Different variants of the MACCS keys have been developed, with the most commonly

utilized version being 167 bits long. This version encodes for the presence or absence of 166

structural fragments6,14.

S1.8 Balanced accuracy

The balanced accuracy is the arithmetic mean of the scores of sensitivity (SE) and specificity

(SP)15. The latter two are defined as:

SE =
TP

TP + FN

SP =
TN

TN + FP

where TP are the true positives (substances that are ready biodegradable in the experiment

and in the prediction), TN are the true negatives (substances that are not-readily biodegrad-

able in the experiment and in the prediction), FP are the false positives (substances that

are not-readily biodegradable in the experiment but ready biodegradable in the prediction),

and FN the false negatives (substances that are ready biodegradable in the experiment but

not-readily biodegradable in the prediction). The balanced accuracy is then:

Balanced accuracy =
SE + SP

2

S2 The SMILES-Retrieval-Pipeline

During the analysis of the Huang-Datasets, inconsistencies were found in the CAS RN™ –

SMILES pairings. The CAS RN™ was treated as the definitive substance identifier because

they were present in the original eChemPortal dataset. Therefore, the correct SMILES
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corresponding to a given CAS RN™ had to be found. To accomplish this, the SMILES-

Retrieval-Pipeline was developed, which is shown in Figure S1.

The initial step of the SMILES-Retrieval-Pipeline involved retrieving the unique

CAS RN™ entries from the Huang-Regression-Dataset. These CAS RN™ and their

corresponding SMILES were then split into two groups based on whether they were verified

by Glüge et al.9 . In case a CAS RN™ was included in the Gluege-Dataset, the verified

and valid SMILES for this CAS RN™ from the Gluege-Dataset was added to the data

point. For the substances in the Gluege-Dataset, and therefore the substances registered

under Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), it

was also checked if the experimental study was conducted for the registered substance or if

it was based on read-across. The goal was to only have studies carried out for the registered

substance, and, therefore, studies based on read-across were removed.

For the substances not checked by Glüge et al. 9 , valid SMILES had to be retrieved. For

one-component substances, the SMILES were retrieved via an Application Programming

Interface (API) based on the CAS RN™ from CAS Common Chemistry. CAS Common

Chemistry is a reliable source for SMILES of substances with one component but contains

some systematic errors in SMILES for multiple-component substances9. For one-component

substances not found on CAS Common Chemistry and for multiple-component substances,

a weight-of-evidence approach was taken. The SMILES had to be found from at least two

independent sources. If this was not possible, the substance was removed from the dataset

(Figure S1).

Once the SMILES were found by CAS RN™, further processing steps were performed.

First, substances containing multiple CAS RN™ were identified. This was necessary to avoid

data leakage later on. Identification of compounds in the Huang-Regression-Dataset

with multiple CAS RN™ was performed using InChI™. If more than one CAS RN™ was

associated with the data points in each group, then the shortest CAS RN™ was taken and

assigned to all data points with the same InChI™.
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For all ionizable substances, the retrieved SMILES was replaced with the SMILES of

the substance’s dominant species at pH 7.4 and 298K. Substances were removed when no

dominant species existed under the specified conditions. This step was not performed by

Huang and Zhang16 . Instead, they introduced two extra features (pK a and α-values) that

represent the chemical specification of the substances. They reported a performance increase

in the accuracy from 85.1% to 87.6% when including pK a and α-values as extra features.

However, using the same model, we could not reproduce this performance increase (see

Table S6). Therefore, we did not include information on chemical specification directly as

features. However, this information is reflected in the SMILES.

Furthermore, substances that were mixtures were removed, and all counterions were re-

moved from the SMILES representations. For stereoisomers, the SMILES of one stereoisomer

was randomly selected. Lastly, organometallic substances were removed.
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Figure S1: SMILES-Retrieval-Pipeline used for finding the SMILES corresponding to
the CAS RN™ for each substance in the Huang-Regression-Dataset.

S3 Label noise filtering

Label or class noise filtering is a technique used in ML to mitigate the impact of incorrect

labels in the data. Noisy labels refer to mislabeled or inaccurately labeled instances in the

train and test dataset, which can adversely affect the performance of the ML model17,18.

Label noise filtering aims to identify and correct or remove these instances to improve the

model’s performance and generalization.

Identifying label noise can be tricky in the case of experimental Ready-Biodegradability

Tests (RBT) results. It is impossible to manually check the labels or check the labels of
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all substances in a database or literature. Therefore, we used BIOWIN5 and BIOWIN6

to identify potentially noisy labels. Substances with potentially noisy labels were removed.

The resulting CuratedBIOWIN dataset was then used for training and testing of the ML

models.

BIOWIN5 and BIOWIN6 are part of Estimation Program Interface Suite (EPI Suite™)

and widely used. However, both models have a reported accuracy of 83% on an external test

set. This means that a significant number of data points might have been falsely removed.

Since not only data quality but also data quantity is important for ML model performance,

a third classifier was used to readd some of the potentially falsely removed data points. This

third classifier was a XGBClassifier trained on the CuratedBIOWIN dataset and had a

balanced accuracy of 94.2 ± 0.9%. When this third classifier agreed with the experimental

label, then the label was not considered noisy, and the data point was added back. This

resulted in the creation of the Curatedfinal dataset. The process used for the label noise

filtering is also shown in Table S2.
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Table S2: Label noise filtering system to create the CuratedBIOWIN,
CuratedProblematic, Curatedfinal, and the CuratedRemoved datasets. The first
vote decides whether a substance is in the CuratedBIOWIN or the CuratedProblematic
dataset. If the BIOWIN models agree with the label, then the vote is positive (✓), and the
substance is in the CuratedBIOWIN dataset. If one or both of the BIOWIN models do
not agree with the label (✕), then the substance is in the CuratedProblematic dataset,
and the third classifier is consulted. If the third classifier agrees with the label (✓), then
the substance is moved from the CuratedProblematic to the Curatedfinal dataset.
Otherwise (✕), the substance is placed in the CuratedRemoved dataset. NaN means that
BIOWIN was not able to make a prediction.

Label BIOWIN5 BIOWIN6 First vote Third cassi-
fier

Final vote

NRB NaN NaN ✓ – ✓
NRB NRB NRB ✓ – ✓
NRB RB NRB ✕ NRB ✓
NRB RB NRB ✕ RB ✕

NRB RB RB ✕ NRB ✓
NRB RB RB ✕ RB ✕

RB NaN NaN ✓ – ✓
RB RB RB ✓ – ✓
RB RB NRB ✕ RB ✓
RB RB NRB ✕ NRB ✕

RB NRB NRB ✕ RB ✓
RB NRB NRB ✕ NRB ✕

S4 Applicability domain

Defining the Applicability Domain (AD) of ML models that predict the activity of chemi-

cals based on their structure is crucial to assess the reliability and relevance of predictions

made by the model for new and unseen data19,20. Huang and Zhang 16 used the Tanimoto

index, which calculates similarities between two chemicals based on the number of common

molecular fragments, to define the AD of their models16,21. Here, the Tanimoto index is cal-

culated using adapted code from the cheminformatics package Python Applicability Domain

Analyzer (pyADA)22.

The Tanimoto index was used to calculate the similarities between each substance in the
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testing set and all the substances in the training set. The Tanimoto index was calculated

using the MACCS keys of the substances. The similarity calculation results in a value

between 0 and 1 for each substance, with a 0 indicating no similarity at all between the two

substances and a value of 1 indicating that they have identical MACCS keys23,24.

S4.1 Defining the similarity threshold

To define the AD of a model, first, a similarity threshold must be set for the dataset the

model is trained on. This threshold represents the minimum required similarity between a

substance in the test set and the substances in the training set to be within the AD. The

similarity threshold is set manually based on the number of substances in the test set that

are between defined similarity ranges, the expected model performance for substances in

these similarity ranges, and domain knowledge.

First, it was calculated how many of the substances in the test set have a maximum

Tanimoto similarity to the training data within a certain similarity range. For example, it was

calculated how many substances in the test set have a maximum similarity to the training set

between 0.8 and 0.9. Furthermore, the expected mean model performance for all substances

in that similarity range was calculated. These values were generated by training and testing

the model again only on the substances within a given similarity range. For example, it was

calculated that for all substances with a maximum Tanimoto similarity between 0.8 and 0.9,

the classifier is expected to predict the biodegradability of these substances with an accuracy

of 95%.

Here, the similarity threshold is set by training and testing the model again using the

five different data splits. The mean of the reported performance metrics and the number

of substances in a certain similarity range were calculated. Based on this, the similarity

threshold was determined. Once the similarity threshold was set, the AD of the model was

defined.
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S4.2 Applying the AD to the DSSTox database

The defined similarity threshold could then be used to check whether a new and unseen

substance is within the AD of the model. To do so, the Tanimoto similarities between the

new substance and all substances in the training set must be calculated. If the maximum

Tanimoto similarity is above the defined similarity threshold, then the test compound is

considered to fall within the model’s AD. If the new compound’s similarity with the training

set compounds is below the threshold, then it is considered outside the AD of the model.

This suggests that the compound is dissimilar to the compounds on which the model was

trained, and predictions may be less reliable.

To evaluate the broadness of the AD of the models, Huang and Zhang16 evaluated

how many of the substances in the Distributed Structure-Searchable Toxicity (DSSTox)

database are in the AD. The DSSTox database is operated by the United States Envi-

ronmental Protection Agency (U.S. EPA) and contains more than 850 000 environmentally

relevant chemicals16. To check if the substances in this database were in the AD of the mod-

els, Huang and Zhang16 calculated the Tanimoto similarities between all substances in the

DSSTox database and the substances in the Huang-Regression-Dataset and Huang-

Classification-Dataset. Here, the same procedure was replicated for the CuratedSCS,

CuratedBIOWIN, and Curatedfinal datasets.
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S5 Huang-Dataset analysis examples

Table S3: Examples of data points in the Huang-Regression-Dataset for which the
SMILES added by Huang and Zhang16 did not match with the SMILES according to CAS
RN™ checked by Glüge et al. 9 .

Category Value

CAS RN™: 1742-79-6
SMILES Huang and Zhang 16 O=S(=O)([O-])c1cccc(/N=N/c2ccc(Nc3ccccc3)cc2)

c1.[Na+]
Molecular formula from SMILES C18H15N3O3S.Na
Molecular formula from CAS RN™ C7H7NO3
SMILES according to CAS RN™ CC(=O)ON1C=CC=CC1=O

CAS RN™ 181525-38-2
SMILES Huang and Zhang 16 O=C(ON1C(=O)CCC1=O)ON1C(=O)CCC1=O
Molecular formula from SMILES C9H8N2O7
Molecular formula from CAS RN™ C11H12N2O3
SMILES according to CAS RN™ CC1=C(CCO)C(=O)N2C=CC=C(O)C2=N1

CAS RN™ 136210-30-5
SMILES Huang and Zhang 16 CCOC(=O)/C=C/C(=O)OCC
Molecular formula from SMILES C8H12O4
Molecular formula from CAS RN™ C29H50N2O8
SMILES according to CAS RN™ CCOC(=O)CC(NC1CCC(CC2CCC(CC2)NC(CC

(=O)OCC)C(=O)OCC)CC1)C(=O)OCC
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Table S4: Examples of substances with data points with differing SMILES in the Huang-
Classification-Dataset. The data points belonging to the same substances were identi-
fied using the InChI™, which was based on the SMILES. The second example does not list
CAS RN™, because the data points from the Lunghini-Dataset, which were added to the
Huang-Classification-Dataset by Huang and Zhang16 , did not have CAS RN™.

CAS
RN™

SMILES Label

InChI=1S/C7H8O2S.Na/c1-6-2-4-7(5-3-6)10(8)9;/h2-5H,1H3,(H,8,9);/q;+1/p-1
Entry 1 824-79-3 Cc1ccc(S(=O)[O-])cc1.[Na+] NRB
Entry 2 824-79-3 Cc1ccc(S(=O)O[Na])cc1 RB

InChI=1S/C13H13N3/c14-13(15-11-7-3-1-4-8-11)16-12-9-5-2-6-10-12/h1-10H
,(H3,14,15,16)
Entry 1 102-06-7 NC(=Nc1ccccc1)Nc1ccccc1 RB
Entry 2 NaN N/C(=N\c1ccccc1)Nc1ccccc1 NRB
Entry 3 NaN N=C(Nc1ccccc1)Nc1ccccc1 NRB

InChI=1S/C3H7NO2.Na/c1-4-2-3(5)6;/h4H,2H2,1H3,(H,5,6);/q;+1/p-1
Entry 1 68411-97-2 CNCC(=O)[O-].[Na+] RB
Entry 2 4316-73-8 CNCC(=O)O[Na] RB

Table S5: Examples of substances in the Huang-Regression-Dataset with multiple
study results that were strongly differing. All studies are ready-biodegradability tests carried
out for 28 days.

CAS
RN™

ReliabilityGuideline Principle Biodegrad.
percent

92128-65-9 2 OECD Guideline 301 D Closed Bottle Test 21.0%
1 OECD Guideline 301 B CO2 Evolution 55.0%
2 OECD Guideline 301 F Closed Respirometer 70.0%
1 OECD Guideline 301 F Closed Respirometer 91.2%

3886-69-9 2 OECD Guideline 301 A DOC Die Away 98.0%
1 OECD Guideline 301 F Closed Respirometer 5.0%
2 OECD Guideline 301 F Closed Respirometer 65.0%

13170-23-5 1 OECD Guideline 301 B CO2 Evolution 41.5%
1 OECD Guideline 301 C Closed Respirometer 15.0%
1 OECD Guideline 301 F Closed Respirometer 79.5%
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S6 Model performance

Table S6: Performance metrics reported by Huang and Zhang 16 and for the XGBClassifiers
trained on the Huang-Classification-Dataset.

Datasets Balanced
accuracy
(%)

Sensitivity
(%)

Specificity
(%)

F1 score

Huang-Classification-
Dataset reported
No chemical speciation 85.1 89.0 80.9 86.2
With chemical speciation 87.6 87.8 87.4 87.9

Huang-Classification-
Dataset replicated
No chemical speciation 79.6 ± 1.1 74.1 ± 1.5 85.1 ± 1.2 0.73 ± 0.01
With chemical speciation 80.3 ± 1.1 75.1 ± 1.0 85.5 ± 1.2 0.74 ± 0.01

Table S7: Performance metrics for the XGBClassifiers trained on the Curated-Datasets.
The classifiers were tested five times on fixed test sets from the CuratedSCS and
CuratedBIOWIN datasets.

Test sets Datasets Balanced
accuracy
(%)

Sensitivity
(%)

Specificity
(%)

F1 score

CuratedSCS Huang-Classifi-
cation-Dataset

80.6 ± 1.5 74.2 ± 2.7 87.1 ± 1.0 0.75 ± 0.02

CuratedSCS 80.9 ± 1.7 74.9 ± 3.0 86.9 ± 1.0 0.75 ± 0.02
CuratedBIOWIN 78.3 ± 0.9 71.0 ± 2.1 85.6 ± 0.6 0.72 ± 0.01
Curatedfinal 79.4 ± 0.8 72.0 ± 1.9 86.9 ± 0.7 0.73 ± 0.01

CuratedBIOWINHuang-Classifi-
cation-Dataset

88.0 ± 1.3 83.1 ± 2.6 92.9 ± 1.0 0.84 ± 0.02

CuratedSCS 88.4 ± 2.1 84.1 ± 3.4 92.6 ± 1.0 0.84 ± 0.03
CuratedBIOWIN 93.7 ± 1.0 90.9 ± 2.2 96.4 ± 0.4 0.92 ± 0.01
Curatedfinal 94.2 ± 1.2 91.6 ± 2.8 96.9 ± 0.4 0.92 ± 0.01
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S7 Analysis of the new datasets

S7.1 Data characteristics

To analyze if the label noise filtering led to the removal of difficult-to-predict data points,

several characteristics of the CuratedSCS, CuratedBIOWIN, and Curatedfinal datasets

were analyzed. No substances had been removed from the CuratedSCS dataset based on

the label, and, therefore, it served as the baseline. The results of the analysis are shown in

the main article in ??. The absolute values are shown in Figure S2, Figure S3, and Figure S4

below.

S7.1.1 Molecular Weight

Molecular weight bears significance in the context of biodegradation due to the established

connection between increasing molecular size and reduced biodegradability25. Overall, a

slightly higher proportion of data points in the lowest and highest molecular weight categories

(0–250 Da and 1000–2000 Da) were removed in the CuratedBIOWIN and Curatedfinal

datasets. However, it should be noted that the lowest weight category also contained the

highest number of substances, which means that the weight category 0–250 Da is still well

represented in the datasets. In contrast, the lowest molecular weight category had very

few substances, so removing even a small number of substances significantly impacts the

percentage of removed substances.

S19



Figure S2: The distribution of data points associated with substances with a given molecular
weight in the CuratedSCS, CuratedBIOWIN, and Curatedfinal datasets.

S7.1.2 Halogens

The presence of halogen compounds influences biodegradation. Substances containing halo-

gens such as fluorine, bromine, and chlorine generally have been reported to have decreasing

biodegradability with increasing degree of halogenation26–30. The analysis shows that those

substances with one of the three halogens were not removed more than others (cf. ??).

Figure S3: The occurrence of the halogens fluorine (F), bromide (Br), and chlorine (Cl)
relative to the total number of data points in each of the classification datasets.
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S7.1.3 Distribution of biodegradation labels

For both datasets (CuratedBIOWIN and Curatedfinal), the relative number of sub-

stances with a NRB label was ≈ 10% higher than the number of substances with a RB label.

This indicates that the label noise filtering identified more substances labeled as RB than

NRB as potentially being incorrectly labeled.

Figure S4: Distribution of biodegradation class labels in the classification datasets

S7.2 Analysing feature adequacy

To check if other features are more suitable to present all the important information about

the chemicals than MACCS key, three other feature creation methods were tested. The four

feature creation methods differ in the number of features they create and the underlying

method used to create them.

S7.2.1 Morgan FPs

Morgan FPs, which are also known as circular FPs, are part of the Extended Connectiv-

ity Fingerprints (ECFP) family, which are based on the concept of circular substructures.

Morgan fingerprints encode information about circular substructures in a molecule. The

algorithm considers atom environments within a defined radius around each atom in the

molecule, capturing circular connectivity patterns31,32. Given that the common range for

the radius is 1 to 3, we opted for a radius value of 233. Morgan FPs with 1 024, 2 048, and
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4 096 binary bits can be created using RDKit, where each bit corresponds to the presence or

absence of a specific circular substructure in the molecule34. Here, Morgan FPs with 1 024

bits were used.

S7.2.2 RDK FPs

RDKit FPs are topological FPs similar to Daylight fingerprint, that are based on hashing

molecular subgraphs35,36. To create RDKit FPs, all branched and linear molecular sub-

graphs of a chemical up to a specified size are hashed by combining information about atom

types, atomic numbers, and aromaticity states, and bond types37. RDKit FPs generate a

binary bit vector of size 2 04835.

S7.2.3 MolFormer

Recently, Ross et al. 38 presented MolFormer, a transformer-based language model trained on

1.1 billion unlabelled SMILES of molecules from the PubChem and ZINC datasets. MoL-

Former learned molecular embeddings that outperformed existing baselines, including su-

pervised and self-supervised graph neural networks and language models, across various

downstream tasks on ten benchmark datasets38. Ross et al. 38 also demonstrated that Mol-

Former effectively learns spatial relationships between atoms within a molecule from chemical

SMILES representations. Here, an available MolFormer checkpoint was used to generate em-

beddings for all substances in our datasets based on the SMILES. This resulted in feature

vectors of length 768.

S7.3 UMAP

UMAP plots were created using the following parameters: n_neighbors=15, min_dist=0.5,

target_weight=0.1 (for semi-supervised), metric="manhattan", random_state=42
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Figure S5: UMAP plot for MACCS keys
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Figure S6: UMAP plot for Morgan FPs
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Figure S7: UMAP plot for RDKit FPs
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Figure S8: UMAP plot for features generated using MolFormer

S7.4 XGBClassifier performance with other features

Here XGBClassifier was run with default hyperparameters (as suggested by Huang and

Zhang 16) for the four different features.
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Table S8: Balanced accuracy, sensitivity, specificity and F1 score for XGBClassifier using
the default hyperparameters from Huang and Zhang 16 .

Test datasets Train datasets Balanced
accuracy
(%)

Sensitivity
(%)

Specificity
(%)

F1

MACCS key
CuratedSCS Huang-Classifi-

cation-Dataset
80.9 ± 1.4 74.4 ± 2.1 87.3 ± 0.8 0.75 ± 0.02

CuratedSCS 81.0 ± 1.4 74.7 ± 2.3 87.2 ± 1.0 0.75 ± 0.02
CuratedBIOWIN 78.3 ± 1.5 70.9 ± 2.8 85.6 ± 1.1 0.72 ± 0.02
Curatedfinal 79.4 ± 1.6 72.1 ± 2.8 86.6 ± 1.6 0.73 ± 0.02

CuratedBIOWIN Huang-Classifi-
cation-Dataset

88.1 ± 0.7 83.0 ± 2.0 93.3 ± 1.3 0.84 ± 0.01

CuratedSCS 88.7 ± 1.0 85.1 ± 2.7 92.3 ± 1.2 0.84 ± 0.01
CuratedBIOWIN 94.0 ± 1.0 91.7 ± 1.4 96.2 ± 1.0 0.92 ± 0.02
Curatedfinal 94.6 ± 0.3 92.2 ± 0.4 97.1 ± 0.6 0.93 ± 0.01

RDKit FPs
CuratedSCS Huang-Classifi-

cation-Dataset
80.6 ± 1.0 73.9 ± 2.2 87.3 ± 1.2 0.75 ± 0.01

CuratedSCS 80.8 ± 1.8 74.3 ± 2.4 87.3 ± 1.7 0.75 ± 0.02
CuratedBIOWIN 78.7 ± 1.8 72.9 ± 3.0 84.5 ± 2.5 0.72 ± 0.02
Curatedfinal 79.6 ± 1.3 72.7 ± 2.5 86.4 ± 1.6 0.73 ± 0.02

CuratedBIOWIN
Huang-Classifi-
cation-Dataset

88.4 ± 1.3 83.2 ± 3.2 93.6 ± 1.3 0.85 ± 0.02

CuratedSCS 88.0 ± 1.3 83.3 ± 2.8 92.6 ± 1.1 0.84 ± 0.02
CuratedBIOWIN 93.8 ± 0.5 91.7 ± 1.0 95.8 ± 0.5 0.91 ± 0.01
Curatedfinal 93.4 ± 1.5 90.6 ± 2.4 96.3 ± 0.8 0.91 ± 0.02

Morgan FPs
CuratedSCS Huang-Classifi-

cation-Dataset
79.1 ± 1.3 72.0 ± 2.4 86.1 ± 1.7 0.73 ± 0.02

CuratedSCS 79.2 ± 2.2 72.6 ± 3.0 85.7 ± 2.2 0.73 ± 0.03
CuratedBIOWIN 77.3 ± 1.2 70.5 ± 2.5 84.0 ± 2.0 0.70 ± 0.02
Curatedfinal 77.7 ± 1.9 69.9 ± 3.6 85.5 ± 1.4 0.71 ± 0.02

CuratedBIOWIN Huang-Classifi-
cation-Dataset

86.7 ± 1.0 81.4 ± 1.7 92.0 ± 1.7 0.82 ± 0.02

CuratedSCS 86.8 ± 1.9 82.5 ± 3.7 91.1 ± 2.1 0.82 ± 0.03
CuratedBIOWIN 91.8 ± 1.3 88.8 ± 2.2 94.7 ± 0.5 0.89 ± 0.02
Curatedfinal 91.2 ± 1.4 87.0 ± 2.7 95.4 ± 0.6 0.88 ± 0.02
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MolFormer
CuratedSCS Huang-Classifi-

cation-Dataset
78.3 ± 1.3 73.3 ± 2.4 83.4 ± 1.3 0.72 ± 0.02

CuratedSCS 78.9 ± 1.3 74.4 ± 2.0 83.3 ± 1.5 0.72 ± 0.02
CuratedBIOWIN 77.9 ± 1.7 73.5 ± 3.6 82.2 ± 1.4 0.71 ± 0.02
Curatedfinal 78.7 ± 1.0 73.4 ± 2.3 84.1 ± 1.5 0.72 ± 0.01

CuratedBIOWIN Huang-Classifi-
cation-Dataset

86.0 ± 1.7 80.5 ± 3.4 91.5 ± 0.7 0.81 ± 0.02

CuratedSCS 87.2 ± 1.4 84.1 ± 2.7 90.3 ± 1.7 0.82 ± 0.02
CuratedBIOWIN 92.0 ± 0.6 90.6 ± 1.2 93.4 ± 0.4 0.88 ± 0.01
Curatedfinal 90.9 ± 0.7 87.4 ± 1.6 94.5 ± 1.2 0.88 ± 0.01

S7.5 LazyPredict with other features

Table S9: LazyPredict, all features created for the Curatedfinal dataset, test set
CuratedSCS. ROC AUC stands for Receiver Operating Characteristic Area Under the
Curve, and the Time Taken is in seconds.

Best models Accuracy Balanced
accuracy

ROC
AUC

F1 Score Time
Taken

MACCS key
MLPClassifier 0.83 0.82 0.82 0.83 2.10
HistGradientBoostingClassifier 0.82 0.81 0.81 0.82 0.56
RandomForestClassifier 0.82 0.81 0.81 0.82 0.36
GradientBoostingClassifier 0.81 0.80 0.80 0.82 0.97
ExtraTreesClassifier 0.82 0.80 0.80 0.82 0.32

RDKit FPs
LogisticRegressionCV 0.83 0.82 0.82 0.83 5.96
LogisticRegression 0.82 0.81 0.81 0.82 0.59
PassiveAggressiveClassifier 0.82 0.81 0.81 0.82 1.07
Perceptron 0.81 0.81 0.81 0.81 0.49
MLPClassifier 0.82 0.80 0.80 0.82 11.95
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Morgan FPs
ExtraTreesClassifier 0.81 0.79 0.79 0.81 0.95
HistGradientBoostingClassifier 0.81 0.78 0.78 0.80 2.04
MLPClassifier 0.80 0.78 0.78 0.80 3.78
XGBClassifier 0.80 0.78 0.78 0.80 0.43
LogisticRegressionCV 0.79 0.78 0.78 0.79 1.19

MolFormer
SVC 0.82 0.81 0.81 0.82 1.57
NuSVC 0.79 0.80 0.80 0.80 2.92
MLPClassifier 0.81 0.80 0.80 0.81 2.96
HistGradientBoostingClassifier 0.81 0.80 0.80 0.81 2.95
RandomForestClassifier 0.80 0.79 0.79 0.80 6.33

Table S10: LazyPredict, all features created for the Curatedfinal dataset, test set
CuratedBIOWIN dataset. ROC AUC stands for Receiver Operating Characteristic Area
Under the Curve, and the Time Taken is in seconds.

Best models Accuracy Balanced
accuracy

ROC
AUC

F1 Score Time
Taken

MACCS key
RandomForestClassifier 0.95 0.94 0.94 0.95 0.36
XGBClassifier 0.95 0.94 0.94 0.95 0.18
HistGradientBoostingClassifier 0.95 0.94 0.94 0.95 0.78
ExtraTreesClassifier 0.94 0.93 0.93 0.94 0.35
GradientBoostingClassifier 0.94 0.93 0.93 0.94 1.11

RDKit FPs
MLPClassifier 0.94 0.93 0.93 0.94 6.81
HistGradientBoostingClassifier 0.94 0.93 0.93 0.94 3.82
XGBClassifier 0.94 0.93 0.93 0.94 2.28
LogisticRegressionCV 0.93 0.93 0.93 0.93 5.17
SVC 0.92 0.92 0.92 0.92 4.41

Morgan FPs
ExtraTreesClassifier 0.93 0.92 0.92 0.93 1.05
SVC 0.92 0.90 0.90 0.92 2.51
MLPClassifier 0.91 0.90 0.90 0.91 4.65
HistGradientBoostingClassifier 0.92 0.90 0.90 0.92 2.27
RandomForestClassifier 0.92 0.90 0.90 0.92 0.92

MolFormer
MLPClassifier 0.94 0.92 0.92 0.94 3.25
SVC 0.93 0.92 0.92 0.93 1.58
XGBClassifier 0.93 0.92 0.92 0.93 1.72
PassiveAggressiveClassifier 0.91 0.91 0.91 0.92 0.41
RidgeClassifier 0.90 0.91 0.91 0.91 0.42
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Table S11: After hyperparameter tuning, all features created for the Curatedfinal dataset,
test set CuratedSCS

Best models Best hyperparameters Balanced
accuracy

Sensitivity Specificity F1

MACCS key
MLPClassifier activation: relu

alpha: 0.01443
early_stopping: True
hidden_layer_sizes: 218
learning_rate_init: 0.03084
max_iter: 600
random_state: 42
solver: adam

79.4 ± 1.6 73.2 ± 3.3 85.6 ± 1.7 0.73 ± 0.02

HistGradient-
BoostingClassifier

learning_rate: 0.07371
max_iter: 200
max_leaf_nodes: 40
min_samples_leaf: 2
random_state: 42

79.5 ± 1.8 72.3 ± 2.9 86.6 ± 1.6 0.73 ± 0.02

RandomForest-
Classifier

criterion: gini
max_features: sqrt
min_samples_leaf: 1
min_samples_split: 2
n_estimators: 2208
random_state: 42

79.3 ± 1.1 71.9 ± 2.0 86.7 ± 1.0 0.73 ± 0.02

GradientBoosting-
Classifier

criterion: squared_error
learning_rate: 0.4
loss: exponential
max_depth: 5
max_features: log2
n_estimators: 120
random_state: 42

78.4 ± 1.7 83.7 ± 2.5 73.2 ± 1.4 0.71 ± 0.02

ExtraTrees-
Classifier

criterion: entropy
max_depth: None
max_features: sqrt
min_samples_leaf: 1
min_samples_split: 2
n_estimators: 50
random_state: 42

78.2 ± 0.8 78.1 ± 1.2 78.3 ± 1.0 0.71 ± 0.01

RDKit FPs
Logistic-
RegressionCV

max_iter: 131
random_state: 42
solver: sag

80.4 ± 1.8 75.8 ± 2.7 85.0 ± 1.7 0.74 ± 0.02
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Logistic-
Regression

max_iter: 117
multi_class: ovr
random_state: 42
solver: sag

80.6 ± 1.5 77.0 ± 2.6 84.1 ± 2.1 0.74 ± 0.02

PassiveAggressive-
Classifier

early_stopping: True
max_iter: 1091
random_state: 42

80.0 ± 1.7 76.5 ± 3.0 83.4 ± 1.4 0.74 ± 0.02

Perceptron alpha: 0.00042
early_stopping: True
max_iter: 1173
random_state: 42

79.5 ± 1.8 75.3 ± 2.1 83.7 ± 3.1 0.73 ± 0.02

MLPClassifier activation: relu
alpha: 0.01238
early_stopping: True
hidden_layer_sizes: 120
learning_rate_init: 0.08337
max_iter: 559
random_state: 42
solver: lbfgs

79.8 ± 1.7 74.0 ± 2.4 85.6 ± 1.9 0.74 ± 0.02

Morgan FPs
ExtraTrees-
Classifier

criterion: gini
max_depth: None
max_features: log2
min_samples_leaf: 1
min_samples_split: 2
n_estimators: 483
random_state: 42

79.0 ± 1.5 71.4 ± 2.8 86.7 ± 1.3 0.73 ± 0.02

HistGradient-
BoostingClassifier

learning_rate: 0.09216
max_iter: 161
max_leaf_nodes: 40
min_samples_leaf: 2
random_state: 42

78.5 ± 1.3 70.0 ± 2.9 86.9 ± 1.1 0.72 ± 0.02

MLPClassifier activation: relu
alpha: 1e-06
early_stopping: True
hidden_layer_sizes: 250
learning_rate_init: 0.06897
max_iter: 200
random_state: 42
solver: lbfgs

78.3 ± 1.5 71.5 ± 3.0 85.2 ± 0.6 0.72 ± 0.02

XGBClassifier alpha: 2.23031
base_score: 0.54555

78.3 ± 1.4 68.5 ± 2.6 88.2 ± 1.1 0.72 ± 0.02
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booster: gbtree
colsample_bylevel: 0.79474
colsample_bynode: 0.36806
colsample_bytree: 0.82424
gamma: 0.03574
lambda: 0.46975
learning_rate: 0.25053
max_delta_step: 3.29558
max_depth: 210
min_child_weight: 1.25367
n_estimators: 4907
num_parallel_tree: 21
scale_pos_weight: 0.69473
subsample: 0.86006
tree_method: exact
validate_parameters: True

Logistic-
RegressionCV

max_iter: 118
random_state: 42
solver: saga

77.7 ± 1.0 71.7 ± 2.1 83.7 ± 1.0 0.71 ± 0.01

MolFormer
SVC degree: 3

gamma: scale
kernel: poly
random_state: 42

80.1 ± 1.2 78.4 ± 1.5 81.7 ± 2.1 0.74 ± 0.02

NuSVC degree: 2
kernel: rbf
random_state: 42

78.5 ± 0.9 82.3 ± 2.0 74.8 ± 1.5 0.72 ± 0.01

MLPClassifier activation: relu
alpha: 0.07908
early_stopping: True
hidden_layer_sizes: 161
learning_rate_init: 0.1
max_iter: 285
random_state: 42
solver: lbfgs

79.3 ± 1.1 74.0 ± 2.2 84.6 ± 1.3 0.73 ± 0.01

HistGradient-
BoostingClassifier

learning_rate: 0.30261
max_iter: 200
max_leaf_nodes: 15
min_samples_leaf: 25
random_state: 42

79.2 ± 1.5 73.3 ± 2.3 85.1 ± 1.8 0.73 ± 0.02
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RandomForest-
Classifier

criterion: entropy
max_features: log2
min_samples_leaf: 1
min_samples_split: 4
n_estimators: 2024
random_state: 42

78.6 ± 1.4 73.2 ± 2.6 84.0 ± 1.5 0.72 ± 0.02

Table S12: After hyperparameter tuning, all features created for the Curatedfinal dataset
and tested on the CuratedBIOWIN dataset

Best models Best hyperparameters Balanced
accuracy

Sensitivity Specificity F1

MACCS key
RandomForest-
Classifier

criterion: log_loss
max_features: sqrt
min_samples_leaf: 1
min_samples_split: 2
n_estimators: 1153
random_state: 42

94.3 ± 0.7 91.7 ± 1.1 96.8 ± 0.7 0.92 ± 0.01

XGBClassifier alpha: 1.54138
base_score: 0.53733
booster: gbtree
colsample_bylevel: 0.87768
colsample_bynode: 0.24143
colsample_bytree: 0.96502
gamma: 0.001
lambda: 0.55188
learning_rate: 0.71465
max_delta_step: 2.87329
max_depth: 211
min_child_weight: 2.84452
n_estimators: 5356
num_parallel_tree: 24
scale_pos_weight: 0.86930
subsample: 0.99
tree_method: exact
validate_parameters: True

94.4 ± 0.6 91.6 ± 0.7 97.2 ± 0.6 0.93 ± 0.01

HistGradient-
BoostingClassifier

learning_rate: 0.07890
max_iter: 200
max_leaf_nodes: 29
min_samples_leaf: 2
random_state: 42

94.8 ± 0.2 92.2 ± 0.6 97.4 ± 0.5 0.93 ± 0.00

ExtraTrees-
Classifier

criterion: log_loss
max_depth: None

94.4 ± 0.6 92.0 ± 0.8 96.8 ± 0.6 0.93 ± 0.01
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max_features: sqrt
min_samples_leaf: 1
min_samples_split: 3
n_estimators: 1000
random_state: 42

GradientBoosting-
Classifier

criterion: friedman_mse
learning_rate: 0.37841
loss: log_loss
max_depth: 5
max_features: sqrt
n_estimators: 119
random_state: 42

94.4 ± 0.8 92.2 ± 1.1 96.7 ± 1.0 0.93 ± 0.01

RDKit FPs
MLPClassifier activation: relu

alpha: 0.00122
early_stopping: True
hidden_layer_sizes: 249
learning_rate_init: 0.03344
max_iter: 389
random_state: 42
solver: adam

93.1 ± 1.5 89.8 ± 3.1 96.3 ± 0.7 0.91 ± 0.02

HistGradient-
BoostingClassifier

learning_rate: 0.28092
max_iter: 60
max_leaf_nodes: 29
min_samples_leaf: 24
random_state: 42

93.7 ± 1.3 90.6 ± 2.3 96.7 ± 0.6 0.92 ± 0.02

XGBClassifier alpha: 2.23031
base_score: 0.54555
booster: gbtree
colsample_bylevel: 0.79474
colsample_bynode: 0.36806
colsample_bytree: 0.82424
gamma: 0.03574
lambda: 0.46975
learning_rate: 0.25053
max_delta_step: 3.29558
max_depth: 210
min_child_weight: 1.25367
n_estimators: 4907
num_parallel_tree: 21
scale_pos_weight: 0.69473
subsample: 0.86006
tree_method: exact
validate_parameters: True

93.2 ± 1.6 89.3 ± 2.6 97.0 ± 0.7 0.91 ± 0.02
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Logistic-
RegressionCV

max_iter: 194
random_state: 42
solver: saga

93.4 ± 1.6 92.0 ± 2.9 94.8 ± 0.7 0.91 ± 0.02

SVC degree: 2
gamma: scale
kernel: linear
random_state: 42

91.4 ± 1.2 89.5 ± 2.5 93.2 ± 0.3 0.88 ± 0.01

Morgan FPs
ExtraTrees-
Classifier

criterion: log_loss
max_depth: None
max_features: log2
min_samples_leaf: 1
min_samples_split: 2
n_estimators: 1000
random_state: 42

92.1 ± 1.8 88.1 ± 2.9 96.1 ± 0.7 0.90 ± 0.02

SVC degree: 2
gamma: scale
kernel: rbf
random_state: 42

92.4 ± 1.7 88.9 ± 2.6 96.0 ± 0.9 0.90 ± 0.02

MLPClassifier activation: relu
alpha: 0.1
early_stopping: True
hidden_layer_sizes: 250
learning_rate_init: 0.02689
max_iter: 200
random_state: 42
solver: lbfgs

91.4 ± 1.4 88.1 ± 2.5 94.7 ± 0.9 0.88 ± 0.02

HistGradient-
BoostingClassifier

learning_rate: 0.11409
max_iter: 148
max_leaf_nodes: 40
min_samples_leaf: 25
random_state: 42

92.1 ± 1.2 88.1 ± 2.3 96.2 ± 0.6 0.90 ± 0.01

RandomForest-
Classifier

criterion: log_loss
max_features: log2
min_samples_leaf: 1
min_samples_split: 2
n_estimators: 1056
random_state: 42

91.1 ± 1.4 85.7 ± 2.5 96.5 ± 0.6 0.89 ± 0.02
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MolFormer
MLPClassifier activation: tanh

alpha: 0.1
early_stopping: True
hidden_layer_sizes: 130
learning_rate_init: 0.06731
max_iter: 414
random_state: 42
solver: lbfgs

93.2 ± 0.8 90.9 ± 1.1 95.4 ± 1.2 0.91 ± 0.01

SVC degree: 2
gamma: scale
kernel: linear
random_state: 42

89.4 ± 1.2 86.1 ± 2.5 92.7 ± 1.3 0.85 ± 0.02

XGBClassifier alpha: 1.43587
base_score: 0.48343
booster: gbtree
colsample_bylevel: 0.80991
colsample_bynode: 0.37732
colsample_bytree: 0.85652
gamma: 0.01834
lambda: 0.10876
learning_rate: 0.02336
max_delta_step: 3.83059
max_depth: 134
min_child_weight: 2.08288
n_estimators: 5364
num_parallel_tree: 23
scale_pos_weight: 0.50767
subsample: 0.83728
tree_method: exact
validate_parameters: True

91.5 ± 1.0 86.9 ± 2.0 96.1 ± 0.4 0.89 ± 0.01

PassiveAggressive-
Classifier

early_stopping: True
max_iter: 1091
random_state: 42

88.7 ± 3.3 85.1 ± 9.3 92.4 ± 3.1 0.84 ± 0.03

RidgeClassifier random_state: 42
solver: sparse_cg

89.4 ± 0.9 89.0 ± 1.6 89.7 ± 1.7 0.84 ± 0.01
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S7.6 Comparing the AD

The similarity threshold here was set based on the share of data points in each similarity

category. All datasets had <1% of substances with a similarity score below 0.5, and it was

therefore decided to set the AD threshold to 0.5. The similarity threshold was not based on

the expected accuracy because we didn’t see a clear drop in the accuracy. However, the low

number of substances with a similarity score below 0.5 meant that the determined accuracies

of the similarity categories below 0.5 might not be robust.

Table S13: Results of defining the similarity threshold for the Huang-Classification-
Dataset. The dashed line indicates the determined similarity threshold.

Huang-Classification-
Dataset reported

Huang-Classification-
Dataset replicated

Similarity Expected
accuracy

Share of
datapoints

Expected
accuracy

Share of
datapoints

0.9 to <1.0 88.9% - 84.0 ± 0.8% 39.1%
0.8 to <0.9 87.1% - 81.1 ± 2.5% 27.5%
0.7 to <0.8 86.3% - 81.3 ± 2.2% 20.7%
0.6 to <0.7 85.6% - 78.6 ± 2.0% 9.8%
0.5 to <0.6 85.1% - 76.4 ± 6.3% 2.3%
0.4 to <0.5 Out of AD - 76.0 ± 14.6% 0.5%

<0.4 Out of AD - 50.0 ± 0.0% 0.1%
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Table S14: Results of defining the similarity threshold for the CuratedSCS,
CuratedBIOWIN, Curatedfinal dataset. The dashed line indicates the determined simi-
larity threshold.

CuratedSCS CuratedBIOWIN Curatedfinal

Similarity Expected
accuracy

Share of
datapoints

Expected
accuracy

Share of
datapoints

Expected
accuracy

Share of
datapoints

0.9 to <1.0 84.9 ± 1.1% 37.0% 98.3 ± 0.8% 36.7% 98.2 ± 0.3% 36.8%
0.8 to <0.9 80.0 ± 2.5% 27.8% 94.0 ± 2.4% 25.8% 94.0 ± 1.3% 26.2%
0.7 to <0.8 79.3 ± 2.3% 21.7% 92.9 ± 2.2% 21.2% 92.5 ± 2.4% 21.6%
0.6 to <0.7 84.4 ± 3.0% 10.5% 92.5 ± 1.5% 12.5% 93.0 ± 3.4% 11.9%
0.5 to <0.6 81.0 ± 5.6% 2.4% 89.8 ± 7.4% 3.0% 91.9 ± 4.3% 2.9%
0.4 to <0.5 100.0 ± 0.0% 0.5% 66.7 ± 40.8% 0.7% 89.3 ± 15.3% 0.6%

<0.4 25.0 ± 35.4% 0.1% 66.7 ± 57.7% 0.1% 100.0 ± 0.0% 0.0%

Table S15: Share of substances in the DSSTox dataset that are in the AD of the classification
model presented by Huang and Zhang 16 and the classifiers trained on the CuratedSCS,
CuratedBIOWIN, Curatedfinal.

Dataset Percent in AD

Huang-Classification-Dataset (reported) 98.4%
CuratedSCS 97.9%
CuratedBIOWIN 97.3%
Curatedfinal 97.7%
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