Supporting information

Ecotoxicity risk assessment of amines used in 'switchable water' and CO₂-capturing processes

Alina Ismagilova,[†] Veljo Kisand,^{*,†} and Lauri Vares^{*,†}

[†] Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia

*E-mail: veljo.kisand@ut.ee, lauri.vares@ut.ee

Table of Contents

Values of the mean effective concentration (EC_{50} , mg L^{-1}) of the amines with CI 95%	
values	. 1
Statistical analysis by one-way ANOVA	2
Amine stability after incubation under test conditions	2
Linear trends for $log(1/EC_{50})$ versus $logK_{ow}$ according to test organisms	7

Values of the mean effective concentration (EC $_{50}$, mg L $^{-1}$) of the amines with CI 95% values

A confidence interval (CI) is the mean of the estimate plus and minus the variation of the estimate. 95% CI gives 95% certainty that the expected values of the experiment will be within this interval. The 95% CI is calculated by a standard formula:

$$\bar{x} \pm 1.96 \frac{s}{\sqrt{n}}$$

Where: \bar{x} – the mean value

s - standard deviation

n – sample size

The EC_{50} values were determined at the 50% level on the X-axis of the dose–response curves.

Table S1. Values of the mean effective concentration (EC, mg L^{-1}) of amines tested with CI 95% values.

	Short	A. fischeri S. polyrhiz		D. magna	
Compound	name	EC50, mg/l (CI 95%)	EC50, mg/l (CI 95%)	EC50, mg/l (CI 95%)	
Monoethanola mine	MEA	227 (150; 304)	358.5 (262.4; 454.6)	260.3 (203.1; 317.5)	
Diethanolamine	DEA	468 (280; 656)	549.5 (479.6; 619.4)	368 (288.5; 447.5)	
Triethanolamine	TEA	1033 (896; 1169)	>1000	>1000	
Dimethylethanola mine	DMEA	437 (293; 581)	228.7 (269.5; 379.7)	223 (213; 234)	
2-amino- 2methylpropanol	AMP	475 (279; 671)	310 (240.3; 379.7)	327 (287; 367)	
N,N,N',N'- tetramethylethane -1,2-diamine	TMEDA	167 (149; 186)	348 (308.1; 387.9)	247 (192; 302)	
N,N,N',N'- tetramethyl-1,3- propanediamine	TMPDA	145 (117; 172)	61 (40.9; 81.1)	73 (69; 77)	

Statistical analysis by one-way ANOVA

	AMP	DEA	DMEA	MEA	TEA	TMEDA	TMPDA
AMP	NA	NA	NA	NA	NA	NA	NA
DEA	p = 0.178	NA	NA	NA	NA	NA	NA
DMEA	p = 0.398	p = 0.0006	NA	NA	NA	NA	NA
MEA	p = 0.1989	p = 0.0001	<i>p</i> = 0.9996	NA	NA	NA	NA
TEA	<i>p</i> < 0.0001	<i>p</i> < 0.0001	<i>p</i> < 0.0001	<i>p</i> < 0.0001	NA	NA	NA
TMEDA	p = 0.0331	<i>p</i> < 0.0001	p = 0.9022	p = 0.987	<i>p</i> < 0.0001	NA	NA
TMPDA	<i>p</i> < 0.0001	p < 0.0000	<i>p</i> < 0.0001	p = 0.0001	<i>p</i> < 0.0001	p = 0.0008	NA

Table S2. One-way ANOVA and post hoc pairwise comparison (Tukey test) between EC_{50} values of studied amines p values are adjusted for multiple testing.

Amine stability after incubation under test conditions

Two amines (TMPDA and TMEDA) with a concentration of 4000 mgL⁻¹ were incubated for 15 min in 2% NaCl aqueous solution and 72h in standard freshwater, in both cases without organisms. After incubation, the amines were extracted from the water-based media with CHCl₂. Next, the solvent was removed on the rotary evaporator, and the resulting residue was analyzed by ¹H and ¹³C NMR. The obtained spectra were compared with the spectra of pure TMPDA and TMEDA. No changes in NMR spectra were detected except for a small CHCl₂ signal. Thus, it can be concluded that the incubation conditions and media do not cause the decomposition of these substances.

Fig. S1. ¹H 400 MHz NMR spectrum of TMEDA without incubation

Fig. S2. ¹³C 400 MHz NMR spectrum of TMEDA without incubation

Fig. S3. ¹H 400 MHz NMR spectrum of TMEDA after 15-minute incubation in NaCl

$$H_{3}C \xrightarrow{N} V \xrightarrow{CH_{3}} CH_{3}$$

Fig. S6. ¹³C 400 MHz NMR spectrum of TMEDA after 72h incubation in freshwater media

4

Fig. S7. ¹H 400 MHz NMR spectrum of TMPDA without incubation

Fig. S8. ¹³C 400 MHz NMR spectrum of TMPDA without incubation

Fig. S9. ¹H 400 MHz NMR spectrum of TMPDA after 15-minute incubation in NaCl

Fig. S10. ^{13}C 400 MHz NMR spectrum of TMPDA after 15-minute incubation in NaCl

CH₃ ✓^NCH₃ H₃C

Fig. S11. ¹H 400 MHz NMR spectrum of TMPDA after 72h incubation in freshwater media

Fig. S12. ¹³C 400 MHz NMR spectrum of TMPDA after 72h incubation in freshwater media

Linear trends for log(1/EC₅₀) versus logK_{ow} according to test organisms

Fig. 13. Plot of log(1/EC50) against logKow for tested compounds

```
Call:
lm(formula = log ~ logKow * test, data = amine_stat)
Residuals:
              1Q
    Min
                   Median
                                3Q
                                        Max
-0.34672 -0.12701 0.01172 0.11129
                                    0.36475
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
                             0.06189 -33.983 < 2e-16 ***
(Intercept)
                  -2.10323
logKow
                  0.31610
                             0.04504
                                       7.018 2.97e-09 ***
testS_pol
                  -0.01514
                             0.08753
                                      -0.173
                                               0.8632
testV_fish
                  -0.15017
                             0.08753
                                      -1.716
                                               0.0916
logKow:testS_pol
                  0.03470
                             0.06369
                                       0.545
                                               0.5880
logKow:testV_fish -0.05594
                             0.06369
                                      -0.878
                                               0.3835
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1772 on 57 degrees of freedom
Multiple R-squared: 0.7193,
                              Adjusted R-squared: 0.6946
F-statistic: 29.21 on 5 and 57 DF, p-value: 1.436e-14
```

Fig. 14. Summary output of a linear regression model

Eq1 and eq2 were taken from the literature.¹

eq1(inert compounds): log(1/EC50) = 0.824 * logKow + 1.58

eq2 (less inert compoundes): log(1/EC50) = 0.571 * logKow + 2.78

eq3 (tested amines): $\log(1/EC50) = 0.32 * \log Kow - 2$.

Fig 15. Comparison of narcosis toxicity to D. magna

References:

1 X. Zhang, W. Qin, J. He, Y. Wen, L. Su, L. Sheng and Y. Zhao, Discrimination of excess toxicity from narcotic effect: Comparison of toxicity of class-based organic chemicals to daphnia magna and tetrahymena pyriformis, *Chemosphere*, 2013, **93**, 397–407.