Supplementary Material

Effect of Hydrothermal Treatment on Plutonium Retention in Deep Liquid Radioactive Waste Disposal

Tolganay B. Egorova^a, Anna Yu. Romanchuk^a, Alexander V. Egorov^a, Alexander L. Trigub^b,

Elena V. Zakharova^c, Anna G. Volkova^c, Andrey A. Zubkov^d, Irina E. Vlasova^{a,*}, Stepan N. Kalmykov^a

- a. Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory 1/3, 119991 Moscow, Russia
- b. National Research Centre «Kurchatov Institute», Akademika Kurchatova pl. 1, 123182
 Moscow, Russia
- c. Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Science, 31–4, Leninsky prospect, 119071, Moscow, Russia
- d. JSC Siberian Chemical Combine, 1 st. Kurchatova 636039, Seversk, Tomsk region, Russia

File contains 4 pages, 4 figures, 1 table.

Table of contents

The PXRD pattern of the disposal sand used for the experiments	Figure S1
The results of PXRD analysis of disposal sand	Table S1
Room-temperature sorption of Pu from model LRW	Figure S2
Pu L ₃ -edge XANES spectra of studied samples	Figure S3
Structural parameters obtained from the fitting of EXAFS spectra	Table S2
EDX spectrum and SAED pattern of LRW sediments agglomerate in Sample 2	Figure S4
EDX spectra and SAED pattern of LRW sediments agglomerate in Sample 2	Figure S5
Plutonium oxidation states in acidic leachates assessed by HDEHP extraction	Table S3

Fig. S1. The PXRD pattern of the disposal sand used for the experiments.

Table S1	The results	ofPXRD	analysis	of disposa	l sand
	The results	ULL LUL	anarysis	of ulsposa	li sanu

Mineral name	Chemical formula	Mass fraction, %
Quartz	SiO ₂	65
K-feldspar	KAlSi ₃ O ₈	14
Plagioclase	$(Na,Ca)[Al(Al,Si)Si_2O_8]$	5
Chlorite	$(Mg,Fe)_3(Si,Al)_4O_{10}(OH)_2 \cdot (Mg,Fe)_3(OH)_6$	1.5
Muscovite	$KA12(A1Si_3O_{10})(OH)_2$	0.5
Kaolinite	$Al_2(Si_2O_5)(OH)_4$	12
Sum of crystalline		98
phases		

The sample may contain goethite, siderite, aragonite and pyroxene at the level of the detection limit

Fig. S2. Room-temperature sorption of Pu from model LRW solutions in the presence and absence of disposal sand (T = 22°C, [Pu]_{tot}=10⁻⁷ M, [Sand] = 100 g/L, pH_i = 2.4).

Fig. S3. Pu L₃-edge XANES spectra of studied samples in comparison with Pu(IV) standard.

Table S2. Structural parameters obtained from the fitting of EXAFS spectra

		Shell						
Sample	Pu-O				R-factor			
	CN	R, Å	σ, Å ²	N	R, Å	σ^2 , Å ²		
Sample 2	8*	2.25±0.02	0.014±0.001	4.0±1.4	3.43±0.03	0.015*	0.026	
Sample 4	8*	2.25±0.03	0.017±0.001	2.21±1.1	3.43±0.04	0.015*	0.019	

CN – Coordination number, R – Interatomic distance, σ^2 – Debye– Waller factor, k-range = 3 – 9 Å⁻¹; R-range = 1.2 – 3.4 Å

* - fixed values

Fig. S4. EDX spectrum and SAED pattern of LRW sediments agglomerate in Sample 2 (One injection cycle, 2 months conditioning with LRW).

Fig. S5. EDX spectra and SAED pattern of LRW sediments agglomerate in Sample 2 (One injection cycle, 2 months conditioning with LRW).

Table S	53. F	Plutonium	oxidation	states in	acidic	leachates	assessed	by	HDEHP	extraction
								~		

Canditions	Extraction, %				
Conditions	Aqueous phase (Pu(V))	Organic phase (Pu(IV), Pu(VI))			
One injection cycle, 150°C, LRW	77	23			
One injection cycle, 150°C,	Q1	10			
LRW+Sand	81	19			
Three injection cycles, 150°C,					
LRW+Sand,	71	29			
3 months conditioning					