Supplementary Materials

Arsenic Source-Sink Dynamics under Phosphorus Competition in Sediments from River-Lake Connected Systems

SI Data analysis

The arsenic (As) and phosphorus (P) adsorption capacity of the sediment samples at each time period, $Q_t(mg \cdot g^{-1})$, was calculated by the following equation:

$$Q_t = \frac{(C_0 - C_t)V}{W}$$

where C_0 (mg·L⁻¹) was initial mass concentration of As or P, C_t (mg·L⁻¹) was the blank corrected mass concentration of As or P at time t, V (L) was the volume of the solution, and W (g) was the quality of dried sediment sample.

Modified Freundlich and Freundlich crossover models were used to draw the adsorption isotherm of As or P (Liu et al., 2021; Mozaffari Majd et al., 2021). The equations of As and P were the same, and taking As for the examples, the equations of the models are as follows:

$$Q_{e} = K_{F}C_{e}^{n} - K_{F}(C_{e}^{0})^{n} - Q$$

NAAs = $K_{F}(C_{e}^{0})^{n} + Q_{e}^{0}$
EAsC₀ = $\sqrt[n]{\frac{NAAs}{K_{F}}}$

Where K_F is the adsorption coefficient calculated by modified Freundlich (L·g⁻¹); C_e is the As or P concentration in the aqueous phase at equilibrium (mg·L⁻¹); NAAs is the native adsorbed As (mg·kg⁻¹); EAsC_{0F} is the zero equilibrium As concentration calculated by modified Freundlich (mg·L⁻¹).

$$Q_{e} = K_{f}(C_{e}^{n} - EAsC_{0}^{n})$$
$$K_{d-eq} = nK_{f}(C_{As})^{n-1}$$

Sampling sites	рН	ORP(mV)	sAs(mg·kg ⁻¹)10cm	sAs(mg·kg ⁻¹)20cm	sAs(mg·kg ⁻¹)30cm
R1	6.58	-162.2	6.23	3.15	0.87
R2	5.99	-138.6	5.79	2.31	0.46
R3	6.23	-92.8	6.58	3.05	1.28
R4	6.34	-104.1	5.36	2.18	0.73
R5	6.18	-197.9	4.88	1.68	0.42
R6	6.15	-121.6	5.57	1.96	0.38
L1	7.13	-135	9.14	7.41	5.49
L2	7.08	-146	9.06	7.36	5.89
L3	7.16	-139	9.14	7.49	5.99
L4	6.90	-148	7.92	4.02	2.09
L5	6.91	-152	6.82	3.99	1.60
L6	6.93	-144	7.52	4.39	2.23
LC1	7.21	-193	10.30	8.93	11.05
LC2	7.15	-198	9.38	8.61	10.54
LC3	7.22	-188	11.35	8.42	11.38

Where K_f is the adsorption coefficient calculated by Freundlich crossover model (L·g⁻¹), and EAsC_F is the zero equilibrium As concentration calculated by Freundlich crossover model (mg·L⁻¹); K_{d-eq} was partition parameter; C_{As} was the As

concentration in overlying water (mg $\cdot L^{\text{-1}}$).

Table S1. Physical and chemical properties of sediments

Figure S1. α diversity index

Figure S2. Two modified isothermal adsorption models, (a) for As,(b) for P

Figure S3. Modified Freundlich crossover model, (a) for As,(b) for P

