Supporting Information

Overlooked Impact of Surface Hydroxylation on the Solubility of Less-Soluble Compounds: A Case Study of CeO₂

Tatiana V. Plakhova^a, Anna Yu. Romanchuk^a, Anastasia D. Konyukhova^a, Irina F. Seregina^a, Alexander E. Baranchikov^b, Roman D. Svetogorov^{a,c}, Maxwell W. Terban^d, Vladimir K. Ivanov^{b,e} and Stepan N. Kalmykov^{a*}

a. Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory 1/3, 119991 Moscow, Russia
b. Kurnakov Institute of General and Inorganic Chemistry, Leninskii prosp. 31, 117901 Moscow, Russia
c. National Research Centre «Kurchatov Institute», Akademika Kurchatova pl. 1, 123182
Moscow, Russia
d. Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart,
Germany
e. National Research University Higher School of Economics, Myasnitskaya st. 20, 101000
Moscow, Russia

KEYWORDS Cerium, oxide, nanoparticles, solubility, kinetics, surface, hydroxylation.

Fig. S1. HRTEM images and ED data (insets) for non-treated ceria samples synthesised from (a) 0.001M and (b) 0.8M cerium(III) nitrate solutions by chemical precipitation with 3M aqueous ammonia solution. Particle size distributions (c, d) were obtained from HRTEM data.

Fig. S2. Powder XRD patterns for ceria samples. Data collected using laboratory diffractometer (λ =1.54 Å).

Fig. S3. XRD ($\lambda = 0.8$ Å) data for non-treated CeO₂ NPs and the samples after drying under different conditions. Data collected at the Kurchatov Synchrotron Radiation Source.

Fig. S4. (a) Ce L₃ edge HERFD-XAS data for CeO₂ 2 nm samples ((b) shows an enlarged pre-edge region). CeO₂ bulk was used as a Ce(IV) reference and Ce₂(SO₄)₃ was used as a Ce(III) reference. The shape and position of the pre-edge features in CeO₂ samples indicate the absence of Ce(III) in NPs' structure before and after drying.

Fig. S5. PDF G(r) experimental data for CeO₂ NPs and CeO₂ reference samples compared with the fit results.

Table 1S: Refined parameter values derived from crystal structure refinement of CeO₂ to the local structure in the PDF data from the 2 nm and 8 nm samples non-treated or dried at 40°C, and the reference sample. *Dc* is the size of the coherent structural domain of the crystallites, as estimated from a spherical domain approximation. Uncertainties reflect the precision in the fitting of the model, and were estimated by refinement of the data on a Nyquist grid, i.e., $\Delta r = \pi/Q_{\text{max}}$.

	2 nm non-	2 nm dried	8 nm non-	8 nm dried	Doforonco
	treated	40°C	treated	40°C	Kelerence
Ref. range / Å	1.0 - 50.0	1.0 - 50.0	1.0 - 80.0	1.0 - 80.0	1.0 - 80.0
<i>a</i> / Å	5.4157(19)	5.4133(10)	5.42408(17)	5.42271(16)	5.41374(13)
Uiso(Ce) / Å ²	0.0114(5)	0.0124(3)	0.00709(9)	0.00728(9)	0.00473(8)
Uiso(O) / Å ²	0.059(6)	0.067(4)	0.0395(15)	0.0398(15)	0.0198(10)
δ1	1.51(13)	1.69(7)	1.50(6)	1.55(6)	0.83(15)
Dc / Å	20.2(3)	20.6(2)	84.3(1.2)	85.3(1.2)	-
R _w	0.2301	0.1517	0.1165	0.1115	0.1629

Fig. S6. CeO₂ 2 nm dissolution curves in C(t) coordinates.

Table S2: Dissolution rate constants, calculated from experimental data on CeO₂ NPs' dissolution kinetics under $pH = 4.1 \pm 0.2$.

System	Rate constant, mol/(L·day)
CeO ₂ 2 nm non-treated	1.4 · 10-6
CeO ₂ 2 nm dried 40°C	2.5 · 10-7
CeO ₂ 2 nm dried 150°C	1.9 · 10 ⁻⁷
CeO ₂ 8 nm non-treated	2.8 · 10-6
CeO ₂ 8 nm air-dried 40°C	5.9 · 10 ⁻⁷
CeO ₂ 8 nm air-dried 150°C	6.6 · 10 ⁻⁷

Fig. S7. Experimental data for CeO₂ NPs' solubility of 2 and 8 nm size, before and after heat treatment.

CeO₂ NPs after interaction with solution:

Fig. S8. XRD data for non-treated CeO_2 NPs of different sizes after long-term (4.5 years) interaction with solution at pH = 4. The phase composition and crystalline size remained unchanged within this time period.

Fig. S9. HRTEM results of the non-treated 2 nm CeO_2 sample after 200 days of contact between the solid phase and an aqueous solution. Particle morphology remained unchanged during this time.

Samula	Contribugation type	Dissolved cerium
Sample	Centifugation type	concentration, M
CeO ₂ 2 nm non-treated	High-speed long-term (64 000 g, $t = 4 h$)	$(7.8 \pm 0.8) \cdot 10^{-4}$
pH = 2.2		
CeO ₂ 2 nm non-treated Ultracentrifugation (300 000 g, t = 30		$(7.1 \pm 0.7) \cdot 10^{-4}$
pH = 2.2	min)	(7.1 ± 0.7) 10
CeO ₂ 2 nm non-treated	High speed long term (64,000 g, $t = 4$ h)	$(3.8 \pm 0.4) \cdot 10^{-3}$
pH = 1.7	$\frac{1}{100} = \frac{1}{100} = \frac{1}$	
CeO ₂ 2 nm non-treated	Ultracentrifugation (300 000 g, $t = 30$	$(3.0 \pm 0.3) \cdot 10^{-3}$
pH = 1.7	min)	
CeO ₂ 2 nm non-treated	High speed long term (64,000 g, $t = 4$ h)	$(2.0 \pm 0.2) \cdot 10^{-4}$
pH = 4.2	$\frac{1}{100} = \frac{1}{100} = \frac{1}$	
CeO ₂ 2 nm non-treated	Ultracentrifugation (300 000 g, $t = 30$	$(2.0 \pm 0.2) \cdot 10^{-4}$
pH = 4.2	min)	(2.0 ± 0.2) 10

 Table 3S: Comparison of cerium concentration in solution after centrifugation at different speeds.