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23 Text S1: Characteristics of soil sample 

24 The amount of soil organic matter (SOM) was determined at 550 ℃, 4 h in a Muffle 

 

25 furnace. Soil pH was measured in 1:2.5 soil/water suspensions. X-ray Fluorescence 

 

26 Spectrometer (XRF, Axios, Panaco, Holland) was performed for understanding the inorganic 

 

27 element composition of the soil. 
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28 Text S2: ROS detection 

29 As for the detection of ROS in the reaction system, persulfate solution was added to 

 

30 B[a]P contaminated soil and the spin trap DMPO and TEMP was 100 mM, respectively. 

 

31 Methanol salt solution was added as a •OH quencher for the detection of •O2
−. A 10 μL 

 

32 suspension was collected by capillary tubes at different points in time to measure the ROS 

 

33 signal by EPR. Typical EPR instrument parameters were: center field at 3510 G, X-band 

 

34 microwave frequency of 9.85 GHz, microwave power of 1.70 mW, spectral window of 100 G, 

 

35 modulation amplitude of 1.00 G, modulation frequency of 100 kHz, time constant of 163.84 

 

36 ms, conversion time 40.00 ms, sweep time 40.96 s and 5 times of X-scans. 
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37 Text S3: Extraction and fractionation of soil samples 

38 After freeze-drying for 48 h, the soil samples were extracted and fractionated. The 

 

39 extraction details are as follows:1 the freeze-dried soil samples were extracted treated by a 

 

40 mixing solution (ACE and DCM, 1:1, v/v) for 30 min in an ultrasonic environment. The 

 

41 supernatant was extracted by centrifugation at 3000 r/min for 10 min, repeated extraction for 

 

42 3 times, then collected and combined the extraction. The total collected extracts were 

 

43 concentrated to 1 mL under a gentle nitrogen atmosphere. Subsequently, the concentrated 

 

44 extracts were cleaned up by the silica gel column, which contain 1 cm anhydrous sodium 

 

45 sulfate, 3 cm deactivated silica gel, 2 cm deactivated aluminium oxide and 2 cm anhydrous 

 

46 sodium sulfate from top to bottom. The silica gel column was activated with 10 mL HEX and 

 

47 eluted with 30 mL of HEX: DCM (7:3, v/v). The eluent containing B[a]P were collected, and 

 

48 then concentrated to near dryness with a nitrogen stream and reconstituted with ACN/HEX to 

 

49 a final volume of 1 mL transferring to a chromatographic vial. Before analysis, the extract 

 

50 was passed through a 0.22 m PTFE membrane. 



5  

Table S1. General assignments of FT-IR spectra of soil. 
 

Wavenumber 

(cm-1) 

 

Mineral horizons 

 

Organic horizons 

 

Reference 

 

~3620 
Clay O-H 

stretching 

 

n/a 

 

2 

 

~3431 

 

Water, stretching 

O-H stretching (carboxylic 

acids/phenols/ alcohols); 
N-H stretching (amine/amide) 

 

3 

 

~2931, ~2848 

 

n/a 
C–H stretching 

(Aliphatics) 

 

4 

 

~1882 

 

n/a 

 

C=O stretching 

 

5 

 

~1639 

 

n/a 

C=C (aromatic structure); 

C=O (amides/quinones /COO- 

/H-bonded conjugated ketones) 

 

6 

 

~1419 

 

Mg–OH stretching 

 

C–O stretching 

 

7 

 

~1014 
Si–O stretching 

lattice 

C-O stretching 

(polysaccharides/cellulose) 

 

8 

 

~908 

Al-OH stretching 

OH bending 

modes of the inner 

hydroxyl groups 

of clay minerals 

 

n/a 

 

9 

 

~773 

 

Mg–OH, Al–OH 

 

n/a 

 

5 

 

~690 
SiO2, Si–O–Si 

bending, lattice 

 

n/a 

 

5 

 

~536, ~460 

 

-Si-O bond 

 

n/a 

 

10 
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Table S2. B[a]P degradation intermediates were identified by GC-MS. 
 

Peak RT (min) MW formula Product 

P1 22.82 362 
 

C22H34O4 
1,2-Benzenedicarboxylic acid, 

diheptyl ester 

P2 19.37 282 
 

C20H42 Eicosane 

P3 17.81 278 
 

C16H22O4 Dibutyl phthalate 

P4 16.43 270 
 

C17H34O2 Isopropyl myristate 

P5 15.13 226 
 

C16H34 Hexadecane 

P6 12.85 206 
 

C14H22O 2,4-Di-tert-butylphenol 

P7 8.52 170 
 

C12H26 Dodecane 

 

Table S3. Toxicity classification according to the Globally Harmonized System of Classification and 

Labelling of Chemicals. 

Level Acute toxicity Chronic toxicity 

Not Harmful LC50/EC50＞100 mg/L ChV＞100 mg/L 

Harmful 10＜LC50/EC50≤100 mg/L 10＜ChV≤100 mg/L 

Toxic 1＜LC50/EC50≤10 mg/L 1＜ChV≤10 mg/L 

Very Toxic LC50/EC50≤1 mg/L ChV≤1 mg/L 
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Table S4. Estimated toxicity of B[a]P and degradation products. 
 

Acute toxicity (mg/L) Chronic toxicity (mg/L) 

Products 
Fish 

(96 h-LC50) 

Daphnid 

(48 h-LC50) 

Green 

Alage 
(96 h-EC50) 

Fish 

(ChV) 

Daphnid 

(ChV) 

Green 

Alage 

(ChV) 

B[a]P 0.042 0.035 0.125 0.0065 0.0098 0.076 

P1 0.019 0.029 0.0053 0.0024 0.0012 0.0015 

P2 0.000011 0.000013 0.00022 0.0000026 0.000010 0.00031 

P3 0.893 0.748 0.527 0.079 0.143 0.205 

P4 0.005 0.04 0.0074 0.00086 0.0017 0.0019 

P5 0.0005 0.00051 0.004 0.000097 0.00024 0.0038 

P6 0.144 0.133 0.206 0.02 0.031 0.067 

P7 0.022 0.018 0.069 0.0034 0.0054 0.043 
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Fig. S1. DMPO-•OH in H2O/B[a]P contaminated soil system. 

 

 

 

 

Fig. S2. GC-MS chromatogram of B[a]P- contaminated soil (a) and B[a]P transformation in persulfate 

system (b). 
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Fig. S3. The mass spectra of the derivatives of the possible intermediates. 
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