Distribution and risk assessment of antibiotic resistance genes of swine farm wastewater and surrounding environments: from soil to water

Haiyue Ma¹, Jinping Du¹, Ting Xu^{1,2}, Daqiang Yin^{1,2}, Xiaoling Fang³, Xueping Guo^{1,2*} ¹Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China

²Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China

³Shanghai Eye Diseases Prevention &Treatment Center/ Shanghai Eye Hospital, School of Medicine, Tongji University, Shanghai 200331, China.

*Corresponding author: Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.

* Corresponding author: Xueping Guo. College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, Chi na

E-mail: xuepingg@tongji.edu.cn

This file contains: Table S1-S4 with the attached table and Figure S1-6.

The detailed information wastewater treatment processes is as followed.

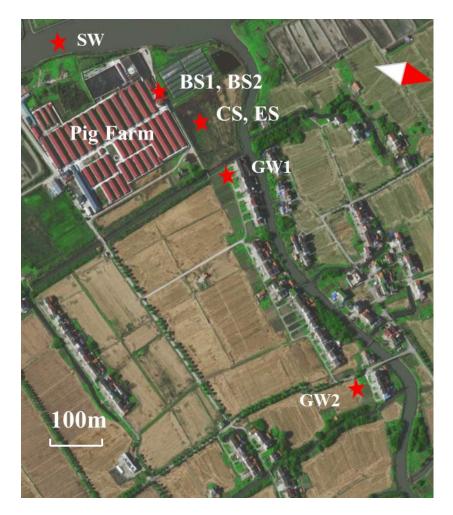
Initially, pig urine and cleaning wastewater were collected centrally into a sewage ditch and then directed into a manure collection tank via piping. The wastewater in the manure collection tank was then diverted: one portion enters an anaerobic tower (800 m³) for fermentation, while the other undergoes solid-liquid separation. The separated solid manure residue was stored alongside fresh manure in a manure composting shed, where it was mixed with wood chips or straw and subjected to high-temperature composting (at 65-70 °C), air-drying, grinding, and screening to produce organic fertilizer. The liquid portion after solid-liquid separation was also diverted, with one stream entering an anaerobic storage pond for continued fermentation, and the other entering a biochemical regulation tank, where it converged with the effluent from solid-liquid separation, the effluent from the anaerobic tower, and the biogas slurry from the anaerobic storage tank. The biochemical system primarily treated the biogas slurry, and the treated tail-water was partially used directly for farmland irrigation, while the remaining portion was returned to the anaerobic storage pond for mixing and subsequent reuse.

Sample Time	Sample Location	Sample Types	Sample Name
	swine farm	biogas slurry	BS1
March, 2021	agricultural land	soil	ES
	agricultural land	control soil	CS
	swine farm	biogas slurry	BS2
	river	surface water	SW
August, 2021	well about 100 m away from the swine farm	groundwater	GW1
	well about 800 m away from the swine farm	groundwater	GW2

Table S1. Information on samples

Each sample has biological replicates.

Gene name	class	mechanism	
int1-a-marko	Integrase		
sul1	Sulfonamide	protection	
intIl	Integrase	-	
qacE∆1	MDR	efflux	
IS <i>6100</i>	Insertional		
oprJ	MDR	efflux	
$qacE\Delta l$	MDR	efflux	
disul	Sulfonamide	protection	
intl3	Integrase	1	
tetG	Tetracycline	efflux	
rpoB	housekeeping		
IS26	Insertional		
tetX	Tetracycline	deactivate	
aadA17	Aminoglycoside	deactivate	
ermF	MLSB	protection	
aadA2	Aminoglycoside	deactivate	
cefa qacelta	MDR	unknown	
tetG	Tetracycline	efflux	
aac(6')-Ib	Aminoglycoside	deactivate	
cmlA1	Phenicol	efflux	
tetM	Tetracycline	protection	
aadA5	Aminoglycoside	deactivate	
floR	Amphenicol	efflux	
·		CIIIux	
repA cmlA1	Plasmid -ep	efflux	
	Amphenicol		
strB ISSm2	Aminoglycoside	protection	
	Insertional	u u a ta a ti a u	
<i>erm(42)</i>	MLSB	protection	
dfra14	Trimethoprim	protection	
pica	MLSB	protection	
tnpA	Transposase		
aph(3'')-ia	Aminoglycoside	deactivate	
lnu(F)	MLSB	deactivate	
dfra1	Trimethoprim	protection	
tetR	Tetracycline	regulator	
dfra17	Trimethoprim	protection	
aac(3)	Aminoglycoside	deactivate	
aac(6')-II	Aminoglycoside	deactivate	
erm(O)	MLSB	protection	
aphA1	Aminoglycoside	deactivate	
IS613	Transposase		
blaOXA	Beta Lactam	deactivate	
ereA	MLSB	deactivate	
qacH	MDR	efflux	
dfrA1	Trimethoprim	deactivate	
tetA	Tetracycline	efflux	
tetR	Tetracycline	unknown	


 Table S2. Information on the 47 target genes with 100% detection frequencies

Genes	IS6100		
	R ²	Р	
tetG	0.98771	***	
sull	0.99801	***	
ermF	0.99384	***	
$qacE\Delta l$	0.99662	***	
floR	0.97061	***	

Table S3. The Pearson correlation between the most abundant MGE and ARGs

Gene	ARGs type	Relative Abundance	movability	Correlation with MGEs	Host Pathogenicity
sull	Sulfonamide	1.31×10 ⁻¹	Yes	Yes	Acinetobacter baumannii Brandenburg
oprJ	MDR	8.51×10 ⁻²	Yes	Yes	Pseudomonas aeruginosa
tetX	Tetracycline	4.27×10 ⁻²	Yes	Yes	Bacteroides
aadA17	Aminoglycoside	3.46×10 ⁻²	Yes	Yes	Acinetobacter baumannii
ermF	MLSB	3.46×10 ⁻²	Yes	Yes	Riemerella anatipestifer
aadA2	Aminoglycoside	2.14×10 ⁻²	Yes	Yes	Acinetobacter baumanniig
tetG	Tetracycline	1.97×10 ⁻²	Yes	Yes	Pseudomonas aeruginosa
aac(6')-Ib	Aminoglycoside	1.92×10 ⁻²	Yes	Yes	Mycobacteroides abscessus
tetM	Tetracycline	1.20×10 ⁻²	Yes	Yes	Salmonella enterica

Table S4. Information on high-risk ARGs

Fig. S1. The sampling sites in Jinshan district, Shanghai. BS1, BS2, CS, ES, SW, GW1, and GW2 represent the biogas slurry of the swine farm in March 2021, the biogas slurry of the swine farm in August 2021, the agricultural soils not irrigated with biogas slurry, the agricultural soils after 4 days of irrigating with biogas, surface water from the river north of the swine farm, and groundwater about 100 m and 800 m away from the swine farm, respectively.

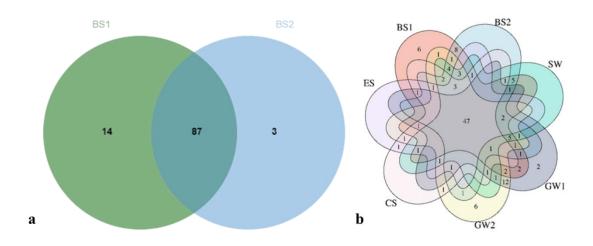
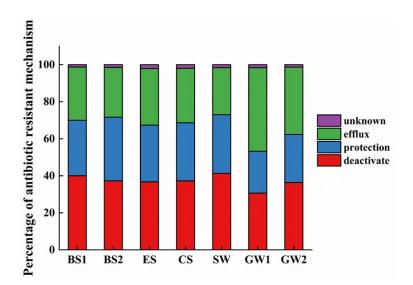
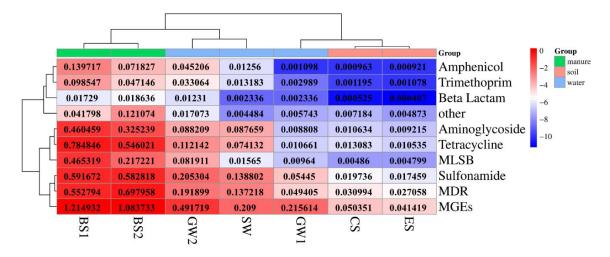




Fig. S2. Different Venn diagram analysis with BS1 and BS2 (a), BS1, BS2, CS, ES, SW, GW1, and GW2 (b) of 216 target genes. BS1, BS2, CS, ES, SW, GW1, and GW2 represent the biogas slurry of the swine farm in March 2021, the biogas slurry of the swine farm in August 2021, the agricultural soils not irrigated with biogas slurry, the agricultural soils after 4 days of irrigating with biogas, surface water from the river north of the swine farm, and groundwater about 100 m and 800 m away from the swine respectively. diagram plotted farm, Venn analysis was by https://www.bioinformatics.com.cn (last accessed on 20 Feb 2024), an online platform for data analysis and visualization.

Fig. S3. Types of ARGs subtypes with different resistance mechanisms. BS1, BS2, CS, ES, SW, GW1 and GW2 represent the biogas slurry of the swine farm in March 2021, the biogas slurry of the swine farm in August 2021, the agricultural soils not irrigated with biogas slurry, the agricultural soils after 4 days of irrigating with biogas, surface water from the river north of the swine farm, and groundwater about 100 m and 800 m away from the swine farm, respectively.

Fig. S4. The total relative abundance of various types of ARGs and MGEs in different samples. BS1, BS2, CS, ES, SW, GW1, and GW2 represent the biogas slurry of the swine farm in March 2021, the biogas slurry of the swine farm in August 2021, the agricultural soils not irrigated with biogas slurry, the agricultural soils after 4 days of irrigating with biogas, surface water from the river north of the swine farm, and groundwater about 100 m and 800 m away from the swine farm, respectively. The above relative abundances have been taken as log2. Heatmap was plotted by https://www.bioinformatics.com.cn (last accessed on 20 Feb 2024), an online platform for data analysis and visualization.

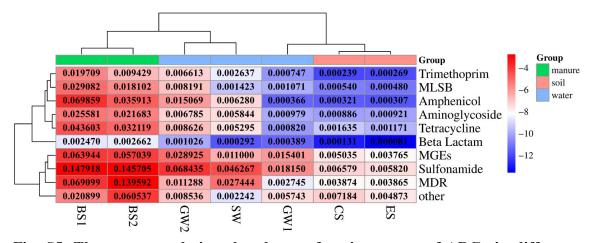
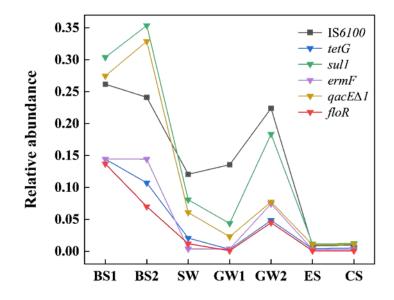



Fig. S5. The average relative abundance of various types of ARGs in different samples. BS1, BS2, CS, ES, SW, GW1, and GW2 represent the biogas slurry of the swine farm in March 2021, the biogas slurry of the swine farm in August 2021, the agricultural soils not irrigated with biogas slurry, the agricultural soils after 4 days of irrigating with biogas, surface water from the river north of the swine farm, and groundwater about 100 m and 800 m away from the swine farm, respectively. The above relative abundances have been taken as log2. Heatmap was plotted by https://www.bioinformatics.com.cn (last accessed on 20 Feb 2024), an online platform for data analysis and visualization.

Fig. S6. The relative abundance of the most abundant MGE and ARGs in different samples. BS1, BS2, CS, ES, SW, GW1, and GW2 represent the biogas slurry of the swine farm in March 2021, the biogas slurry of the swine farm in August 2021, the agricultural soils not irrigated with biogas slurry, the agricultural soils after 4 days of irrigating with biogas, surface water from the river north of the swine farm, and groundwater about 100 m and 800 m away from the swine farm, respectively.