## SUPPORTING INFORMATION

## Highly Uniform Platinum Photodeposited Hollow Mesoporous Titania Nanoparticles for Photocatalytic Degradation of Phenol

Dauletkerey Kudaibergen<sup>a</sup>, Geun Young Kim<sup>a</sup>, Hyun-Seok Choe<sup>a</sup>, Jeong-Min Park<sup>a</sup>, Hangil Kim<sup>a</sup>, Donghyun Lee<sup>b</sup>, Heewoo Jeon<sup>b</sup>, Changha Lee<sup>b</sup> and Jae-Hyuk Kim<sup>a</sup>\*.

<sup>a</sup>Department of Chemical and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea

<sup>b</sup>School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea

\*Corresponding Author: Jae-Hyuk Kim, Ph.D., Department of Chemical and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea. Tel.: +82-51-510-2312. E-mail: jaehyuk.kim@pusan.ac.kr

KEYWORDS: Hollow mesoporous titania, Photocatalysis, Phenol degradation, Platinum photodeposition, Radical mechanism



Fig. S1. XRD patterns of c-HMTN calcined under (a) 500  $\,^\circ\!\!\mathbb{C}$  , (b) 610  $\,^\circ\!\!\mathbb{C}$  , (c) 720  $\,^\circ\!\!\mathbb{C}$ 



Fig. S2. a) Photocatalytic activity of c-HMTN corresponding to different calcination temperatures b) TEM image of c-HMTN calcined at 800  $\degree$ C



**Fig. S3**. a) Phenol degradation primary product HPLC test of a) Benzoquinone b) Hydroquinone and c) phenol degradation overall pathway



**Fig. S4**. Effect of Pt precursor concentration on Pt/c-HMTN catalytic performance. ([Catalyst] = 500 ppm; [Phenol]<sub>0</sub> = 10 ppm; Dark phase time = 30 min; UV power = 20 W; Reaction time = 180 min)

| Photocatalyst                                 | Shape           | Average size                | Light<br>source | Catalytic<br>activity* | Reference |
|-----------------------------------------------|-----------------|-----------------------------|-----------------|------------------------|-----------|
|                                               | Uniformity      | Uniformity                  |                 |                        |           |
| PAN-CNT/TiO <sub>2</sub> -<br>NH <sub>2</sub> | Nanotube        | D: ~500 nm<br>L: several mm | UV              | 20 min                 | 1         |
|                                               | Middle          | Middle                      |                 |                        |           |
| SnO <sub>2</sub> :Sb                          | Random-shaped   | ~2.3 nm                     | - UV-Vis        | 150 min                | 2         |
|                                               | Low             | Middle                      |                 |                        |           |
| Au, Pt modified<br>ZnO                        | Hollow sphere   | Up to 1 mm                  | UV              | 120 min                | 3         |
|                                               | Low             | Low                         |                 |                        |           |
| Degussa P25                                   | Random-shaped   | ~25 nm                      | - UV-Vis        | 300 min                | 4         |
|                                               | Low             | Low                         |                 |                        |           |
| Mesoporous<br>Pd@mTiO <sub>2</sub>            | Core-shell      | ~20 nm                      | - UV            | 120 min                | 5         |
|                                               | Low             | Low                         |                 |                        |           |
| N-doped TiO <sub>2</sub>                      | Unspecified     | Unspecified                 | UV              | 210 min                | 6         |
| F-doped TiO <sub>2</sub>                      | Hollow nanocube | 200~400 nm<br>Middle        | - Vis           | 60 min                 | 7         |
|                                               | Middle          | Middle                      |                 |                        |           |
| Pt/c-HMTN<br>(This study)                     | Hollow sphere   | 450~500 nm                  | - UV-Vis        | 60 min                 |           |
|                                               | High            | High                        |                 |                        |           |

## Table S1

\*Average time to degrade 95% of initial phenol



**Fig. S5.** a) Photocatalytic activity of Pt/c-HMTN corresponding to a) reaction temperatures, b) catalyst dosage and c)pH ([Phenol]<sub>0</sub> = 10 ppm; Dark phase time = 30 min; Solar simulator power = 1 SUN; Reaction time = 60 min)



**Fig. S6**. Hole-trapping scavenger test of Pt/c-HMTN in the presence  $Na_2$ -EDTA versus Pt/c-HMTN without adding  $Na_2$ -EDTA. ([Catalyst] = 500 ppm; [Phenol]0 = 10 ppm; [Na\_2-EDTA] = 20 mM; Dark phase time = 30 min; Solar simulator power = 1 SUN; Reaction time = 60 min)



Fig. S7. EPR spectra of Blank (DI), c-HMTN vs Pt/c-HMTN for <sup>1</sup>O<sub>2</sub> signal peaks in the presence of light



Fig. S8. EPR spectra of c-HMTN, Pt/c-HMTN at different timeframes without the presence of light

## References

1. A. Mohamed, S. Yousef, W.S. Nasser, T. A. Osman, A. Knebel, E.P.V. Sánchez & T. Hashem. Rapid photocatalytic

degradation of phenol from water using composite nanofibers under UV. Environmental Science Europe 2020, 32, 160.

2. A.M. Al-Hamdi, M. Sillanpää, T. Bora, J. Dutta. Efficient photocatalytic degradation of phenol in aqueous solution by SnO<sub>2</sub>:Sb nanoparticles. *Applied Surface Science* 2020, 370, 229-236.

3. Z. Kovács, V. Márta, T. Gyulavári, Á. Ágoston, L. Baia, Z. Pap, K. Hernadi. Noble metal modified (002)-oriented ZnO hollow spheres for the degradation of a broad range of pollutants. *Journal of Environmental Chemical Engineering* 2022, 10, 107655.

4. M. L. de Souza, D. P. dos Santos and P. Corio. Localized surface plasmon resonance enhanced photocatalysis: an experimental and theoretical mechanistic investigation. RSC Advances 2018, 8, 28753

5. M. T. Yilleng, N. Artioli, D. Rooney, H.Manyar. Continuous flow photocatalytic degradation of phenol using Palladium@Mesoporous TiO<sub>2</sub> Core@Shell nanoparticles. *Water* 2023, 15, 2975.

6. S. Safni, M. R. Wahyuni, K. Khoiriah, Y. Yusuf. Photodegradation of phenol using N-doped TiO<sub>2</sub> catalyst. *Molekul* 2019, 14, 1, 447

7. X. Kang, X-Z. Song, Y. Han, J. Cao, Z. Tan. Defect-engineered TiO<sub>2</sub> hollow spiny nanocubes for phenol degradation under visible light Irradiation. *Scientific Reports* 2018, 8:5904