1	Interactive toxicity effects of metronidazole, diclofenac, ibuprofen, and
2	differently functionalized nanoplastics on marine algae Chlorella variabilis
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	

Supplementary Information

14 **Tables:**

15 Table S1. Composition of Artificial Sea Water per 1000 ml

16

Chemicals	Grams
Sodium Chloride	26.29
Potassium chloride	0.74
Calcium chloride	0.99
Magnesium chloride	6.09
Magnesium sulphate heptahydrate	3.94

17

18 Table S2. Preparation of Conway medium

19 Table S2.1 Preparation of stock 1 per 100 ml

Chemicals	Grams
Zinc chloride	2.1
Cobalt chloride	2.0
Ammonium molybdate	0.9
Copper sulphate	2.0

21 Table S2.2 Preparation of stock 2 per 100ml

Chemicals	Milligrams
Vitamin B12	10
Vitamin B6	10

23 Table S2.3 Preparation of stock 3 per L

Chemicals	Grams
Iron chloride hexahydrate	1.3
Manganese chloride	0.36
Boric chloride	33.6
Ethylenediaminetetraacetic acid	45.0
Sodium dihydrogen phosphate dehydrate	20.0
Sodium nitrate	100

29 Materials and Methods

30 Methods S1: Chemical used

Metronidazole, Diclofenac sodium salts, Ibuprofen, and 2',7' -dichlorofluorescein diacetate 31 (DCFH-DA) were purchased from Sigma Aldrich. Aminated (NH₂) and carboxylated (COOH) 32 polystyrene nanoplastics (600 nm) were purchased from Corpuscular, Inc, USA. DMSO 33 (Dimethyl sulfoxide), Hydrogen peroxide (H₂O₂), and nitroblue tetrazolium (NBT) dye were 34 **SDFCL** purchased from (Mumbai). Triton-X-100, Hydroxylamine hydrochloride, 35 Trichloroacetic acid (TCA), and thiobarbituric acid (TBA) were purchased from Hi-Media Pvt. 36 Ltd (Mumbai, India). 37

38 Method S2: Determination of observed concentration of pharmaceutical products

The observed concentration of PPs was determined using ultra-performance liquid 39 chromatography (UPLC). The samples were filtered using a 0.22 μ m filter before undergoing 40 analysis. A C18 1.7 μ m (2.1 × 150 mm) column was utilized to separate and quantify all PPs. In 41 the case of metronidazole, the mobile phase was isocratically eluted at a flow rate of 0.5 mL/min, 42 consisting of water: acetonitrile (90:10, v/v)¹. Similarly, for diclofenac, a mobile phase of 0.05 43 M acetate buffer (pH 2.5) and acetonitrile (50:50, v/v) was employed with a flow rate of 0.5 44 ml/min². Likewise, the mobile phase for ibuprofen was a mixture of acetonitrile and water (pH 3 45 adjusted by diluted acetic acid). The separation system comprised 50% acetonitrile and 50% 46 H2O, with a flow rate of 0.2 mL/min 3 . 47

48

50 Methods S3: Independent action modeling

51 The expected toxicity (C_{Exp}) of the mixture was determined by combining the individual 52 toxicities of PPs and PSNPs using equation (1).

53
$$C_{Exp} = P + N - (P * N/100)$$
 (1)

54 In the equation, P and N represent the respective toxicity induced by PPs and PSNPs. Once C_{Exp} 55 is calculated, the ratio of inhibition (R_I) is determined using the provided equation (2).

56
$$R_I = Observed Toxicity (C_{Obs}) / Expected Toxicity (C_{Exp})$$
 (2)

Where C_{Obs} represent the observed toxicity resulting from the combination of PPs and PSNPs. The nature of the interaction is determined based on the computed value of R_I. If the R_I value is equal to 1, the interaction is considered additive. If the calculated R_I value is less than 1, the interaction is deemed antagonistic. Conversely, if the R_I value obtained is greater than 1, the interaction is characterized as synergistic.

To validate the computed R_I value, statistical significance between C_{Obs} and C_{Exp} values was assessed using Two-way ANOVA (Bonferroni post-test). Despite the obtained R_I values, the interaction between PPs and PSNPs was regarded as additive when the toxicity difference between C_{Obs} and C_{Exp} was statistically insignificant (p > 0.05)⁴.

- 66
- 67
- 68
- 69

Fig. S2 Percentage cell viability of algal cells on exposure to metronidazole (MET), diclofenac
(DIC), and ibuprofen (IBU). Note: '*' represents the significant difference between the control
and test groups; δ represents no significance when compared to control group

98 Fig. S3 Percentage growth inhibition of algal cells on exposure to metronidazole (MET), 99 diclofenac (DIC), and ibuprofen (IBU). Note: '*' represents the significant difference noted 100 between the control and test groups. The significant difference between the pristine NPs and the 101 binary mixtures of NPs with PPs are represented using ' α ,' and ' γ ' ($\alpha = p < 0.001$) and ($\gamma = p <$ 102 0.05)

114 combination of NH₂ PSNPs + MET; (D) NH₂ PSNPs + DIC; (E) NH₂ PSNPs + IBU; (F) COOH

115 PSNPs + MET; (G) COOH PSNPs + DIC; (H) COOH PSNPs + IBU

Fig. S5 Optical microscopy image of algal cells interacted with (A) pristine NH₂ PSNPs; (B)
pristine COOH PSNPs; (C) combination of NH₂ PSNPs + MET; (D) NH₂ PSNPs + DIC; (E)
NH₂ PSNPs + IBU; (F) COOH PSNPs + MET; (G) COOH PSNPs + DIC; (H) COOH PSNPs +
IBU

151 References

152

- G. A. Soares, G. S. Rodrigues, L. P. Buranello, R. B. de Oliveira and J. R. de Arruda Miranda,
 Pharmacomagnetography assessment of the prokinetic effect on metronidazole absorption, *Journal of Pharmacy and Pharmacology*, 2023, rgad088.
- E. M. Elzayat, M. F. Ibrahim, A. A. Abdel-Rahman, S. M. Ahmed, F. K. Alanazi and W. A.
 Habib, A validated stability-indicating UPLC method for determination of diclofenac sodium in its
 pure form and matrix formulations, *Arabian Journal of Chemistry*, 2017, 10, S3245–S3254.
- A. A. Ahmed-Anwar, M. A. Mohamed, A. A. Farghali, R. Mahmoud and M. E. M. Hassouna,
 Green UPLC method for estimation of ciprofloxacin, diclofenac sodium, and ibuprofen with
 application to pharmacokinetic study of human samples, *Sci Rep*, 2023, 13, 17613.
- V. Thiagarajan, V. Iswarya, A. J. P., R. Seenivasan, N. Chandrasekaran and A. Mukherjee,
 Influence of differently functionalized polystyrene microplastics on the toxic effects of P25 TiO2
 NPs towards marine algae Chlorella sp., *Aquatic Toxicology*, 2019, 207, 208–216.

165